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We explore the stability of far-from-equilibrium metastable states of a three-dimensional Coulomb glass at

zero temperature by studying charge avalanches triggered by a slowly varying external electric field. Surpris-

ingly, we identify a sharply defined dynamical (“depinning”) phase transition from stationary to nonstationary

charge displacement at a critical value of the external electric field. Using particle-conserving dynamics, scale-

free system-spanning avalanches are observed only at the critical field. We show that the qualitative features

of this depinning transition are completely different for an equivalent short-range model, highlighting the key

importance of long-range interactions for nonequilibrium dynamics of Coulomb glasses.

PACS numbers: 75.50.Lk, 75.40.Mg, 05.50.+q, 64.60.-i

I. INTRODUCTION

The long-range nature of the Coulomb interaction plays

only a secondary role in metals, where it remains screened

by mobile electrons down to atomic length scales. The situ-

ation is, however, far more interesting on the insulating side

of disorder-driven metal-insulator transitions,1 where screen-

ing is suppressed due to charge localization. Here, the un-

screened Coulomb interaction leads to the opening of the

“Coulomb gap” in the electronic density of states, as first

pointed out in pioneering works of Pollack,2 as well as Efros

and Shklovskii (ES). The ES theory3,4 predicts a universal

form of the Coulomb gap, and explains how its existence mod-

ifies hopping transport4 in disordered insulators, consistent

with numerous experiments.5 Early work also revealed that

Coulomb interactions in disordered insulators generally con-

tribute to the formation of an extensive number of metastable

states, i.e., the formation of the Coulomb glass (CG).6–8 In

subsequent work, various aspects of glassy behavior of the

CG were explored theoretically9–19 and experimentally.20–32

More recent progress followed with the formulation of an-

alytical theories of the CG10–13,16,18 which adapted Parisi’s

replica methods33–36 for spin glasses to disordered Coulomb

systems. These theories find a Coulomb gap of the same uni-

versal form as predicted by the ES theory, but this behavior

emerges only within the low-temperature glassy phase (dis-

playing replica symmetry breaking). Within this mean-field

picture, the universality of the Coulomb gap, as well as the

saturation of the appropriate stability bound, can be directly

traced back to the “marginal stability” of the entire glassy

phase.10 In physical terms, the marginal stability reflects the

emergence of “replicons,” soft (gapless) collective excitations

involving simultaneous rearrangements of many electrons. If

such soft excitations indeed characterize the Coulomb glass,

they should also govern the physical response to various

weak perturbations (e.g. the external electric fields), per-

haps leading to large-scale avalanches. Precisely such behav-

ior has already been established37,38 for infinite-range spin-

glass models, leading to scale-free avalanches characteriz-

ing an entire manifold of metastable states. Despite the suc-

cesses of the mean-field approach, its applicability to finite

space dimensions remains the subject of much controversy

and debate.39–44 Furthermore, a computational search for a

finite-temperature glass transition in the CG in two and three

space dimensions has remained inconclusive.14,15,17,19 To shed

additional light on the nature of excitations in the CG, and fur-

ther test the mean-field ideas, it is therefore useful to exam-

ine the stability of the low-lying metastable states by external

electric fields.

In this work we investigate the out-of-equilibrium behav-

ior of a three-dimensional Coulomb glass at zero temper-

ature and study the hopping and total charge displacement

avalanches triggered by increasing an externally-applied elec-

tric field. Previous work on avalanches in the CG in three

space dimensions done by Palassini and Goethe,45 which trig-

ger avalanches via dipole excitations or charge insertions,

find scale-free behavior for long-range hopping dynamics, but

when hopping is bounded by a finite fixed range they do not

find any scale-free avalanches. Because physical electrons re-

arrange themselves by finite-range hopping it is of interest to

search for a scale-free behavior in the CG for bounded hop-

ping dynamics by other means.

