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[Abstract] In this work, we study a biquadratic Heisenberg model with coupled orbital degree 

of freedom using Monte Carlo simulation in order to investigate the phase transitions in 

iron-based superconductors. The antiferro-quadrupolar state, which may be related to the 

magnetism of FeSe [Phys. Rev. Lett. 115, 116401 (2015)], is stabilized by the anisotropic 

biquadratic interaction induced by a ferro-orbital-ordered state. It is revealed that the orbital 

and nematic transitions occur at the same temperature for all the cases, supporting the 

mechanism of the orbital-driven nematicity as revealed in most recent experiments [Nat. 

Mater. 14, 210 (2015)]. In addition, it is suggested that the orbital interaction may lead to the 

separation of the structural and magnetic phase transitions as observed in many families of 

iron pnictides.  
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I. Introduction 

In the past few years, fascinating structural and magnetic phase transitions in iron-based 

superconductors have drawn extensive attention both experimentally and theoretically.1-5 

Experimentally, the collinear (π, 0) antiferromagnetic (AFM) order is developed at low 

temperatures (T) in most iron pnictides, and usually accompanied by a 

tetragonal-to-orthorhombic distortion.6-8 The structural transition temperature TS is either 

equal to or higher than the AFM transition temperature TAFM: TS ≥ TAFM. In order to 

understand this phenomenon, two different mechanisms emphasizing the essential role of 

spin9,10 and orbital11,12 fluctuations have been proposed, respectively. Specifically, several 

theoretical calculations on models for pnictides suggest that the nematic order can be 

developed before the stabilization of the AFM order, and drives the structural phase 

transition.13-16 The experimental observations of the spin excitation spectrum can be well 

explained based on this mechanism.17,18 However, the magnetism-based origin is strongly 

challenged by the recent experiments in FeSe.19,20 

As one of the most famous iron chalcogenide superconductors, FeSe shows a very high 

TC superconductivity in its single-layer limit.21-23 Interestingly, lowing T in bulk FeSe leads to 

a tetragonal-to-orthorhombic structural transition, while no long-range AFM transition has 

been observed, suggesting that the structural transition of FeSe may not have the magnetic 

origin.24 Most recently, a theoretical study considering only the localized spins revealed a 

nematic quantum paramagnetic phase caused by quantum fluctuations and strongly frustrated 

exchange interactions, which may contribute to the nematicity in FeSe.25 In addition, a 

frustrated bilinear-biquadratic Heisenberg model describing the magnetism of FeSe was 

studied, and the antiferroquadrupolar (AFQ) and Ising-nematic orders were identified at low 

T.26 The structural phase transition in FeSe was suggested to correspond to the Ising-nematic 

transition in the model. Furthermore, it was proposed that the Goldstone modes of the AFQ 

order may contribute to the low-energy dipolar magnetic fluctuations observed in the nuclear 

magnetic resonance measurements.24,27 In addition, an unusual magnetic frustration was 

proposed in a theoretical work and suggested to suppress magnetic order and trigger 

ferro-orbital order in the nematic phase, consistent with the pressure dependence of TC in 

FeSe.28  



On the other hand, recent experiments clearly demonstrated that the orbital transition may 

play a crucial role in the onset of nematic transition in bulk FeSe, strongly supporting the 

mechanism of orbital-driven nematicity.27 In addition, it was observed that the shear-modulus 

softening above TS in FeSe and underdoped BaFe2As2 are nearly identical, suggesting a 

common origin for the structural transition in these materials.24 As a matter of fact, the 

important role of orbital fluctuations has been addressed in several models for pnictides.29-32 

For example, the nature of phase transitions in pnictides has been investigated based on a 

spin-orbital model with coupled spin and orbital degrees of freedom using Monte Carlo (MC) 

simulations.33 However, the biquadratic interaction which is believed to be very important in 

iron superconductors34 is neglected in this model, while a coupling to orbital degree of 

freedom is not considered in the localized spin models describing the magnetism of FeSe 

discussed above. Thus, more model calculations studying the role of orbital fluctuations in 

iron pnictides and chalcogenides are still urgently needed in order to elucidate the physical 

origins for the nematicity and some other experimental observations.  

