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We study the Ruderman-Kittel-Kasuya-Yosida interaction in 3D Dirac semimetals. Using re-
tarded Green’s functions in real space, we obtain and analyze asymptotic expressions for the in-
teraction, with magnetic impurities at different distances and relative angle with respect to high
symmetry directions on the lattice. We show that the Fermi velocity anisotropy in these materials
produces a strong renormalization of the magnitude of the interaction, as well as a correction to the
frequency of oscillation in real space. Hybridization of the impurities to different conduction elec-
tron orbitals are shown to result in interesting anisotropic spin-spin interactions which can generate
spiral spin structures in doped samples.

PACS numbers: 71.55.Ak, 75.30.Hx, 75.10.Lp, 75.25.Dk

I. INTRODUCTION

Dirac semimetals are fascinating new materials that
can be considered analogues of graphene in three dimen-
sions. They possess robust Dirac points that are pro-
tected by crystalline symmetry, and strong spin-orbit
interaction (SOI). Na3Bi and Cd3As2 are among these
compounds, where the unconventional Dirac character
was detected in angle resolved photoemission and trans-
port experiments.1–5 Many more materials have been
proposed as promising candidates.6 When time-reversal
or inversion symmetry is broken, the degeneracy of each
Dirac cone splits without the opening of a gap, leading
to the Weyl semimetal phase. The latter phase is char-
acterized by unconventional properties, such as a chiral
anomaly and Fermi arcs on the surfaces, as recently mea-
sured in TaAs,7–9 NbAs,10 and NbP.11 These unusual
properties suggest that magnetic impurities can reveal
exotic behavior, as predicted, for instance, for the Kondo
effect.12–14

Impurities are ubiquitous in the preparation of exper-
imental samples and they can also be purposely intro-
duced by different processes. It is well known that in
metallic hosts, magnetic impurities interact effectively
through the electron gas, and that this interaction has an
oscillatory decay when the separation between them is in-
creased. This Ruderman-Kittel-Kasuya-Yosida (RKKY)
interaction15–17 gets more complicated when the host
material has a more involved band structure and/or
additional degrees of freedom. For instance, graphene
is predicted to have an unconventional decay depen-
dence for the charge neutral case.18,19 Strong SOI can
also affect the behavior, giving rise to spin-spin interac-
tions that contain anisotropic terms such as Ising and
Dzyaloshinskii-Moriya (DM) interactions on top of the
usual Heisenberg-like terms.20

In this work we study the RKKY interaction in 3D
Dirac semimetals, focusing on Na3Bi and Cd3As2, two
compounds with strong Fermi velocity anisotropy.1,3

Starting with a low energy model, we consider magnetic

impurities that hybridize with Na-s and Bi-p orbitals,
the most relevant near the band crossings that build the
Dirac points.21 We obtain asymptotic expressions for the
interaction, and analyze its behavior as a function of
the impurity separation as related to the underlying lat-
tice. The role of the SOI in these materials manifests
uniquely when each impurity hybridizes with a different
conduction electron orbital, resulting in strong interac-
tion anisotropies. We also show that Dirac dispersion
anisotropies seen in these materials have strong impact
on the amplitude and spatial dependence of the effective
exchange interaction.

II. MODEL

Two magnetic impurities coupled to an electron gas
can be described by the Hamiltonian

H = H0 + J
∑

j=1,2

Sj · s(Rj), (1)

where H0 is the unperturbed Hamiltonian for the host
material, s(r) =

∑

i δ(r−ri)σi, in units of ~

2 , is the spin
density operator for the conduction electrons, where ri

and σi are the position and Pauli matrices for electron
i. Sj is the localized spin operator for impurity j. At
second order in perturbation theory in the interaction
parameter J , one can obtain an effective Hamiltonian
that describes the carrier mediated interaction between
the impurities separated by a distance vector R

HRKKY = J2
∑

µ,µ′

Sµ
1 χµ,µ′(R)Sµ′

2 , (2)

where χµ,µ′ is the static spin susceptibility tensor of
the electron gas, and µ, µ′ represent the Cartesian
components.22 For conventional electron gases, and in
the absence of SOI, the susceptibility tensor is diagonal
so that the effective spin-spin coupling is isotropic. More-
over, the interaction decays as |R|−D, where D is the di-
mensionality of the system.23 When the SOI is present,
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anisotropic components of Ising and/or DM type may
appear.20 Additionally, the presence of particular fea-
tures in the band structure, such as Dirac points, may
change the decay exponent (e.g. in graphene, |R|−3 at
the Dirac point18,19).
A convenient way to calculate the T = 0 spin suscepti-

bility for a system with SOI is via the real space retarded
Green’s functions,20

χα,β
µ,µ′(R) =− 1

π
ImTr

∫ ωF

−∞
σµG

α,β(R, ω+)

× σµ′Gβ,α(−R, ω+)dω,

(3)

where ω+ = ω + i0+, ωF is the Fermi energy, and the
trace is over spin components. α and β denote sets of
additional degrees of freedom (other than spin) that char-
acterize the host.
Figure 1 shows the hexagonal Na3Bi lattice structure

in the xy plane and its unit cell. Following the low-energy
model introduced in Ref. 21 for Na3Bi, and applicable to
Cd3As2 with appropriate parameters, the Hamiltonian
up to second order in momentum is:

FIG. 1. (Color online) Lattice structure of Na3Bi in the xy

plane (left) with dashed lines denoting different symmetry
directions. Na3Bi unit cell

24 with a magnetic impurity in its
center as a possible location (right).