Here we study the CG with particle-number-conserving

short-range hopping, by “adiabatically” increasing an exter-

nal electric field up to a depinning electric field Edp that sep-

arates the steady current state from just finite electron rear-

rangements as a reaction to the external field. We find that

scale-free avalanches arise in the Coulomb glass when the
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electric field is close to Edp. To emphasize the role played

by the long-range Coulomb interactions we repeat our simu-

lations for an equivalent short-range interacting model. In this

case we still find a sharply defined depinning transition, but a

completely different form for the critical behavior. Here we

do not find any scale-free avalanches, in dramatic contrast to

the behavior of the CG model.

The outline of this paper is as follows. Section II describes

the model, followed by a description of the used numerical

procedure in Sec. III A. Measured quantities are introduced in

Sec. III B, followed by results presented in Sec. IV.

II. MODEL

The Coulomb glass Hamiltonian (in dimensionless units) is

given by3

H =
1

2

∑

i6=j

(ni −K)
1

| ri − rj |
(nj −K) +

∑

i

niϕi , (1)

where ni is the electron number at site i, K is the filling factor,

ri is the coordinate of site i and ϕi a randomly-distributed on-

site energy. For a charge neutral system, i.e., K = 1/2, in a

constant external electric field E in x-direction, Eq. (1) can be

rewritten in an Ising spin formulation by setting6 Si = 2ni−1
(Si ∈ {±1} an Ising spin variable)

H =
1

4

∑

i<j

JijSiSj +
∑

i

Si (Φi + Vi) , (2)

where the electric potential is Vi = −Exi and xi is the x-

position of spin i. This form of the Hamiltonian with E = 0 is

of a random-field Ising model with long-range antiferromag-

netic interactions given by

Jij =
1

|ri − rj |
. (3)

The site energy Φi = ϕi/2 is sampled from a Gaussian dis-

tribution with zero mean and standard deviation σ = 0.5.

To keep the dynamics of the two models identical it is nec-

essary to constrain the Ising-like Hamiltonian in Eq. (2) to

have a constant magnetization (m = 0 for K = 1/2) at

all times. This is accomplished by using magnetization-

conserving Kawasaki dynamics.46

The corresponding short-range model (SR) is given by the

same Hamiltonian in Eq. (2), but with long-range interactions

replaced by nearest-neighbor interactions (on a cubic lattice)

of the form

Jij =

{

1 if i and j are nearest neighbors,

0 otherwise.
(4)

A. Determination of the initial configurations

In our simulations we need to generate stable initial config-

urations of the system. In this context “stable” refers to stable

0

0.05

0.1

0.15

0.2

−10 −5 0 5 10

ρ
(E

)

E

(a)

L = 4
L = 6
L = 8
L = 10
L = 12
L = 14
L = 16
L = 30

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

−10 −5 0 5 10
ρ
(E

)

E

(b)

L = 4
L = 6
L = 8
L = 10
L = 12
L = 14
L = 16

FIG. 1: (Color online) Density of states for the three-dimensional CG

of (a) the starting pseudo-ground-state configurations and (b) over a

range of different electric potentials 0.5 < E < 0.6. Both distribu-

tions show a clear dip for E = 0, suggesting that the states computed

using JEO are indeed close to the true ground state of the system.

Data averaged over 2500 – 10000 disorder instances, depending on

the size size of the system (see Tab. I).

towards single nearest-neighbor electron hopping. We imple-

ment this procedure for both the CG and the SR model. In

order to have an initial configuration with a Coulomb gap and

track its dependence on the electric field, we compute pseudo-

ground-state configurations using jaded extremal optimization

(JEO).47

The single-particle density of states (DOS) of a classical

Coulomb system is given by

ρ (E) =

〈

1

N

∑

i

δ (E − Ei)

〉

, (5)

where the local single-particle energy is given by

Ei =
1

2

∑

j

JijSi + 2Φii =
∑

j

(

ni −
1

2

)