In this work, we study a classical biquadratic Heisenberg model with coupled orbital 

degree of freedom. Several experimental observations in iron-based superconductors can be 

qualitatively explained in our MC simulations. In detail, both the AFM and AFQ orders are 

predicted in the phase diagram of the model. The orbital phase transition temperature TO is 

always the same as or higher than the AFM (AFQ) transition temperature TAFM (TAFQ), and a 

nematic ordering can also be developed at T* ≈ TO, supporting the mechanism of 

orbital-driven nematicity. The remainder of this paper is organized as follows: in Sec. II the 

model and the simulation method will be described. Sec. III is attributed to the simulation 

results and discussion, and the conclusion is presented in Sec. IV. 

 

II. Model and method 

We study a classical biquadratic Heisenberg spin (S = 1) model with coupled spin and 

orbital degrees of freedom on a two-dimensional square lattice. It was reported that a 

ferro-orbital order in which the dxz/dyz orbital dominates can be developed in iron pnictides 

and FeSe as T decreases.18,27,35 For simplicity, the orbital parameter O is set to be Ising 

variables with values 1 (occupation of dxz orbital) or −1 (occupation of dyz orbital). The model 



Hamiltonian is stated as: 

( ) ( )
[ ]

( ) ( ) ( )( )

1 1 2

2 2

1 1 O

x y
i OS i i x i OS i i y i j

i i ij

x y
i OS i i x i OS i i y i j

i i ij

H J J S S J J S S J S S

K K S S K K S S J O O

+ +

+ +

= + Δ ⋅ ⋅ + + Δ ⋅ ⋅ + ⋅

− + Δ ⋅ ⋅ − + Δ ⋅ ⋅ − ⋅

∑ ∑ ∑

∑ ∑ ∑

r r r r r r

r r r r , (1) 

with 

1 1
0 1 or 1

1 1

0 1 or 1

i i xx
i

i i x

i i yy
i

i i y

O O
O O

O O

O O

+

+

+

+

= =⎧
Δ = ⎨ = − = −⎩

= = −⎧⎪Δ = ⎨ = =⎪⎩

,            (2) 

The first two terms are the nearest neighbor (NN) exchange interactions alone the x and y 

directions. Following earlier work, the spin and orbital degrees of freedom are considered to 

be coupled by a Kugel-Khomskii-like mechanism33,36 with the coupling magnitude JOS. The 

third term denotes the next nearest neighbor exchange interaction with coupling J2. The fourth 

and fifth terms are the NN biquadratic interactions alone the x and y directions, respectively, 

which are expected in any model calculations for iron superconductors.34 In fact, it has been 

proved that the biquadratic interaction is also affected by the Fe-Fe bond length37 which can 

be modulated by orbital orderings. Thus, the biquadratic interactions should be also dependent 

on orbital orders (with coupling KOS). At last, the orbital interaction with coupling JO is 

considered, which has been involved in several earlier models.12 

Generally, the introduce of the coupled orbital degree of freedom and biquadratic 

interaction in the Hamiltonian can be interpreted to change the linear-response exchange 

constant, which can be defined by:13 

2
1
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where θ is the angle between spins at sites i and j. For the (π, 0) AFM ground state normally 

accompanied by an dxz orbital polarization, as experimentally reported in several iron 

pnictides,35 we get Jx 
ij  = J1 + △x 

i (JOS + 2KOS) + 2K1. Furthermore, it is suggested that the 

magnitude of Jx 
ij may be increased when the sites i and j are occupied by dxz orbital.12 Thus, 



we choose KOS > 0 and JOS > 0 in the whole work, and set KOS = 1 as the energy unit, for 

simplicity. In addition, we fix J2 = 0.7J1 and JOS = 0.5J1, which are comparable with 

experimental reports.38 Furthermore, we take the other coupling parameters as variables and 

study the phase diagram of the model using the standard Metropolis algorithm and 

temperature exchange method.39,40 Unless stated elsewhere, the simulation is performed on a 

36 × 36 lattice with periodic boundary conditions. To study the finite T phase transitions to 

long-range magnetic orders, we introduce a spin-space anisotropy:  
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In order to explore the phases in the system, the dipolar and quadrupolar magnetic 

structure factors are calculated by:26 
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respectively. Here, N is the number of sites, and 〈…〉 is the ensemble average. For classical 

Heisenberg spins: 
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Then, the AFM and AFQ order parameters (m and mq) and the corresponding nematic order 

parameters (NAFM and NAFQ) are calculated by:13,26 
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The transition temperatures (TO, T*, TAFQ, and TAFM) can be estimated from the positions 

of the peaks in the corresponding susceptibility χO, χN, χAFQ, and χAFM, respectively.  