H = ǫ0(k)τ0σ0 +M(k)τzσ0 +A(kxτxσz − kyτyσ0), (4)

where ǫ0(k) = C0 + C1k
2
z + C2(k

2
x + k2y), M(k) =

M0−M1k
2
z−M2(k

2
x+k2y), and Ci, Mi, A material depen-

dent parameters25. In the case of Na3Bi, the Hamiltonian
is expressed in the basis of relevant orbitals around the
linear band crossings:

(

|S, 1
2 〉, |P, 3

2 〉, |S,− 1
2 〉, |P,− 3

2 〉
)

,
where S and P stands for bonding and anti bonding or-
bitals between two Na-3s and Bi-6p atoms related by
inversion symmetry.21 The second quantum number in
the kets indicates the z projection of the total angular
momentum, upon consideration of the atomic SOI. No-
tice that the most relevant p-like states near the Dirac
points correspond to j = 3

2 and mj = ± 3
2 , where j(j+1)

and mj are eigenvalues of total atomic angular momen-

tum operators Ĵ2 and Ĵz respectively. The Pauli matri-

ces τ and σ act in the S − P (orbital) and total angu-
lar momentum spaces respectively. There are two Dirac
points at K

±1 = (0, 0,±
√

M0/M1), protected by the
crystalline symmetry. One can expand the Hamiltonian
around these two points to get an effective low-energy
model. In dimensionless form

H(κ) = λqzνzτzσ0 + ν0(kxτxσz − kyτyσ0), (5)

where κ ≡ (kx, ky, qz), the energy is expressed in terms
of A/a = 0.451 eV for Na3Bi; in what follows, all the
energies will be expressed in this scale. kx, ky are in units

of the inverse lattice spacing 1/a (a ≃ 5.45Å), qz is the
momentum in the z direction, measured from the Dirac
points and in units of 1/c (c ≃ 9.65Å). The factor λ ≃
0.25 characterizes the Fermi velocity anisotropy in the
z direction1 (λ ≃ 0.25 for Cd3As2 as well3). The Pauli
matrices ν operate in the valley degree of freedom.
From this Hamiltonian we obtain the Green’s function

matrix in momentum space G(κ, ω) = [ω+ − H(κ)]−1.
In the present case, G is an 8 × 8 matrix containing or-
bital, angular momentum, and valley degrees of freedom.
This matrix is block diagonal, and the inversion is simply
calculated as an inversion of several 2 × 2 blocks. One
gets

G(κ, ω) = ρ(κ, ω)−1
[

ω+ +H(κ)
]

, (6)

where ρ(κ, ω) ≡ ω2
+ − k2x − k2y − λ2q2z . It is convenient

to separate the Green’s function in terms of the only two
spin matrices in H , as20

G(κ) = G0(κ)σ0 +Gz(κ)σz , (7)

with

G0(κ) = ρ(κ, ω)−1[ω+ + λqzνzτz − k sin θkν0τy], (8)

Gz(κ) = ρ(κ, ω)−1k cos θkν0τx, (9)

where we have introduced cylindrical coordinates, k =
(k2x + k2y)

1

2 , θk = arctan(ky/kx). One can make further
advances in determining the terms generated by the trace
operation. As the Fourier transform does not change
the spin character of the Green’s function, Eq. (3) will

have terms of the form Tr
[

Gα,β
0 (R)σµ +Gα,β

z (R)σµσz

]

×
[

Gβ,α
0 (−R)σµ′ +Gβ,α

z (−R)σµ′σz

]

. Then, we can write

χα,β
µ,µ′ = − 2

π Im
∫ ωF

−∞ Aα,β
µ,µ′ dω, where

Aα,β
x,x = Gα,β

0 (R)Gβ,α
0 (−R)−Gα,β

z (R)Gβ,α
z (−R),

Aα,β
z,z = Gα,β

0 (R)Gβ,α
0 (−R) +Gα,β

z (R)Gβ,α
z (−R), (10)

Aα,β
x,y = iGα,β

0 (R)Gβ,α
z (−R)− iGα,β

z (R)Gβ,α
0 (−R),

with Ay,y = Ax,x, Ay,x = −Ax,y, and the remaining
cross terms vanish. Using these expressions in Eq. (2),
one gets in-plane XX (x, x), Ising (z, z), and DM (x, y)
components

HRKKY =J2
[

χx,x(S
x
1S

x
2 + Sy

1S
y
2 ) + χz,zS

z
1S

z
2

+ χx,y(S1 × S2)z
]

,
(11)
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as expected when SOI is present.20,26–31 The appear-
ance of each component depends on the coupling of each
impurity to the different orbital and valley degrees of
freedom. There is no reason to couple inequivalently
to each valley, and the susceptibility contains Green’s
functions which are the sum of each valley components:
G(R) =