Jij + ϕi, (6)

and the average 〈· · · 〉 is performed both over thermal fluc-

tuations and disorder instances. The ground state of the CG

is well known to display a Coulomb gap3 in the DOS at the

Fermi energy, which gradually fills up when temperature is

increased.6,7,9,19,48
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For the CG we can empirically check how “far” or “close”

a given configuration is from the ground state by examining

the form of the DOS. Depending on the depth of the Coulomb

gap, we can argue whether the configurations are close or far

from their respective ground state. The SR ground states do

not have a Coulomb gap,49 but have a “dip” at the Fermi en-

ergy that converges to a finite value in the thermodynamic

limit. Again, we can empirically check if we have a good

approximation of the ground state by studying at the DOS dis-

tribution. In Fig. 1(a) we show the DOS of the CG using the

pseudo ground states for all simulated linear system sizes L
(the systems have N = L3 spins). The occupation at E = 0
is very close to zero, showing that the configurations found

using JEO are not far from the true ground state. In Fig. 1(b)

we show the DOS of the CG at electric fields 0.5 < E < 0.6.

The data suggest that we are further away from a ground-state

configuration, however, a pronounced gap in the DOS is still

visible. The configurations for the SR model found by the

JEO algorithm are likewise not far from the ground state (not

shown).

III. NUMERICAL DETAILS

A. Algorithm

For the description of the algorithm we introduce a stability

criterion, which for an electron (Si = 1) or a vacancy (Si =
−1) at a given site is given by

(Ei + Vi) · Si < 0 → stable (7)

(Ei + Vi) · Si > 0 → unstable. (8)

For each pseudo-ground state generated via JEO [see

Fig. 1(a)] we proceed as follows:

1. Select the least stable electron with one nearest-

neighbor hole in the opposite direction of the electric

field.

2. Apply an electric field E just strong enough to desta-

bilize the selected electron, such that it will hop to the

neighboring hole.

(a)

E = 0

(b)

E > 0

E < Edp

(c)

= 0

E > 0

E ! Edp

FIG. 2: (Color online) Sketch of the site-dependent random potential

landscape felt by the electrons (blue circles) at different electric field

strengths: (a) E = 0, (b) 0 < E < Edp, and (c) Edp 6 E . (a) Stable

configuration of electrons at E = 0. (b) The electric field effectively

tilts the potential. At electric fields 0 < E < Edp the electrons just

rearrange as a reaction to the field. (c) The electric field E > Edp

further tilts the potential to a point where a steady current is induced.

TABLE I: Parameters of the simulation: For the Coulomb glass (CG)

and the short-range model (SR) we study systems of N = L3 spins

close to the ground state and compute the different distributions over

Nsa disorder samples for different applied electric fields E .

model L Nsa

CG 4 8 000

CG 6 9 000

CG 8 6 500

CG 10 5 000

CG 12 4 000

CG 14 9 000

CG 16 4 000

CG 30 2 500

SR 4 12 000

SR 8 14 400

SR 16 10 200

SR 24 9 500

SR 32 7 400

SR 48 2 500

SR 64 700

3. Recompute all single-particle energies given by Eq. (6),

and select the most unstable electron that minimizes the

total energy by hopping to one of its neighboring holes.

If there are no unstable electrons or an energy mini-

mization is not possible, go to step 1.

4. Perform the electron-hole hopping that minimizes the

energy; go to step 3.

The careful reader will have noticed that the above procedure

is in fact an infinite loop stuck between steps 3 and 4 when a

certain electric field threshold E > Edp is reached. This elec-

tric field threshold is the depinning field of the system, which

separates two regions: Below Edp there are only short charge

displacement pulses due to the rearrangement of the electrons

as a response to the external electric field, and above it there is

a steady current. A sketch of the different scenarios is shown

in Fig. 2. The infinite loop between step 3 and step 4 is the

steady current flowing through the system. Since we are inter-

ested in the number of times step 3 and step 4 are repeated at

each E-field (this, in turn, yields the avalanche size n) before

we reach the depinning field, we artificially stop the process

if the avalanche size surpasses a given number nsteady = 2N ,

where N is the total number of sites of the system. Note that

nsteady is much larger than the maximal avalanche size mea-

sured for E < Edp for a given system size L.