 

III. Simulation results and discussion 

A. The AFM and AFQ orders 

First, we study the spin orders developed at low T for various J1 and K1. Fig. 1 shows the 

simulated phase diagram in the (J1, K1) plane at T = 0.01 for λ = 0.95 and JO = 0. The phase 

diagram is occupied separately by the AFM order and AFQ order. It is indicated that the 

strong competition between the exchange interaction and the biquadratic interaction can 

stabilize the AFQ order. Here, it should be noted that in the bilinear-biquadratic spin model, 

an isotropic NN biquadratic interaction alone cannot stabilize the AFQ order.26 In order to 

understand the physics underlying our simulated results on the AFQ order, a qualitative 

discussion in the energy landscape is helpful.  

Fig. 2(a) and 2(b) show the distribution of dipolar and quadrupolar magnetic structure 

factors at T = 0.01 for J1 = 0.1, K1 = −0.5, JO = 0 and λ = 0.6, as an example. A dominant (π, 0) 

AFQ correlation is clearly shown, with the three spin components of the AFQ order plotted in 

Fig. 2(c) and 2(d), respectively. For an AFQ order, the NN spins along the x direction are 

perpendicular to each other, while those along the y direction are antiparallel with each other. 

In this case, the dyz ferro-orbital-ordered state is developed at TO (not shown here), resulting in 

the anisotropic NN biquadratic interaction (K1 along the x direction, and K1 + 1 along the y 

direction). Thus, the NN spins along the x direction tend to be perpendicular to each other to 

save the negative biquadratic interaction K1 at the cost of the AFM exchange interaction J1, 

while those along the y direction are antiparallel with each other to satisfy the AFM exchange 

and positive biquadratic interactions, leading to the AFQ state. With increasing |K1| (K1 < 0), 

the AFQ state can be further stabilized, resulting in the enlargement of the J1-region with the 

AFQ order. On the other hand, the collinear AFM order can be stabilized by a positive 



biquadratic interaction (K1 > 0), and a positive K1 never stabilizes the AFQ state, as confirmed 

in our simulations.  

 

B. The AFQ phase transitions 

Given the AFQ order in the phase diagram, we subsequently draw our attention onto the 

expected nematic order and the finite-T phase transitions. The order parameters for these 

phase transitions include orbital parameter Oz = 〈ΣOi〉/N, NAFQ, and mq. Fig. 3(a) shows these 

parameters as a function of T for J1 = 0.1, K1 = −0.5, JO = 0 and λ = 0.6 as an example. At 

high T, the system is in the paramagnetic (PM) state, and all these order parameters are rather 

small. When T falls down to the critical points, these parameters increase from the baseline, 

fingering the development of orbital order, nematic order, and AFQ order, respectively. These 

transition points (TO, T*, and TAFQ) are estimated from the positions of peaks in the calculated 

susceptibility on these parameters, as shown in Fig. 3(b). It is clearly shown that the nematic 

order is developed at the same temperature as the orbital order does, giving T* ~ TO, 

consistent with experimental observations.27 Furthermore, the AFQ order is stabilized at a 

slightly lower T, giving TAFQ < TO. Similar behaviors are confirmed for different lattice sizes 

and the conclusion regarding the nematic state is reliable. 

The effects of spin anisotropy parameter λ, orbital interaction JO (i.e. ferro-orbital 

coupling), and biquadratic interaction K1 on the phase transitions are also investigated, 

respectively, and the simulated phase diagrams are plotted in Fig. 4. Fig. 4(a) shows the phase 

diagram on the (λ, T) space for J1 = 0.1, K1 = −0.5 and JO = 0. A reduced λ (increased spin 

anisotropy) downshifts all the three transitions points. This is understandable since the spin 

anisotropy favors the AFM order rather than the AFQ order. At the same time, the coupling 

between the spin and orbital degrees of freedom in turn destabilizes the orbital/nematic order. 

The nematic order in advantage of the AFQ order can be destroyed eventually by the spin 

anisotropy, leading to narrowed |TAFQ −T*| with increasing (1−λ), i.e. the nematic order region 

is suppressed.  