∑

ν G
ν(R). The products of Green’s functions

will generate intra- and inter-valley terms in the suscep-
tibility due to the scattering of the conduction electrons
with the localized impurities.
From the Hamiltonian matrix in momentum space,

one can see that S and P orbitals are connected by
the propagators due to the effective SOI. In particu-
lar, we see that Gz(κ) contains only τx, so the propa-
gator does not connect S and P orbitals to themselves:
Gν,S,S

z = Gν,P,P
z = 0. This implies that the in-plane and

Ising terms in Eq. (11) are equal and that the DM term
vanishes. Therefore if both impurities are coupled only
to either S or P orbitals, the RKKY interaction will be
of completely isotropic (Heisenberg).
The appearance of anisotropic interactions between

impurities requires one of them to be connected to an S
orbital and the other to a P orbital. This does not require
each impurity to be coupled to only one type of orbital.
In fact, a probable impurity position would be in the mid-
dle of the tetragonal unit cell of the material (see Fig. 1),
which would (locally) preserve the inversion symmetry.
For impurities located at this high-symmetry point, it is
expected that they would connect to both S and P or-
bitals, so that the effective interaction in (11) will have
all three terms. Although the analysis of all possible lo-
cations and orbital configurations of the local magnetic
moments is beyond the scope of this paper, in the follow-
ing we analyze the possible diagonal and non-diagonal
orbital components for the different interactions. Anal-
ysis of the exchange interactions along different lattice
directions would be seen to depend crucially on orbital
hybridization.

III. RESULTS

A. Diagonal orbital components

When both impurities connect to the same type of

orbital, we have that Gν=1,S,S
0 (κ) = Gν=−1,P,P

0 (κ) =

ρ(κ, ω)−1(ω++λqz), and Gν=−1,S,S
0 (κ) = Gν=1,P,P

0 (κ) =
ρ(κ, ω)−1(ω+ − λqz). The real space version, after inte-
gration on θk and k [in the (0,∞) range, valid for large
impurity separations], can be written as

Gν,S,S
0 (R) = −eiνKzRz

(2π)2

∫ ∞

−∞
eiqzRz

× (ω+ + νλqz)K0

(

R
√

λ2q2z − ω2
+

)

dqz ,

(12)

where R is in cylindrical coordinates, R is the radial co-
ordinate in the xy plane, and K0 is the Bessel function.

kz has been replaced by ±Kz + qz . The analytic contin-
uation ω+ → ω and the branch cut in the square root
allow one to write

Gν,S,S
0 (R) = −eiνKzRz

(2π)2
(I0 − i sgn(ω)I1), (13)

where

I0 =

(

∫ − |ω|
λ

−∞
+

∫ ∞

|ω|
λ

)

eiqzRz (ω + νλqz)K0(u) dqz ,

I1 =

∫
|ω|
λ

− |ω|
λ

eiqzRz(ω + νλqz)K0(−i sgn(ω)v) dqz,

(14)

with u = R
√

λ2q2z − ω2 and v = R
√

ω2 − λ2q2z . Lacking
analytical solutions, we proceed with the case R ≫ Rz,
which allows one to obtain asymptotic expressions. Con-
sidering the case where the Fermi energy lies below the
Dirac points, ω < 0, and adding the contributions of the
two valleys, one gets (Appendix A)

GS,S
0 (R, ω) ≃ − 1

π2λR2

(

e
i3π

4 cos

(

KzRz −
|ω|Rz

λ

)

+ i
πωR

2
exp

(

iRω

[

1 +
R2

z

2λ2R2

])

×
[

cos(KzRz) + i
Rz

λR
sin(KzRz)

])

,

(15)

with the same expression for GP,P
0 (R, ω). We can now

calculate the susceptibility, by integrating over ω. The
integration generates many terms, with the most relevant
in the R asymptotic limit given by

χS,S
x,x (R, ωF ) = χP,P

z,z (R, ωF )

≃ − ω2
F

4π3λ2R3
cos2(KzRz) cos

(

2R

[

1 +
R2

z

2λ2R2

]

ωF

)

.

(16)

Notice there is no angular dependence. These effective
in-plane spin-spin interactions decay as 1/R3, while there
is no decay for separations in the z direction; they only
oscillate with Rz (≪ R). There are, however, important
corrections due to the dispersion anisotropy. The form
of the spatial term inside the second cosine comes from
a second order expansion of an effective distance given

by R̂ ≡
√

R2 + λ2R2
z ≃ R

[

1 +
R2

z

2λ2R2

]

. For λ = 1, which

corresponds to a completely isotropic Fermi velocity, we
recover the expected isotropic distance dependence in 3D.
Another important effect of the anisotropy is to modu-
late the amplitude of the interaction. It decreases for
λ > 1, with respect to the isotropic case. For materials
with λ < 1, such as Na3Bi and Cd3As2, the interaction
is significantly enhanced (Fig. 2). Notice that the inter-
action decays quadratically in energy towards the Dirac
point. The interesting oscillatory (and always positive)
term that comes from inter-valley scattering, modulates
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FIG. 2. (Color online) Effective impurity interaction as a
function of their separation R in the xy plane. The anisotropy
in the Fermi velocity, characterized by λ = 0.25, has a big
impact on the strength of the interaction with respect to the
isotropic case (λ = 1). It also introduces a correction in the
period of the oscillation.

the usual oscillatory RKKY term. When KzRz is an odd
multiple of π

2 , the interaction vanishes for any value of

R or band filling. In Na3Bi, where Kz ≃ 0.82 × 1
c , this

will happen for Rz ≃ 3.83
(

n− 1
2

)

c, where n is an inte-

ger. Exactly at the Dirac nodes, ωF = 0, χS,S in Eq.
(16) vanishes at the third order in the asymptotic expan-
sion in R. At the next order in the expansion, one gets
no oscillation with the in-plane distance R, and ∼ R−4

decay.