To cope with the long-range Coulomb interactions between

the electrons we use the Ewald summation method.50 Further-

more, the applied electric field is periodic to avoid an electron

pileup at the edge of the system. The simulation parameters

are listed in Tab. I.

B. Measured observables and statistical data analysis

At each increase of E we count the number of electrons n
that hopped and the total charge displacement S in the direc-

tion of the applied electric field. Using these data, we com-

pute their distributions D(n) and P (S), respectively (see, for

example, Fig. 3). To determine the depinning field Edp we
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FIG. 3: (Color online) Panels (a), (b) and (c) show electron-hole

avalanche distributions D(n) of the CG at electric field ranges be-

tween 0.3 < E < 0.6. Scale-free avalanches emerge as E ap-

proaches Edp ≈ 0.603(5). (a) 0.3 < E < 0.4, (b) 0.4 < E < 0.5
and (c) 0.5 < E < 0.6. Note that only close to the depinning electric

field Edp ≈ 0.603(5) scale-free avalanches, i.e., power-law distri-

butions of avalanche sizes, emerge. (d) Distribution of charge dis-

placement spikes (avalanches) P (S) of the CG for 0.5 < E < 0.6.
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FIG. 4: (Color online) Finite-size scaling data collapse of the elec-

tron avalanche distributions D(n) [panel (a)] according to Eq. (11)

with 0.5 < E < 0.6, i.e., close to Edp. For the largest system sizes

the data seem to collapse well. Panel (b) shows a data collapse of the

charge displacement distributions P (S) according to Eq. (12) with

0.5 < E < 0.6. Again, the data scale well. Note that the symbols

used are the same as in panel (a).

compute the cumulative distribution function P0(L, E) of the

depinning distributions which gives the probability whether

a randomly picked sample is in the pinned or depinned state

for a given system size and at a given field. We perform a

finite-size scaling assuming that the function P0 has a univer-

sal form52–54

P0 ∼ Φ̃[L1/ν(E/Edp − 1)] (9)

[see Fig. 5(b) and Fig. 8(b) for the CG model and the SR

model, respectively], which gives us an estimate of the de-

pinning field. Note that the depinning field is defined as the

typical electric field necessary to induce a continuous current

for a given system size, i.e, for E < Edp the system just rear-

ranges its electron configuration by electron hopping, whereas

for E > Edp the field induces a steady current.

In addition, we define the characteristic avalanche size

n∗ of the system by fitting the exponential tail of the

avalanche distributions D(n) to an exponential function ∼
exp(−n/n∗). For each system size L we thus obtain a char-

acteristic avalanche size n∗(L). To estimate the value of n∗
∞

in the thermodynamic limit we do an extrapolation of n∗
L→∞
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FIG. 5: (Color online) (a) Depinning distributions for all system sizes

studied of the CG model. The vertical line represents the estimated

depinning field Edp. (b) The cumulative distribution function of the

depinning field for linear system sizes L ≥ 10. The curves for dif-

ferent system sizes cross a the depinning field value. The inset is a

data collapse assuming the universal function P0 scales as Eq. (9).
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FIG. 6: (Color online) Characteristic avalanche size n∗, computed

using Eq. (10), as a function of the applied field E for the CG model.

As the field increases, the inverse of the characteristic avalanche size

1/n∗ decreases until at the depinning field Edp it becomes zero, i.e.,

n∗ (Edp) → ∞ (the line is a guide to the eye).
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FIG. 7: (Color online) Thermodynamic limit extrapolation of the

characteristic avalanche size n∗ for the CG model in an electric field

0.5 < E < 0.6 close the depinning field Edp = 0.603(5) . We

fit the data to Eq. (10) with 1/n∗

∞
, a, and ω parameters. An opti-

mal fit gives 1/n∗

CG = 0.0049(61) [ω = 1.79(6)] with a quality-

of-fit probability51 Q = 0.994. Note that fixing 1/n∗

∞
= 0 gives

Q = 0.998. This means that n∗

∞
= ∞, i.e., the presence of scale-

free avalanches in this electric field regime.
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FIG. 8: (Color online) (a) Depinning distributions for all system sizes

studied of the SR model. The vertical line represents the estimated

depinning field Edp. (b) The cumulative distribution function of the

depinning field for linear system sizes L ≥ 16. The curves for differ-

ent system sizes cross a the depinning field value. Here the crossing

seems to happen in a region where it is not possible to distinguish

it. Nevertheless, as seen in the inset, assuming the universal function

P0 scales as shown in Eq. (9) the data collapse is satisfactory.
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by using the following functional Ansatz:

1/n∗
L = 1/n∗

∞ + a/Lω , (10)

where ω, a and n∗
∞ are fitting parameters.

