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Abstract

The phonovoltaic (pV) cell is similar to the photovoltaic. It harvests nonequilibrium (hot) optical

phonons (Ep,O) more energetic than the bandgap (∆Ee,g) to generate power in a p-n junction.

We examine the theoretical electron-phonon and phonon-phonon scattering rates, the Boltzmann

transport of electrons, and the diode equation and hydrodynamic simulations to describe the

operation of a pV cell and develop an analytic model predicting its efficiency. Our findings indicate

that a pV material with Ep,O ≃ ∆Ee,g ≫ kBT , where kBT is the thermal energy, and a strong

interband electron-phonon coupling surpasses the thermoelectric limit, provided the optical phonon

population is excited in a nanoscale cell – enabling the ensuing local nonequilibrium. Finding and

tuning a material with these properties is challenging. In Part II (this issue), we tune the bandgap

of graphite within density functional theory through hydrogenation and the application of uniaxial

strains. The bandgap is tuned to resonate with its energetic optical phonon modes and calculate

the ab initio electron-phonon and phonon-phonon scattering rates. While hydrogenation degrades

the strong electron-phonon coupling in graphene such that the figure of merit vanishes, we outline

the methodology for a continued material search.
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I. INTRODUCTION

Solid-state heat harvest, dominated by the thermoelectric (TE) generator1, remains in-

efficient, and this limits its application to waste-heat recovery or hostile-environment power

generation, where reliability supersedes efficiency. Moreover, TE effectiveness vanishes in

nano and microscale devices, where the contact resistance dominates the thermoelectric

effects2–5. These factors led to the development of the thermovoltaic (TV) cell by Span

et. al.6, wherein the hot-side p-metal-n junction in a TE is replaced by a p-n junction and

electron generation events supply the TE current. They proposed that the TV can slightly

exceed the limiting TE efficiency. However, subsequent investigation7–10 indicated the TV

cell achieves, at most, the TE efficiency.

Here, the phonovoltaic (pV) is proposed. While the pV and TV share a similar archi-

tecture, the pV utilizes a nonequilibrium optical phonon population to drive generation.

Indeed, the pV shares more features with a photovoltaic (PV) cell than it does with a TE or

TV cell. Where TE and TV harvest a flux of equilibrium energy carriers (heat), the PV and

pV cells harvest nonequilibrium energy carriers (the photon and phonon, respectively) res-

onant with or more energetic than the bandgap, as shown in Fig. 1. Other nonequilibrium

phonon harvesting schemes have received attention for their ability to surpass the TE limits

in scale and efficiency. These include the laser cooling of ion-doped materials through anti-

Stokes florescence11,12, and the use of in-situ electron barriers to recycle phonons emitted

during the Joule heating13,14. Conversely, the pV cell focuses on power generation.

In a pV cell, native, nonequilibrium (hot) phonons more energetic than the bandgap

generate electron-hole pairs at rate γ̇e−p (where ˙ is used to represent a rate), and a p-n

junction separates them to produce power, as shown in Fig. 1. In comparison, a PV cell

harvests imported, nonequilibrium photons more energetic than the bandgap to generate

electrons. While excess photon energy is the primary source of entropy generation in a PV

cell, both the excess phonon energy and the rate of optical phonon downconversion (γ̇p−p)

into the acoustic phonon modes generate entropy in a pV cell.

Section V uses a band-to-band net generation model (A) in the diode equation to derive

the current-voltage relationship (B) and the efficiency (C) in a pV cell. (D) The results of

this derivation are summarized in Eq. (1), and illustrated in Fig. 5. To summarize, the

extent of the local electron-phonon nonequilibrium (Carnot efficiency, ηC), the fraction of
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FIG. 1. (a) The phonovoltaic cell, (b) the energy diagram, and (c) nonequilibrium in terms of

acoustic (Tp,A) and optical (Tp,O) phonon temperatures and the carrier concentrations (electron

ne, hole nh, and intrinsic ni). An external source excites the optical phonon population (ṡp,O) in the

active region (La), and the resulting nonequilibrium drives generation (γ̇e−p) and downconversion

into acoustic phonons (γ̇p−p). The junction separates generated electron-hole pairs to create a

current (je) and potential (∆ϕa), i.e., power, while acoustic phonons conduct to the cold contacts