On the other hand, the orbital order can be further stabilized by a ferro-orbital coupling JO, 

as shown in Fig. 4(b) for the phase diagram on the (JO, T) parameter space for J1 = 0.1, K1 = 

−0.5, and λ = 0.4. Interestingly, the nematic order region is substantially enlarged as JO 



increases, and T* ~ TO applies for all these cases, again demonstrating the important role of 

the orbital order in driving the nematicity in FeSe. Furthermore, Fig. 4(c) shows the phase 

diagram on the (K1, T) parameter space for J1 = 0.1, Jo = 0, and λ = 0.6. The three transition 

temperatures decrease as the magnitude of K1 increases. It is noted that the energy gain from 

the biquadratic interaction due to the phase transition from the PM state to the AFQ state is 

extensively decreased with the increasing |K1|, leading to the destabilization of the AFQ state. 

In turn, the nematic state and the orbital order are also destabilized, as shown in our 

simulations.    

 

C. The AFM phase transitions 

For integrity, we also study the collinear AFM phase transition for the cases of dominant 

J1. The order parameters and their susceptibilities at T = 0.01 for J1 = 1, K1 = 0.5, JO = 0, and 

λ = 0.95 are given in Fig. 5(a) and 5(b), respectively, clearly showing that the three phase 

transitions occur at the same temperature, i.e. TAFM ~ T* ~ TO. In fact, this phenomenon was 

reported in some iron pnictides such as undoped 122 compounds CaFe2As2 and SrFe2As2.41,42 

Most recently, the ferro-orbital order has been proved to generate the exchange anisotropy 

and stabilize the collinear AFM order in iron-based superconductors by spin-wave analysis of 

the spin-fermion model,43,44 well consistent with our simulations.45    

Similarly, the phase transitions can be also modulated by spin anisotropy, orbital 

interaction, and biquadratic interaction, and the corresponding results are given in Fig. 6. As 

discussed earlier, a collinear AFM order is favored by the spin anisotropy, and TAFM will 

increase with decreasing λ, as confirmed in Fig. 6(a) which gives the phase diagram on the (λ, 

T) space for J1 = 1.0, K1 = 0.5, and JO = 0.2. Furthermore, the nematic order region is also 

suppressed with increasing (1−λ), and all the three transitions occur at the same temperature 

for λ < 0.8. Fig. 6(b) shows the phase diagram on the (JO, T) space for J1 = 1.0, K1 = 0.5, and 

λ = 0.95. All the three transition temperatures increase with increasing JO, and a separation 

between TAFQ and T* can be observed for JO > 0.1. The phase diagram on the (K1, T) space for 

J1 = 1.0, λ = 0.95, and JO = 0.2 is shown in Fig. 6(c). All the three transitions shift toward 

high T as K1 increases due to the increasing positive biquadratic interaction.  

The nature of these transitions is also investigated by the analysis of the Binder ratios. Fig. 



7 shows the Binder ratios for orbital gO, nematic gN and spin gS (gO = 〈O4 
Z 〉/〈O2 

Z 〉2, as an 

example) vs T for J1 = 1.0, K1 = 0.5, and λ = 0.95. The clear divergences in the three curves 

for JO = 0 indicate that these transitions are of the first-order. Interestingly, the divergences of 

gO and gN vanish when JO is increased above 0.1, as shown in Fig. 7(b), suggesting a trend to 

the second order orbital and nematic transitions. In addition, there is still a weak divergence in 

the spin Binder ratio gS, which is indicative of a weak/pseudo-first order transition.46 The 

nature of the AFM transition should be further checked by simulations on larger lattice sizes.47 

However, it is observed that the nematic transition always occurs at the same temperature as 

that of the ferro-orbital ordering, suggesting that the same mechanism for nematicity may also 

work in iron pnictides, in some extent. 

 

D. Relevance to iron superconductors 

Most recently, it was experimentally reported that spin-lattice relaxation rates are not 

affected at the nematic transition point, strongly suggesting the orbital origin for the 

nematicity in FeSe.27 This viewpoint is supported in our simulations in which orbital order is 

suggested to be the primary driving mechanism for the finite temperature transitions. 