B. Off-diagonal orbital components

Now we consider the case in which one impurity is
connected to an S orbital and the second one to a P or-
bital. The Green’s functions have the following proper-

ties: Gν,S,P
0 (κ, ω) = −Gν,P,S

0 (κ, ω) = iρ(κ, ω)−1k sin θk.
Proceeding in a similar way as in the diagonal case, one
gets (Appendix B)

GS,P
0 (R, ω) ≃ sin(θR)

2π2
cos(KzRz) f(R,Rz, ω), (17)

GS,P
z (R, ω) ≃ i cos(θR)

2π2
cos(KzRz) f(R,Rz, ω), (18)

where

f(R,Rz , ω) = − 1

λR2

[

4

Rω

(

1 +
i

π

)

cos

( |Rz|ω
λ

)

+ iπω

(

exp

(

iRω

[

1 +
R2

z

2λ2R2

])

×
[

Rω

(

R2
z

λ2R2
− 1

)

+ i

(

R4
zω

2

8λ4R2
− 1

)])]

,

(19)

for ω < 0. After integrating over ω, and retaining the
most relevant asymptotic terms in R, we get (Appendix
B)

χS,P
x,x (R, ωF ) ≃ −χS,S

x,x (R, ωF ) cos(2θR),

χS,P
z,z (R, ωF ) ≃ χS,S

x,x (R, ωF ), (20)

χS,P
x,y (R, ωF ) ≃ −χS,S

x,x (R, ωF ) sin(2θR),

where χS,S
x,x is given by Eq. (16). Unlike the case of the

diagonal orbital components, now there is a strong an-
gular dependence in the in-plane interaction, while the
Ising component is angle-independent (see Fig. 1 for a
schematic of high symmetry directions). We can see that
along the x direction, θR = 0, the DM term vanishes and
one ends up with an interaction where the in-plane and
Ising terms are out of phase (opposite signs), but with the
same magnitude. When θR = π/4, the in-plane Heisen-
berg term vanishes so only Ising and DM terms survive,
with equal strength and in phase. For separations along
the y-axis, θR = π

2 , the DM term vanishes, which pro-
duces a completely isotropic Heisenberg interaction, as
in the case without orbital mixing. There are two other
high symmetry directions in the lattice. One corresponds
to angles θR = ±π

6 (see Fig. 1). These angles give prefac-

tors for the different terms: 1
2 for XX, and ±

√
3
2 for DM.

This implies that the Ising component dominates over
the other two in this direction, its magnitude twice XX,
and out of phase with each other. At the same time, the
DM term is

√
3 times bigger than the isotropic in-plane

(but smaller than Ising), and its sign depends on the
specific direction. For θR = ± 2π

3 , the prefactors are − 1
2 ,

∓
√
3
2 for XX and DM respectively, which makes it similar

to the former but with different relative phases. Other
angles (lattice directions) produce interactions that mix
all three components, giving a tendency to complex spi-
ral ordering of spins embedded in this lattice. Exactly at
the Dirac point, we find that the decay is even faster than
for the diagonal case, χS,P ∼ R−5, and again it does not
oscillate.
A likely location for impurities is at the center of the

unit cell (Fig. 1). There, it preserves inversion symmetry
locally. It is probable that each impurity will hybridize
to both S and P orbitals, in which case the effective in-
teraction will have contributions from both diagonal and
off-diagonal components. It is worth mentioning that a
DM term is expected to appear in systems with SOI and
absence of inversion symmetry. Both conditions are satis-
fied in the presence of Rashba SOI.20,26–28 Materials with
intrinsic SOI and absence of an underlying crystalline
inversion symmetry, such as monolayer transition metal
dichalcogenides,30,31 are another example. In the present
case, the multi-component spinor nature of the states al-
lows non-zero DM terms even with inversion symmetry,
provided that each impurity hybridizes unequally to each
orbital.
In the simple case in which the hybridization to each

orbital is of the same magnitude, one can add all the com-
ponents to obtain the final effective interaction. Given
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that χP,S
x,y = −χS,P

x,y , the DM term will vanish, and

χx,x = 4 sin2(θR)χ
S,S
x,x , χz,z = 4χS,S

x,x . In this case we
recover an isotropic interaction for θR = π

2 , and for
θR = 0, π the interaction is only along the z direction.