(Tc).

the hot optical phonons which generate electrons (γ̇∗
e−p) (Section III), and the fraction of

phonon energy (Ep,O) preserved by the bandgap (∆Ee,g) determine the pV efficiency (ηpV)

and its pV figure of merit (ZpV), i.e.,

γ̇∗
e−p =

γ̇e−p

γ̇e−p + γ̇p−p
≤ 1, ZpV = γ̇∗

e−p

∆Ee,g

Ep,O
≤ 1 , ηpV ≤ ηCZpV, (1)

where the Carnot limit in a pV cell is determined by the difference in the hot optical phonon

temperature, Tp,O, and the cold, contact temperature, Tc, i.e.,

ηC =
Tp,O − Tc

Tp,O
. (2)

Few materials exist with an optical phonon mode more energetic than the bandgap15,

and even fewer exhibit an optical phonon significantly more energetic than kBT at room

temperature, such that the p-n junction effectively separates generated carriers (where kB

is the Boltzmann constant). However, graphite (graphene), with a phonon cut-off energy of
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198 meV16,17, phonon linewidth dominated by the electron-phonon interaction (i.e., a large

γ̇∗
e−p)

18, and a tunable bandgap (through functionalization19), make it a suitable candidate.

Part II20 tunes its bandgap to resonate with the optical phonon energy through hydrogena-

tion (graphame)21–23. We find that the hydrogenation and the resulting shift from π to

σ-bonding degrades the electron-phonon coupling, such that hot optical phonons primarily

downconvert into acoustic phonons rather than generate electrons. However, the methodol-

ogy for tuning and investigating a pV material is developed. Though the search for a new

material upon which to apply the theory developed within this study is challenging, the

potential benefits are shown to be substantial.

Part I of this study describes the pV cell. It examines the extent and limits of the

pV regime and establishes the potential of the device to surpass the TE efficiency. First,

a brief comparison with the TE and PV cells illustrates the unique features of the pV

cell, the importance of nonequilibria, and the resulting nanoscale requirement (Section II).

Then the central mechanisms of the pV cell, i.e., the electron-phonon and the anharmonic

three-phonon coupling, are discussed (Section III). Next, the Boltzmann transport equation

(BTE) and its solution via the Monte Carlo simulations illustrate the operation of a pV

cell (Section IV). An analytical model is developed using the diode equation, a derived

net-generation equation, and the resulting heat flow (Section V). Finally, a self-consistent

hydrodynamic model incorporating two phonon temperatures validates the analytic model,

illuminates additional conditions required for efficient pV operation, and shows that a high

ZpV pV outperforms a TE cell (Section VI). However, finding a suitable material remains

very challenging.

II. ON THERMOELECTRICS AND PHONOVOLTAICS

In a TE cell, electrons diffuse down a temperature gradient, form the Seebeck potential,

and absorb Peltier heat as they ascend a potential barrier at the semiconductor-metal junc-

tion. Simultaneously, heat conducts down the temperature gradient and generates entropy.

Despite this, the efficiency grows with the spatial nonequilibrium across the cell, i.e., the

Carnot efficiency (ηC). The TE figure of merit, ZTE, and efficiency, ηTE, are

ZTE =
S2σ

κ
, ηTE = ηC

(ZTET + 1)1/2 − 1

(ZTET + 1)1/2 + 1− ηC
, ηC =

Th − Tc

Th
, (3)
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where S, σ, and κ = κe+κp are the Seebeck coefficient and combined electrical and thermal

conductivity, and Tc and Th are the temperature at the cold and hot junctions of the TE cell

(assuming Te = Tp)
1,24. Importantly, the local thermal equilibrium between the electron and

phonon populations in a TE ensures coupled electric and thermal transport (e.g., through

the Weidemann-Franz law) and limits ZTE, such that ZTET > 1 and ηTE > 0.2ηC remain

challenging to significantly surpass in paired p and n-type TE legs.