Finally, we also monitor the DOS as a function of the ap-

plied electric field E . For example, Fig. 1(b) shows the density

of states at an electric field range of 0.5 < E < 0.6.

Different finite-size scaling Ansätze have been attempted37

to scale theD(n) andP (S) data without yielding any satisfac-

tory results. We therefore empirically re-sized the avalanche

curves without making any a priori assumptions. Interest-

ingly, the following scaling Ansatz showed good results:

D =
1

L
d (n/L) (11)

P =
1

L
p (S/L) , (12)

where d (n/L) and p (S/L) in Eqs. (11) and (12), respec-

tively, are universal functions.

IV. RESULTS

Figure 3 shows electron hop, as well as total charge dis-

placement avalanche distributions for the CG for different

ranges of the electric field E . The field E is increased in the

different panels from top to bottom. Figures 3(a) – 3(c) show

how the avalanche sizes progressively become system span-

ning, i.e., when E ≈ Edp [as is the case in Fig. 3(c)] avalanche

size distributions become power laws. As the field reaches Edp

a hunch in the curves emerges separating a power-law region

from an exponential cutoff, for the measured avalanches dis-

tribution D (n). Figure 6 shows the dependence of the inverse

of the characteristic avalanche size 1/n∗ as a function of the

electric field Edp. We can extract from the figure that the de-

pinning field Edp lies somewhere around E ≈ 0.6. A precise

estimate of the depinning field can be obtained by analyzing

the cumulative distribution function P0 as shown in Fig. 5(b).

For the CG model we obtain Edp = 0.609(7). In Fig. 7 we

show an example of the estimation of n∗ using Eq. (10) for a

given field window 0.5 < E < 0.6. Similar qualitative results

are obtained for the charge displacement distributionP (S), as

shown in Fig. 3(d). We attempt to scale the data for the distri-

butions D(n) and P (S) in Fig. 4. The data scale well with no

adjustable parameters (especially for the larger system sizes)

according to Eqs. (11) and (12).

In addition, we study the total charge displacement distribu-

tion and electron hop distribution as a function of the applied

field for the SR model, where the estimated depinning field is

Edp = 0.781(9) as seen in Fig. 8. Electron avalanche distribu-

tions are shown in Fig. 9. For low fields, i.e. E < 0.5, the char-

acteristic avalanche size n∗ (L) can be estimated analogously

as for the CG model, i.e., fitting the tail to an exponential func-

tion and using Eq. (10) to extrapolate to the thermodynamic

limit. As for the CG model at low fields, no system-spanning

avalanches were found, moreover no emergent avalanche size

dependence is observed [Fig. 9(a)-(b)]. For fields closer to
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FIG. 9: (Color online) Spin avalanches D (n) of the SR model at

different electric field ranges: (a) 0.50 < E < 0.55, (b) 0.55 < E <
0.60, (c) 0.65 < E < 0.70 and (d) 0.72 < E < 0.77. Even for

E ≈ ESR
dp [panel (d)] there is no sign of scale-free avalanches. The
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FIG. 10: (Color online) Stretched exponential exponent β of the SR

model as a function of the applied field E . The exponent β decreases

monotonically with the field. The vertical line shows the estimated

depinning field Edp and the dashed line is a guide to the eye.

the depinning field, i.e. E & 0.5, the exponential fitting func-

tion [Eq. (10)] gives unsatisfactory fitting results, therefore we

additionally fitted the distribution to a stretched exponential

function

f(x) = aL exp[− (x/n∗
L)