IV. CONCLUSIONS

We have obtained asymptotic expressions for the
RKKY interaction in 3D Dirac semimetals. In the limit
in which R ≫ Rz, the indirect coupling decays as R−3,
whereR is the impurity separation in the xy plane. There
are three important factors that come into play for the re-
sultant interaction. First, the Fermi velocity anisotropy
modifies the period of the oscillation as a function of the
impurity separation, and also its magnitude. Second, the
position of the Dirac points in the Brillouin zone, given by
Kz, results in a second modulation along the z direction,
with a period that depends on the Kz value. Lastly, the
orbitals to which the impurities hybridize have impact

on the angular dependence of the interaction in the xy
plane. When both impurities couple to the same type of
orbital (S or P ), the interaction is angular-independent.
When impurities hybridize to a different orbital, there is
a strong modulation with the orientation in the lattice.
The different components of the interaction survive de-
pending on the directions along the crystal, resulting in
complex equilibrium configurations for an impurity en-
semble. These results can be tested by NMR and µSR
experiments.
Note. During the preparation of this manuscript, we

became aware of two recent papers32,33 which analyze the
RKKY interaction in Weyl semimetals. Our results are
similar to the ones in Ref. 32 for the distance dependence
of the interaction and the effect of the Fermi velocity
anisotropy.
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Appendix A: CALCULATION DETAILS FOR DIAGONAL ORBITAL COMPONENTS

We start by considering the case in which each impurity is hybridized to the same type of orbital, either S or

P . In this case we have that Gν=1,S,S
0 (R) = Gν=−1,P,P

0 (R) = ρ−1(ω+ + λqz), and Gν=−1,S,S
0 (R) = Gν=1,P,P

0 (R) =
ρ−1(ω+ − λqz). Then,

Gν,S,S
0 (R, ω) =

1

(2π)3

∫

Gν,S,S
0 (κ, ω)eik·Rdk = −eiνKzRz

(2π)2

∫ ∞

−∞
eiqzRz (ω+ + νλqz)K0

(

R
√

λ2q2z − ω2
+

)

dqz, (A1)

with R expressed in cylindrical coordinates, where R is the radial coordinate in the xy plane, and K0 is the modified
Bessel function of the second kind. In Eq. (A1) we have already integrated over the angle θk, and also over k in the
(0,∞) range, which is a valid approximation for large impurity separation. kz has been replaced by ±Kz + qz as well,
and we are left with the integration over qz. Using the fact that

√

λ2q2z − ω2
+ =

{

√

λ2q2z − ω2, |ω| ≤ λqz
−i sgn(ω)

√

ω2 − λ2q2z , |ω| > λqz .
(A2)

we get that

Gν,S,S
0 (R, ω) = −eiνKzRz

(2π)2
(I0a − i sgn(ω)I0b), (A3)

where

I0a =

(

∫ − |ω|
λ

−∞
+

∫ ∞

|ω|
λ

)

eiqzRz (ω + νλqz)K0

(

R
√

λ2q2z − ω2
)

dqz, (A4)

and

I0b =

∫

|ω|
λ

− |ω|
λ

eiqzRz(ω + νλqz)K0

(

−i sgn(ω)R
√

ω2 − λ2q2z

)

dqz, (A5)

Using the identities

K0(ix) = i
π

2
H

(1)
0 (x) = i

π

2
[J0(x) + iY0(x)], (x ∈ R), (A6)
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we get that

K0

(

−i sgn(ω)R
√

ω2 − λ2q2z

)

= −π

2

[

Y0

(

R
√

ω2 − λ2q2z

)

− i sgn(ω)J0

(

R
√

ω2 − λ2q2z

)]

, (A7)

so

I0b = −π

2

∫

|ω|
λ

− |ω|
λ

eiqzRz(ω + νλqz)
[

Y0

(

R
√

ω2 − λ2q2z

)

− i sgn(ω)J0

(

R
√

ω2 − λ2q2z

)]

dqz , (A8)

and using the parity properties of the integrand under qz → −qz, we can write

I0a = 2ω

∫ ∞

|ω|
λ

cos(qzRz)K0

(

R
√

λ2q2z − ω2
)

dqz + 2iνλ

∫ ∞

|ω|
λ

qz sin(qzRz)K0

(

R
√

λ2q2z − ω2
)

dqz , (A9)

and

I0b = −π(I0b,1 + I0b,2 + I0b,3 + I0b,4), (A10)

where

I0b,1 = ω

∫

|ω|
λ

0

cos(qzRz)Y0

(

R
√

ω2 − λ2q2z

)

dqz,

I0b,2 = −i|ω|
∫

|ω|
λ

0

cos(qzRz)J0

(

R
√

ω2 − λ2q2z

)

dqz,

I0b,3 = iνλ

∫

|ω|
λ

0

qz sin(qzRz)Y0

(

R
√

ω2 − λ2q2z

)

dqz ,

I0b,4 = νλ sgn(ω)

∫

|ω|
λ

0

qz sin(qzRz)J0

(

R
√

ω2 − λ2q2z

)

dqz .