TABLE I. A comparison of thermoelectric (TE), phonovoltaic (pV), and photovoltaic (PV) cells

and their controlling processes, where je −∆ϕ is the current-voltage curve, and other symbols are

defined in the text.
Property TE1 pV PV25,26

Construction

Size µm to cm5 nm nm to mm

Junction p-metal-n p-n p-n

Processes

Energy Source Heat Optical Phonon Photon

Power Generation Diffusion Generation Generation

Entropy Generation Conduction Downconversion, Ep,O > ∆Ee,g Eph > ∆Ee,g

nonequilibrium Spatial Local: Hot phonon Local: Hot photon

Performance

je −∆ϕ Linear Exponential Exponential

Figure of Merit S2Tσ/κ24 γ̇∗e−p∆Ee,g/Ep,O –

Quantum Efficiency - γ̇∗e−p (Eph < ∆Ee,g)/Eph

Efficiency Eq. (3)24 FF ηCγ̇
∗
e−p∆Ee,g/Ep,O FF ηQE∆Ee,g/Eph

27

Table I compares the pV cell to TE and PV cells, where FF is the fill factor, and Eph

is the photon energy. While the TE and pV cells both harvest thermal energy, the pV is

more similar to the PV cell, as both harvest a nonequilibrium population in a p-n junction.

The major differences arise from the downconversion of optical phonons in a pV, and the

transmission of photons with Eph < ∆Ee,g in a PV cell. However, as the local nonequilibrium

in a pV vanishes, so does the similarity between pV and PV cells. Instead, as the spatial,

thermal nonequilibrium grows larger than the local nonequilibrium, the pV cell becomes

more similar to a TV (or TE) cell.

That is, while the generation drives cell operation, the generated carriers replace, at

most, those diffusing down the temperature gradient. Moreover, despite initially absorbing

a single phonon per pair (Ep,O), the generated electrons relax to a state of thermodynamic

equilibrium, and the net energy required is given by the Peltier heat (ST ). Finally, heat
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conduction rather than downconversion drives entropy generation and the efficiency limit

approaches that of a TE cell, i.e., Eq. (3). When a heat flux is applied to a pV cell, the

local nonequilibrium drives up- rather than downconversion, and the conduction of that heat

flux dominates entropy generation, such that the pV cell is limited by the TE efficiency and

achieves this limit when the local nonequilibrium vanishes. Thus, a pV cell without a hot

optical phonon population is a TV, which behaves like a TE. Here, the focus is on the pV

regime, where the phonovoltaic behaves like a photovoltaic.

The pV regime requires that a direct excitation of the optical phonon population creates

a large, local (rather than spatial) nonequilibrium in the pV cell. Let δe−p be the electron-

phonon cooling length, such that Tp,O − Te ≃ (Tp,O − Tc) exp(−L/δe−p) (the cooling length

is on the order 100 nm in a typical semiconductor)4. Thus, ηpV/ηC = γ̇∗
e−p exp(−L/δe−p)

and achieving the maximum pV efficiency requires L/δe−p ≪< 1. However, the loss of local

nonequilibrium compensated by the growth of the spatial nonequilibrium, which drives the

thermoelectric effects. Thus, the TE efficiency replaces the pV efficiency as L/δe−p grows,

such that L/δe−p = 1 demarcates a qualitative boundary between the TE and pV regimes.

An efficient pV cell additionally requires γ̇∗
e−p > 0.5, as small γ̇∗

e−p precludes efficient pV

operation. Moreover, small γ̇∗
e−p indicates that the phonon-phonon nonequilibrium vanishes

before the electron-phonon nonequilibrium, such that the pV cell achieves the TE limit most

quickly as γ̇∗
e−p → 1. Thus, the third, conduction hindered (CH) region is defined by the

γ̇∗
e−p → 0 and the L/δe−p → 0, where the downconversion of optical into acoustic phonons

dominates energy conversion, generating entropy rather than power.

It is beyond the scope of this investigation to present the quantitative TV and CH regimes.