βL ]. (13)

The characteristic avalanche size n∗ defined through the

stretched exponential function is bounded in the thermody-

namic limit for all fields, especially close to the depinning

field: the inset of Fig. 9(d) shows the values of n∗ for the field

window 0.72 < E < 0.77. The stretched exponential expo-

nent β has a strong field dependence as seen in Fig. 10. At

low fields β ≈ 0.8 and as the field increases it monotonically

decreases to β ≈ 0.2.55

We observe that the CG model and the SR model have a

well defined depinning field transition, but that they differ in

the way they behave close to Edp. The CG model total charge

displacement and electron hop avalanche distributions close to

the depinning field have a power-law shape (with power-law

exponent τ ≈ −1) with a system-size dependent exponen-

tial cutoff. This finite-size effect vanishes in the thermody-

namic limit, revealing its scale-free behavior at Edp. In clear

contrast the SR model total charge displacement and elec-

tron hop avalanche distributions show no signs of scale-free

avalanche behavior (power-law shape) close to Edp and are

best described by a stretched exponential function, which is

defined by the exponent β and the parameter n∗. The expo-

nent β shows a strong field dependence; it decreases mono-

tonically as the field is increased, while n∗ does not show any

systematic system-size dependence at any field, not even close

to the depinning field. The different avalanche distributions in

the SR and CG models hint towards a different mechanism

behind the depinning transition.

V. CONCLUSIONS

Our large-scale computational study of the Coulomb

glass has demonstrated that, under external electric fields

and nearest-neighbor particle-conserving hopping dynamics,

scale-free avalanches only occur in the vicinity of a charac-

teristic depinning field Edp. For small external electric fields,

no large avalanches are present, in agreement with the results

of Palassini and Goethe.45 For a short-range variation of the

Coulomb glass model we do not find any sign of scale-free

avalanches, not even close to the depinning electric field. Fur-

thermore, we find that the initial Coulomb gap vanishes as

the field is ramped up, suggesting that it is not a generic fea-

ture on the hysteresis loop formed in an external electric field.

We empirically find a simple scaling Ansatz to collapse the

avalanche and charge displacement distributions, reinforcing

the notion that the scale-free behavior of the CG emerges close

to the depinning electric field.

The scale-free behavior found in the CG is not a self-

organized critical (SOC) state, because an external parameter

has to be tuned,38,56–58 namely the electric field E . Neverthe-

less, it is interesting to note the difference between the CG and

the SR model: In the former the combination of the diverging

number of neighbors and disorder results in power-law distri-

butions, which is not the case in the latter. This behavior is

very similar to that found for the three-dimensional random-

field Ising model,59–63 where scale-free avalanches have been

observed at a critical field strength hc. These unexpected re-

sults for the Coulomb glass show that a diverging number of

neighbors is necessary but not sufficient in a model Hamil-

tonian to show SOC behavior, and that the dynamics of a

model might play an important role for showing SOC (i.e.,

the order-parameter conserving Kawasaki dynamics used here

vs single-spin flip dynamics used for the random-field Ising

model).

Our results bring into question the validity of the mean-

field picture of the Coulomb glass,10–13,16,18 predicting ex-

treme fragility of the ground state to external perturbations.

However, the generic absence of SOC for avalanches driven

by a uniform electric field may be related to the fact that such

large avalanches locally violate charge neutrality. Other dy-

namical perturbations may couple differently to the elemen-

tary excitations and may perhaps serve as a more sensitive

probe to the proposed SOC nature of the CG ground state.

This could be achieved by applying external fields that do not

directly couple to the uniform charge density, such as varying

the amplitude of the disorder potential. Such or similar studies

represent an opportunity to further elucidate the long-standing

mystery of the Coulomb glass, however exploring this excit-

ing research direction remains a challenge for future work.
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T. Sasagawa, Evidence for Charge Glasslike Behavior in Lightly

Doped La2−xSrxCuO4 at Low Temperatures, Phys. Rev. Lett.

101, 177004 (2008).
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