(A11)

These integrals cannot be solved in a closed form. Substituting u = R
√

λ2q2z − ω2 in I0a, v = R
√

ω2 − λ2q2z in I0b,

and defining r = |Rz|
λR , α = R|ω|, we get

I0a,1 =
2ω

λR

∫ ∞

0

u√
α2 + u2

cos
(

r
√

α2 + u2
)

K0(u)du,

I0a,2 = i
2ν sgn(Rz)

λR2

∫ ∞

0

u sin
(

r
√

α2 + u2
)

K0(u)du,

(A12)

and

I0b,1 =
ω

λR

∫ α

0

v√
α2 − v2

cos
(

r
√

α2 − v2
)

Y0(v)dv,

I0b,2 = −i
|ω|
λR

∫ α

0

v√
α2 − v2

cos
(

r
√

α2 − v2
)

J0(v)dv,

I0b,3 = i
ν sgn(Rz)

λR2

∫ α

0

v sin
(

r
√

α2 − v2
)

Y0(v)dv,

I0b,4 =
ν sgn(ωRz)

λR2

∫ α

0

v sin
(

r
√

α2 − v2
)

J0(v)dv.

(A13)

We tackle the integrals in the limit r ≪ 1, expanding the sines and cosines around r = 0 as

sin
(

r
√

α2 ± u2
)

=
∞
∑

n=0

(−1)n

(2n+ 1)!

(

r
√

α2 ± u2
)

2n+1,

cos
(

r
√

α2 ± u2
)

=

∞
∑

n=0

(−1)n

(2n)!

(

r
√

α2 ± u2
)

2n.

(A14)
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Then we have that

∫ ∞

0

u
(

√

α2 + u2
)

2n−1K0(u)du =
22n−1

Γ
(

1
2 − n

)G 3,1
1,3

(

n+ 1

2

0,n+ 1

2
,n+ 1

2

∣

∣

∣

∣

α2

4

)

,

∫ α

0

v
(

√

α2 − v2
)

2n−1Y0(v)dv = 4nΓ

(

n+
1

2

)

G 2,1
2,4

(

n+ 1

2
,n

n+ 1

2
,n+ 1

2
,0,n

∣

∣

∣

∣

α2

4

)

,

∫ α

0

v
(

√

α2 − v2
)

2n−1J0(v)dv = 2n−
1

2αn+ 1

2Γ

(

n+
1

2

)

Jn+ 1

2

(α),

(A15)

whereGm,n
p,q is the Meijer function. The summations cannot be done analytically as they are, but we can use asymptotic

expansions in α

G 3,1
1,3

(

n+ 1

2

0,n+ 1

2
,n+ 1

2

∣

∣

∣

∣

α2

4

)

≃ 4
1

2
−nΓ

(

1

2
− n

)

α2n−1,

G 2,1
2,4

(

n+ 1

2
,n

n+ 1

2
,n+ 1

2
,0,n

∣

∣

∣

∣

α2

4

)

≃ 4−nαn

π

(

2αn−1

Γ
(

n+ 1
2

) −
√
π2n cos

(

α− πn

2

)

)

,

Jn+ 1

2

(α) ≃
√

2

πα
sin
(

α− πn

2

)

.

(A16)

Now the summation can be performed, and we get

Σ0a,1(α, r) =
∞
∑

n=0

(−1)nα2n−1r2n

(2n)!
=

cos(rα)

α
,

Σ0a,2(α, r) =

∞
∑

n=0

(−1)nα2n+1r2n+1

(2n+ 1)!
= sin(rα),

Σ0b,1(α, r) =
∞
∑

n=0

(−1)n r2n

(2n)!

[

2α2n−1

π
− 2nαn

√
π

Γ

(

n+
1

2

)

cos
(

α− nπ

2

)

]

=
2

πα
cos(rα) − cos

(

α

[

1 +
r2

2

])

,

Σ0b,2(α, r) =−
√

2

πα

∞
∑

n=0

(−1)nr2n

(2n)!
2n−

1

2αn+ 1

2Γ

(

n+
1

2

)

sin
(

α− πn

2

)

= sin

(

α

[

1 +
r2

2

])

,

Σ0b,3(α, r) =

∞
∑

n=0

(−1)nr2n+1

(2n+ 1)!

αn+1

π22n+1

(

αn

Γ
(

n+ 3
2

) −
√
π2n sin

(

α− πn

2

)

)

=
2

π
sin(rα) − rα sin

(

α

[

1 +
r2

2

])

,

Σ0b,4(α, r) =−
√

2

πα

∞
∑

n=0

(−1)nr2n+1

(2n+ 1)!
2n+

1

2αn+ 3

2Γ

(

n+
3

2

)

cos
(

α− πn

2

)

= −rα cos

(

α

[

1 +
r2

2

])

.