However, Fig. 2 qualitatively illustrates the three regimes: The pV regime, where a hot op-

tical phonon population relaxes primarily by generating electrons [η∗pV = γ̇∗
e−p exp(L/δe−p) >

0.5]; the TV regime, where the local nonequilibrium vanishes [η∗TE ≈ 1− exp(γ̇∗
e−pL/δe−p) >

0.9]; and the conduction hindered (CH) regime, where generation cannot supply the TE cur-

rent (limiting the TV regime) or is dominated by downconversion (limiting the pV regime)

[1 − η∗pV − η∗TE = exp(γ̇∗
e−pL/δe−p) − γ̇∗

e−p exp(L/δe−p) > 0.7]. Note that these contours

have been chosen following the preceding discussion and for a pV cell which operates most

efficiently in the pV rather than TE regime.
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FIG. 2. Qualitative regimes of a pV cell for variations in L/δe−p and γ̇∗e−p. The pV regime requires

(i) a device smaller than the electron-phonon cooling length, δe−p, to sustain a nonequilibrium

between the optical phonon and electron populations (NE-e), and (ii) that generation dominates

downconversion (γ̇∗e−p > 0.5). When the local nonequilibrium vanishes (E-e), the pV cell behaves as

a TE (TV regime). When generation is much slower than downconversion (γ̇∗e−p < 0.5), conduction

hinders or dominates the device operation (CH regime).

III. ELECTRON-PHONON AND PHONON-PHONON COUPLINGS

As discussed, the fraction of hot optical phonons which relax by generating electrons

rather than acoustic phonons (γ̇∗
e−p) largely determines the performance of a pV cell. The

electron-phonon (e-p) and anharmonic phonon (p-p) couplings drive these phenomena. This

section presents the ab initio approach to the couplings and their kinetics from perturbation

theory, as used in Part II20.

A. Electron generation

As a phonon displaces the atoms in a crystal, it shifts the potential field experienced

by the electrons, and thus interacts with them. For a strong electron-phonon coupling, the

displaced atoms must substantially affect the most energetic occupied electron states. For

example, through the displacement of a linear chain of atoms, the bound electron state is

distorted as the interatomic distance changes. However, for a scattering event to occur, not
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only must phonon couple strongly to the bound state, but the resulting state must overlap

significantly with an unbound, conduction state, and the scattering even must conserve

momentum and energy. This is illustrated in Fig. 3.
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FIG. 3. The electron-phonon coupling during phonon absorption. (a) The unperturbed system

is in equilibrium with an electron in the highest occupied state (HOS, |ke, v〉) and no electron in

the lowest unoccupied state (LUS, |ke
′, c〉). (b) A phonon is excited (kp, α), which displaces the

atoms by ukp,α and perturbs the HOS, such that it overlaps with the LUS. (c) The electron in

the perturbed HOS and excited phonon are annihilated and an electron is created in the highest

occupied state, as shown in (c) ke space and in (d) the Feynman diagram.

Perturbation theory provides the quantitative description of this qualitative illustration,

where the Hamiltonian (H) is

H = H◦ +He−p = H◦ +
∑
ke

∑
kp,α

1

2
(

~

2ωkp,α〈m〉
)1/2

∂ϕ

∂ukp,α
(c†

ke+kp
cke

akp,α + h.c.), (4)

where H◦ is the ground state energy the electron system and ϕ is the Kohn sham potential

within density functional theory28. The factor of 1/2 accounts for spin degeneracy, and

the next term represents the displacement caused by a single phonon with wavevector kp,

polarization α, frequency ω, moving atoms of average mass 〈m〉. This, times the derivative

in potential with respect to the atomic displacement (ukp,α) is the linear expansion of the
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electron-phonon interaction potential. The final term describes the phonon-absorption and

phonon-emission (the Hermetian conjugate, or h.c.) processes, where cke
(akp

) and c†
ke

(a†
kp,α

)

are the annihilation and creation operators for an electron (phonon) with momentum ke (kp

and polarization α).

From the Fermi golden rule, the interaction rate depends on the perturbing Hamiltonian

(e.g., He−p) operating on the initial state and overlap of this perturbed state with the final

state. That is, the interaction element is28

M
(e±p,α)
ij (ke,kp) =

~

2ωkp,α〈m〉
)1/2〈ke ± kp, j|

∂ϕ

∂ukp,α

|ke, i〉, (5)

where the positive sign corresponds to the absorption and the negative to the emission of a

phonon, and the scattering rate is

γ̇
(e±p,α)
ij (ke,kp) =

2π

~
|M

(e±p,α)
ij (ke,kp)|

2 × δ(Ee,i,ke
− Ee,j,ke+kp

± ~ωkp,α)

×fe,i,ke
(1− fe,j,ke+kp

)(
1

2
∓

1

2
+ fp,α,kp

), (6)

where Ee,i,ke
and fe,i,ke

are the energy and population of an electron in band i with momen-

tum ke and fp,α,kp
is the phonon population.