Furthermore, the AFQ order has been observed in the bilinear-biquadratic model and its 

Goldstone modes are suggested to contribute to dipolar magnetic fluctuations (in the absence 

of any AFM order) revealed in experiments.26 However, a rather strong biquadratic interaction 

between the next nearest neighbors, which has not been confirmed in first-principles 

calculations,28 is proved to be necessary to stabilize the AFQ order. In this work, it is 

suggested that the AFQ order can be stabilized by an anisotropic NN biquadratic interaction 

induced by the development of orbital order. Furthermore, the AFQ state can be replace by the 

AFM state by tuning the exchange and biquadratic interactions, as shown in the phase 

diagram in Fig. 1, which may contribute to the experimental observations of the appearance of 

magnetic order under external pressure in FeSe.48,49 In addition, the nematic order 

accompanied by the orbital order may be developed in advance of the AFQ order when the 

orbital-orbital interaction is increased, further demonstrating the important role of the orbital 

fluctuations in the phase transitions in FeSe.  

On the other hand, in iron pnictides CaFe2As2 and SrFe2As2, both the structural and 



magnetic phase transitions occurs at a same temperature, which is reproduced in our 

simulations for small JO < 0.1. As a matter of fact, the phase transition in iron pncitides have 

been studied based on a similar spin-orbital model, and several behaviors are captured by the 

simulated phase diagram. For example, even for very weak spin anisotropy (λ ~ 0.95), both 

the orbital and AFM transition points coincide with each other, consistent with our 

simulations for JO = 0. Interestingly, our work suggests that a ferro-orbital interaction may 

separate the two transitions and modulate the nature of the transitions. This behavior may 

contribute to some of the experimental observations in many families of iron pnictides. For 

example, both TS and TAFM in BaFe2As2 are increased, and TS becomes well above TAFM when 

a compressive stress is applied.50,51 In some extent, this phenomenon may be related to the 

increase of the orbital-orbital interaction, which deserves to be checked further.   

     

IV. Conclusion  

In conclusion, we have studied phase transitions in a biquadratic Heisenberg model with 

coupled orbital degree of freedom. It is suggested that the development of the 

ferro-orbital-ordered state induces the anisotropic biquadratic interaction between nearest 

neighbors, and in turn stabilizes the antiferroquadrupolar state which may be related to the 

magnetism of FeSe. For all the cases, the orbital and nematic transitions occur at a same 

temperature, supporting the mechanism of the orbital-driven nematicity as revealed in 

experiments. Furthermore, the orbital-orbital interaction may contribute to the separation of 

the structural and magnetic phase transitions as observed in many families of iron pnictides.  
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FIGURE CAPTIONS 

 

Figure 1. (color online) Calculated phase diagram in the (J1, K1) parameter space at T = 0.01 

for λ = 0.95 and JO = 0. The red line shows the boundary at T = 0.  

 

Figure 2. (color online) Distribution of the dipolar (a) and quadrupolar (b) magnetic structure 

factors at T = 0.01 for J1 = 0.1, K1 = −0.5, JO = 0 and λ = 0.6. The z component (c) and spin 

configuration on the xy-plane (d) of the AFQ order.  

 

Figure 3. (color online) The calculated order parameters OZ, NAFQ, and mq (a) and their 

susceptibilities (b) as a function of T for J1 = 0.1, K1 = −0.5, JO = 0 and λ = 0.6.  

 

Figure 4. (color online) The simulated phase diagram (a) in the (λ, T) plane for J1 = 0.1, K1 = 

−0.5, and JO = 0, (b) in the (JO, T) plane for J1 = 0.1, K1 = −0.5, and λ = 0.4, and (c) in the (K1, 

T) plane for J1 = 0.1, Jo = 0, and λ = 0.6.   

  

Figure 5. (color online) The calculated order parameters OZ, NAFM, and m (a) and their 

susceptibilities (b) as a function of T for J1 = 1.0, K1 = 0.5, JO = 0 and λ = 0.95.  

 

Figure 6. (color online) The simulated phase diagram (a) in the (λ, T) plane for J1 = 1.0, K1 = 

0.5, and JO = 0.2, and (b) in the (JO, T) plane for J1 = 1.0, K1 = 0.5, and λ = 0.95, and (c) in the 

(K1, T) plane for J1 = 1.0, λ = 0.95, and JO = 0.2. 

 

Figure 7. (color online) Calculated gO, gN, and gS as a function of T for J1 = 1.0, K1 = 0.5, and λ 

= 0.95 at (a) JO = 0, and (b) JO = 0.25. 

 
