(A17)

Then

I0a,1 ≃ 2ω

λr
Σ1(α, r) =

2ω cos(rα)

λRα
=

2 sgn(ω)

λR2
cos

( |Rzω|
λ

)

,

I0a,2 ≃ i
2ν sgn(Rz)

λR2
Σ2(α, r) = i

2ν sgn(Rz)

λR2
sin(rα) = i

2ν sgn(Rz)

λR2
sin

( |Rzω|
λ

)

,

(A18)

which results in

I0a(R,Rz, ω, ν) ≃
2

λR2
sgn(ω) exp

(

iν
ωRz

λ

)

, |Rz| ≪ λR. (A19)
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On the other hand

I0b,1 ≃ ω

λR
Σ0b,1(α, r) =

ω

λR

[

2

πR|ω| cos
( |ωRz|

λ

)

− cos

(

R|ω|
[

1 +
R2

z

2λ2R2

])]

,

I0b,2 ≃ −i
|ω|
λR

Σ0b,2(α, r) = −i
|ω|
λR

sin

(

R|ω|
[

1 +
R2

z

2λ2R2

])

,

I0b,3 ≃ i
ν sgn(Rz)

λR2
Σ0b,3(α, r) = i

ν sgn(Rz)

λR2

[

2

π
sin

( |ωRz|
λ

)

− |ωRz|
λ

sin

(

R|ω|
[

1 +
R2

z

2λ2R2

])]

,

I0b,4 ≃ ν sgn(ωRz)

λR2
Σ0b,4(α, r) = −νRzω

λ2R2
cos

(

R|ω|
[

1 +
R2

z

2λ2R2

])

.

(A20)

After some algebra, one finds that

I0b(R,Rz, ω, ν) = − π

λR
sgn(ω)

[

2

πR
exp

(

iν
ωRz

λ

)

− |ω|
(

1 + ν
Rz

λR

)

exp

(

iRω

[

1 +
R2

z

2λ2R2

])]

, |Rz| ≪ λR. (A21)

For ω < 0, this gives rise to the Green’s function appearing in Eq. (15).

Appendix B: OFF-DIAGONAL ORBITAL COMPONENTS

When one of the impurities hybridizes with an S orbital and the other one with a P orbital, we have that

Gν,S,P
0 (κ, ω) = −Gν,P,S

0 (κ, ω) = iρ−1k sin θk.
The Fourier transform gives

Gν,S,P
0 (R, ω) =

i

(2π)3

∫ ∞

−∞
dkz e

ikzRz

∫ ∞

0

dk
k2

ρ

∫ 2π

0

dθk sin θk e
ikR cos(θk−θR). (B1)

Integrating over θk, we get

Gν,S,P
0 (R, ω) = − sin(θR)

4π2

∫ ∞

−∞
dkze

ikzRz

∫ ∞

0

dk
k2

ρ
J1(kR). (B2)

Integrating over k and replacing kz by Kτ
z + qz, we get

Gν,S,P
0 (R, ω) =

sin(θR)

4π2
eiK

τ

z
Rz

∫ ∞

−∞
dqze

iqzRz

√

λ2q2z − ω2
+ K1

(

R
√

λ2q2z − ω2
+

)

, (B3)

which can be written as

Gν,S,P
0 (R, ω) =

sin(θR)

4π2
eiK

ν

z
Rz(I2 − i sgn(ω)I3), (B4)

where

I2 =

(

∫ − |ω|
λ

−∞
+

∫ ∞

|ω|
λ

)

eiqzRz

√

λ2q2z − ω2K1

(

R
√

λ2q2z − ω2
)

dqz , (B5)

and

I3 =

∫

|ω|
λ

− |ω|
λ

eiqzRz

√

ω2 − λ2q2zK1

(

−iR sgn(ω)
√

ω2 − λ2q2z

)

dqz . (B6)

Similarly,

Gν,S,P
z (R, ω) =

i cos(θR)

4π2
eiK

ν

z
Rz(I2 − i sgn(ω)I3) (B7)

with Gν,P,S
z (R, ω) = Gν,S,P

z (R, ω). Changing variables as in the previous case, we get

I2 =
2

λR2

∫ ∞

0

u2K1(u)√
u2 +R2ω2

cos

(

Rz

λR

√

u2 +R2ω2

)

du. (B8)
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This expression is even under ω → −ω and Rz → −Rz, then

I2 =
2

λR2

∫ ∞

0

u2K1(u)√
u2 + α2

cos
(

r
√

u2 + α2
)

du. (B9)

Similarly, for I3 we have

I3 = − π

λR2

∫ α

0

v2H
(1)
1 (sgn(ω)v)√
α2 − v2

cos
(

r
√

α2 − v2
)

dv = − π

λR2

∫ α

0

v2[iY1(v) + sgn(ω)J1(v)]√
α2 − v2

cos
(

r
√

α2 − v2
)

dv,

(B10)
or

I3 = − π

λR2
(sgn(ω)I3a + iI3b), (B11)

where

I3a =

∫ α

0

v2J1(v)√
α2 − v2

cos
(

r
√

α2 − v2
)

dv, (B12)

I3b =

∫ α

0

v2Y1(v)√
α2 − v2

cos
(

r
√

α2 − v2
)

dv. (B13)

Using the cosine series expansions, we get

∫ ∞

0

u2K1(u)
(

u2 + α2
)

n− 1

2 du =
22n−3α3

Γ
(

1
2 − n

)G 3,1
1,3

(

n−1
− 3

2
,n−1,n

∣

∣

∣

∣

α2

4

)

, (B14)

∫ α

0

v2J1(v)
(

α2 − v2
)

n− 1

2 dv = 2n−
1

2Γ

(

n+
1

2

)

αn+ 3

2Jn+ 3

2

(α), (B15)

∫ α

0

v2Y1(v)
(

α2 − v2
)

n− 1

2 dv = 2n−
1

2Γ

(

n+
1

2

)