The electron population terms ensure that scattering does not occur between two occupied

states or two unoccupied states, such that scattering only occurs between an occupied and

unoccupied state separated by the phonon energy (~ωkp,α). Thus, scattering is restricted to

the valence states and conduction states (i, j = v, c) and dominated by interband interactions

(i 6= j). Moreover, when ∆Ee,g > Ep,O, the scattering rate vanishes unless intraband

(i = j) interactions contribute substantially, i.e., when the Fermi surface is within kBT of

the conduction or valence bands and Ep,O ≫ kBT . This is rare in a typical semiconductor,

unless it is subjected to an exceptional doping intensity (becoming semi-metalic). Thus, the

electron-phonon interaction typically contributes to the phonon linewidth only in semimetals

and metals. In Part II, a semiconductor is sought with Ep,O ≃ ∆Ee,g ≫ kBT in order to

overcome this tendency20. Otherwise, the phonon-phonon coupling described in the following

section dominates the linewidth and γ̇∗
e−p vanishes.

However, finding or creating a material with a sufficiently energetic optical phonon and

tuning to its bandgap to that phonon energy, Ep,O ≃ ∆Ee,g ≫ kBT , is not sufficient.

An efficient pV also requires a strong intraband coupling, i.e., that the lowest unoccupied

states (LUS) and highest unoccupied states (HOS) overlap significantly, and that the optical
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phonon perturbs these states substantially, as shown in Fig. 3 and described in Eq. (5).

Thus, developing a pV material is very challenging.

For example, the tuned graphene structure investigated in Part II20 achieves Ep,O ≃

∆Ee,g ≫ kBT , but exhibits hindered electron-phonon coupling. While the electron-phonon

coupling dominates the optical phonon linewidth in graphene, hydrogenation transforms

the π-bonds to σ-type bonds and reduces the overlap between the LUS and HOS. As its

phonon-phonon coupling remains strong, any hot optical phonon population excited in hy-

drogenated graphene will primarily down-convert into acoustic phonons. This competing,

phonon-phonon coupling is discussed next.

B. Optical phonon downconversion

The crystal Hamiltonian determines the phonon dynamics and the phonon-phonon cou-

plings, and it is26,29

〈ϕ〉 = 〈ϕ〉◦ +
1

2!

∑
ijxy

Γxy
ij d

x
i d

y
j +

1

3!

∑
ijkxyz

Ψxyz
ijk d

x
i d

y
jd

z
k + ..., (7)

where 〈ϕo〉 is the equilibrium crystal potential, dxi is the displacement from equilibrium of

atom i in the x (Cartesian) coordinate, and Γij and Ψijk are the second and third-order

force constants.

The second-order interaction determines the phonon dynamics, i.e., the phonon frequen-

cies (ωkp,α) and eigenvectors (ǫkp,α), while the anharmonic (third-order and higher) interac-

tions are responsible for the up and downconversion of phonons, the thermal expansion of the

lattice, and the temperature dependence of the phonon frequencies. As the pV cell prefers

slow downconversion, i.e., low anharmonicity, materials with small thermal expansion, etc.,

are desired.

Typically, the fourth-order and higher interactions are masked by the third-order coupling30.

From the Fermi golden rule, the rate at which a phonon (|kp, α〉) downconverts into two

phonons (|kp
′, α′〉 and |kp

′′, α′′〉)31 is

γ̇p−p(kp, α) =
1

Nkp
′

∑
α′α′′kp

′
kp

′′

~π

16
|Ψ

kpkp
′
kp

′′

αα′α′′ |2δkpkp
′
kp

′′δ(ωkp,α − ωkp
′,α′ − ωkp

′′,α′′)(f ′
p + f ′′

p + 1),

(8)
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where fp is the phonon occupancy, and the interaction element Ψ
kpkp

′
kp

′′

αα′α′′ is

Ψ
kpkp

′
kp

′′

αα′α′′ =
∑
ijk

∑
xyz

Ψxyz
ijk u

xi
kp,αu

yj
kp

′,α′′
uzk
kp

′,α′′ exp(kp · ri + kp
′ · rj + kp

′′ · rk), (9)

and ri is the location of atom i. Here, uxi
kp,α

is proportional to the displacement of atom i

in the x direction caused by the phonon |kp, α〉, i.e.,

uxi
kp,α =

ǫxi
kp,α

(Miωkp,α)
1/2

. (10)

Unlike the electron-phonon coupling, which decreases with temperature (due to the

Fermionic electrons blocking scattering), the phonon-phonon couplings increase the hotter

the acoustic phonon populations become (due to the Bosonic phonons enhancing scattering).

This, among other factors, tends to push the pV cell towards low temperature operation.

However, for an energetic optical phonon, the scattering rate only increases substantially at

high temperature.

C. Evaluating γ̇e−p, γ̇p−p, and γ̇∗e−p

The fraction of hot optical phonons which relax by generating an electron rather than

a pair of acoustic phonons (γ̇∗
e−p) follows from the electron-phonon and phonon-phonon

scattering rates [Eqs. (6) and (8)]. While Eq. (8) gives the rate at which an optical phonon

mode with kp = 0 and α (fp,O = 1) downconverts, Eq. (6) provides only the rate at which

that optical phonon mode generates an electron with momentum ke in band j. However,

after summation over ke for i, j ∈ c, v, Eq. (6) gives the rate of recombination or generation

driven by that optical phonon mode, such that the net generation ṅe is

ṅe(kp = Γ, α) =
∑
ke

[γ̇(e+p,α)
cv (ke,kp = 0)− γ̇(e−p,α)

vc (ke,kp = 0)]. (11)

γ̇∗
e−p follows

γ̇∗
e−p(Γ, α) =

ṅe(Γ, α)

ṅe(Γ, α) + γ̇p−p(Γ, α)
=

ṅe(Γ, α)

ṅe(Γ, α) + ṅa(Γ, α)
, (12)

where ṅa is the net rate of acoustic phonon-pair generation. This quantity limits the quantum

efficiency of the pV, i.e., the number of electrons extracted for each optical phonon excited,

as discussed in Section V.

11



In Part II, both the electron-phonon and phonon-phonon couplings for the Γ-point

phonons (kp = 0) are evaluated within density functional perturbation theory (DFPT) us-

ing the ab initio Quantum Espresso code, which provides dynamical matrices, the electron-

phonon matrix elements, and third-order force constants on a rough mesh of ke and kp

points. Through the Fourier interpolation throughout the first Brillouin zone, the compo-

nents required to evaluate Eqs. (6) and (8) are calculated on a fine mesh of ke and kp

points. Then, the integrations are carried out (Part II20 give the details).

IV. BOLTZMANN TRANSPORT

The nanoscale pV cell can exhibits several forms of nonequilibria. For example, the

local nonequilibrium between electron and phonon populations drives the net generation

of electrons, the local nonequilibrium between optical and acoustic phonon populations

drives the net downconversion of optical phonons, and the local nonequilibrium within the

electron system affects transport. Moreover, when the device is sufficiently long, a spatial

nonequilibrium grows within these populations and the aforementioned local nonequilibria

vanish. Thus, the investigation of a pV cell begins with the Boltzmann transport equation

(BTE), which models spectral transport of an energy carrier (i) with momentum p through

its occupancy fi(p). As such, it demonstrates the role of the electron-electron nonequilibrium

and spatial nonequiblirium within a pV cell.

The electron BTE, i = e, is26

∂fe
∂t

+ ue · (∇xfe) +−ec∇xϕe · ∇pfe =
∂fe
∂t

|s + ṡ ≈ γ̇e(fe − f ◦
e ) + ṡe, (13)

where the terms, in order, describes transient effects, the free flight of electrons with velocity

ue, the acceleration by an electric field (where ϕe is the electric potential and ec the electron

charge), the in- and out-scattering of electrons at location x, and the generation (ṡe) of

new electrons with momentum p. The scattering term is often approximated through the

relaxation-time approximation (RTA), where f ◦
e is the equilibrium occupancy and γ̇e is the

total scattering rate. This approximation assumes that there is near equilibrium within

the electron population, and it enables the integration of the BTE for various device level

models.