αn+ 3

2Yn+ 3

2

(α) +
4

π
α2n−1. (B16)

The summations cannot be performed analytically, so we expand the special functions for α ≫ 1

G 3,1
1,3

(

n−1
− 3

2
,n−1,n

∣

∣

∣

∣

α2

4

)

≃ 42−nα2(n−2)Γ

(

1

2
− n

)

, (B17)

Jn+ 3

2

(α) ≃ −
√

2

πα
cos
(

α− πn

2

)

+
(n+ 1)(n+ 2)√

2π α3/2
sin
(

α− πn

2

)

, (B18)

Yn+ 3

2

(α) ≃ −
√

2

πα
sin
(

α− πn

2

)

− (n+ 1)(n+ 2)√
2π α3/2

cos
(

α− πn

2

)

. (B19)

Proceeding with the summations, we get

Σ2(α, r) =2

∞
∑

n=0

(−1)n

(2n)!
r2nα3+2(n−2) =

2 cos(rα)

α
, (B20)

Σ3a(α, r) =− 1√
π

∞
∑

n=0

(−1)n

(2n)!
r2n2n−1αnΓ

(

n+
1

2

)

[

(n+ 1)(n+ 2) sin
(πn

2
− α

)

+ 2α cos
(πn

2
− α

)]

(B21)

=α(r2 − 1) cos

(

α+
αr2

2

)

−
(

α2r4

8
− 1

)

sin

(

α+
αr2

2

)

(B22)

Σ3b(α, r) =−
∞
∑

n=0

(−1)n

(2n)!
r2n

(

2n−1αn+ 3

2Γ

(

n+
1

2

)

[

√

2

πα
sin
(

α− πn

2

)

+
(n+ 1)(n+ 2)√

2π α3/2
cos
(

α− πn

2

)

]

− 4

π
α2n−1

)

(B23)

=α(r2 − 1) sin

(

α+
αr2

2

)

+

(

α2r4

8
− 1

)

cos

(

α+
αr2

2

)

+
4

πα
cos(rα). (B24)
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Then

I2 ≃ 4

λR3|ω| cos
( |Rzω|

λ

)

, (B25)

and

I3a ≃ R|ω|
(

R2
z

λ2R2
− 1

)

cos

(

Rω

[

1 +
R2

z

2λ2R2

])

−
(

ω2R4
z

8λ4R2
− 1

)

sin

(

R|ω|
[

1 +
R2

z

2λ2R2

])

, (B26)

I3b ≃ R|ω|
(

R2
z

λ2R2
− 1

)

sin

(

R|ω|
[

1 +
R2

z

2λ2R2

])

+

(

ω2R4
z

8λ4R2
− 1

)

cos

(

Rω

[

1 +
R2

z

2λ2R2

])

+
4

πR|ω| cos
( |Rzω|

λ

)

,

(B27)

which gives

I3 ≃ − π

λR2

[

exp

(

iRω

[

1 +
R2

z

2λ2R2

])[

Rω

(

R2
z

λ2R2
− 1

)

+ i

(

R4
zω

2

8λ4R2
− 1

)]

+
4i

πR|ω| cos
( |Rzω|

λ

)]

. (B28)

Defining f(R,Rz, ω) = I2(R,Rz, ω)− i sgn(ω)I3(R,Rz, ω), we have (summing over valleys) that

GS,P
0 (R, ω) ≃ sin(θR)

2π2
cos(KzRz) f(R,Rz, ω), (B29)

GS,P
z (R, ω) ≃ i cos(θR)

2π2
cos(KzRz) f(R,Rz, ω), (B30)

with

f(R,Rz, ω) =
1

λR2

(

4

R|ω| cos
( |Rzω|

λ

)

+ iπ sgn(ω)

[

exp

(

iRω

[

1 +
R2

z

2λ2R2

])[

Rω

(

R2
z

λ2R2
− 1

)

+ i

(

R4
zω

2

8λ4R2
− 1

)]

+
4i

πR|ω| cos
( |Rzω|

λ

)])

,

(B31)

and, for ω < 0,

f(R,Rz, ω < 0) =− 1

λR2

(

4

Rω
cos

( |Rz|ω
λ

)

+ iπω

[

exp

(

iRω

[

1 +
R2

z

2λ2R2

])[

Rω

(

R2
z

λ2R2
− 1

)

+ i

(

R4
zω

2

8λ4R2
− 1

)]

+
4i

πRω
cos

( |Rz|ω
λ

)])

.

(B32)

Integrating in ω, and to lowest order in 1/R, one gets

χS,P
x,x ≃ ω2

F

4π3λ2R3
cos2(KzRz) cos(2θR) cos

(

2RωF

[

1 +
R2

z

2λ2R2

])

, (B33)

χS,P
z,z ≃ − ω2

F

4π3λ2R3
cos2(KzRz) cos

(

2RωF

[

1 +
R2

z

2λ2R2

])

, (B34)

χS,P
x,y ≃ − ω2

F

4π3λ2R3
cos2(KzRz) sin(2θR) cos

(

2RωF

[

1 +
R2

z

2λ2R2

])

. (B35)
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