Furthermore, the RTA provides the average distance between electron collisions (mean

12



free path), λe = uF/〈γ̇e〉, where uF is the Fermi velocity and 〈γ̇e〉 is the average electron

scattering rate. When the device is very small compared to the mean free path (L ≪ λe), the

transport is ballistic and generated electrons are harvested without relaxing. For L ≫ λe,

the transport is diffusive, electron distributions are near equilibrium (fe ≃ f ◦
e ), and the

RTA is valid. This section presents an ensemble Monte-Carlo (MC) simulation of the BTE

in order to investigate the electron population in the active region of a pV cell and to describe

the electron transport in a pV cell.

A. Ensemble Monte-Carlo simulations

The MC method statistically solves the BTE by simulating many electron superparticles

freely-accelerating between electron-phonon scattering events. The time between scattering

events and the scattering event which occurs are chosen statistically while preserving the

kinetics of the system.32

Here, only the scattering of electron with the optical and acoustic phonon population

is considered. Furthermore, the kinetics within the MC model assume isotropic, parabolic

bands and a constant electron-phonon coupling element [Me−p,α
cc (ke,kp) = Mp,α] near the

band-edge. Consider Eq. (6) integrated over kp from the perspective of conduction electron

with momentum ke in a non-degenerate semiconductor (fe,c,ke
= 1 and fe,c,ke±ke

= 0). For

a dispersionless optical phonon, this gives

γ̇(e±p,O)
cc (ke) =

∑
kp

γ̇(e±p,O)
cc (ke,kp)

=
2π

~
|Mp,O|

2De(Ee,ke
±Ep,O)(

1

2
∓

1

2
+ fp,O), (14)

where the density of states and electron dispersion are

De(Ee) =
∑
kp

δe(Ee) = (
me,e

~2
)3/2E1/2

e (15)

Ee,ke
=

~
2|ke|

2

2me,e

, (16)

and me,e is the effective mass of a conduction band electron.

The scattering rate of an electron with an acoustic phonon of constant speed up,A gives

a similar result, only with a different phonon energy (Ep,A = ~|kp|up,A rather than Ep,O).

13



This energy must conserve energy and momentum, i.e., we require

Ee,ke+kp
= Ee,ke

±Ep,A

~
2(ke + kp)

2

2me,e
=

~
2k2

e

2me,e
± up,A~kp

s.t. kp = 2(±
me,eup,A

~
− ke)

and Ep,A = 2up,A(±keme,eup,A − ~ke), (17)

where ki = |ki| and the kp,A = 0 solution does not represent a scattering event. The MC

model does not treat the acoustic phonon scattering as elastic, but uses the above equations

to determine the final state.

Additionally, a fast generation rate (ṡe) is prescribed in the active region and the energetic

optical phonon is given a hot temperature (Tp,O,h). The remaining optical and acoustic

phonon modes are given a cold temperature equal to the contact temperature, Tc.

As ensemble MC simulates thousands of electrons in one superparticle, less than one

superparticles is typically generated or annihilated within a single time step (1 fs) in a

particular location bin (0.5 nm). This MC model carries the remainder from one time

step to the next, such that over many time steps the number of generated superparticles

accurately represents the number of generated electrons. New electrons are given an initial

energy through the implicit solution of

r

∞∫

0

De(Ee)De(Ee − Ep,O)dEe =

Ee∫

0

De(Ee − Ep,O)dEe, (18)

for Ee, where r is a uniformly distributed random number and De(Ee)De(Ee − Ep,O) is

proportional to the net-generation rate. (See Section V.A.) The initial momentum direction

is randomized in the isotropic semiconductor. A typical Ohmic contact is modeled at x = 0,

and electrons are reflected at x = L/2, where L is the length of the cell, to represent an

ideal junction under short-circuit conditions. This is illustrated in Fig. 4.

The simulations are run for the material parameters listed in Table II. These parameters

are similar to those of the partially-hydrogenated graphite20. Note that the generation rate is

proportional to the cell length. This ensures that in a long cell with L ≫ λe, i.e., the diffusive

regime, the change in the carrier concentration is independent of L. This simulation does

not accurately track or predict the cell performance, as it is not self-consistent. However,
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TABLE II. Material and parameters used in the MC simulations, where me is the electron mass.

Parameters are chosen to represent partially-hydrogenated graphite.

MC Parameters

me,e 0.01 me ∆Ee,g 150 meV

Ep,O,1 198 meV Ep,O,2 154 meV

|Mp,O|1 140 meV |Mp,O|2 110 meV

up,A 1000 m/s |Mp,A| 50 meV

La 1/5L ṡe 0.1/L nm-cm−3ps−1

Tc 300 K Tp,O,h 600 K

it determines the extent of the electron relaxation and the transport regime (ballistic or

diffusive) for the generated electrons as a function of L. Most importantly, it illustrates the

operation of a pV cell.

B. Results

Figure 4 shows the spatial distribution of the (a) electron density and (b) temperature

and (c) the local distribution electron energy for variations in the cell length. Electrons are

generated within a small active region near the junction. The junction reflects all electrons,

forcing electrons towards collection at the contact. Note the concentration gradient formed

in the short cell is half of that formed in the long cell. Indeed, the concentration gradient

required to drive the generated electrons out of the cell is reduced as L approaches λe and

the transport regime becomes ballistic.

Additionally, as these electrons have a smaller kinetic energy than the thermal average,

3kBTc/2, they cool the cell. However, the hot optical phonon population also heats the

electron population through intraband interactions. In the short cell, the cooling effect

dominates, while in the long cell, the two effects balance. In sufficiently long cell, intraband

interactions should overcome the cooling and induce a spatial non-equilibrium. Regardless,

the electron population in both the 40 and 400 nm cells remains near the equilibrium dis-

tribution. Indeed, the RTA remains valid, even as the electron transport becomes ballistic.

In the following sections, macroscale models use the RTA to take moments of the electron

BTE. While the MC results support this approach, there are restrictions to its validity.

Primarily, at lower temperatures the mean free path grows substantially. Moreover, under an

applied voltage, a significant number of electrons flow over the junction, gain a large kinetic
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FIG. 4. Spatial distributions of the (a) Electron density and (b) temperature, and (c) local energy

distributions within the active region in 400 and 40 nm pV cells. The generation rates are scaled

by 1/L to demonstrate that transport is partially ballistic in the 40 nm cell. The generation of cold

electrons reduces the average energy of the population, but the nonequilibrium within the electron

population remains small. The 400 nm cell, in comparison, exhibits diffusive transport, a negligible

change in the electron temperature, and equilibrium occupancy within the electron population.

energy, and these hot electrons are in nonequilibrium with the cold electron population.

However, the mean free path of these hot electrons is relatively short. In general, the RTA

and the resulting moments of the BTE remain valid.
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V. ANALYTIC EFFICIENCY AND FIGURE OF MERIT

With the local nonequilibria limited to the electron-phonon and optical-acoustic phonon

populations, a simple analytical model is developed in order to achieve the following goals:

(i) develop a figure of merit, (ii) determine the temperature dependence of the pV cell, and

(iii) provide accurate predictions and fundamental insights.

The ratio of the power produced (Pe = Jeϕa, where Je is the current extracted across a

potential ϕa) to the heat flow applied (Qin) determines the pV efficiency (ηpV = Pe/Qin). In

an ideal junction (i.e., one with no excess current loss, e.g., that from surface recombination

or junction tunneling) with negligible internal resistance, the current produced is propor-

tional to the net-generation (ṅe) within the cell volume (V ), i.e, Je = ecṅeV . The energy

flow required to produce this current is Qe = Ep,OJe. However, additional heat flows from

the hot optical phonon population into the acoustic branches due to the net-downconversion

rate (ṅp,A) within the cell volume, such that Qp,A = Ep,Oṅp,AV . Assuming the interband

electron-phonon and phonon-phonon interactions dominate the optical phonon lifetime, the

controlling equations become

Pe = Jeϕa = ecṅeV ϕa (19)

Qin = Qe +Qp,A = Ep,O(ṅe + ṅa) (20)

ηpV =
Pe

Qin
=

ecϕa

Ep,O

ṅe

ṅe + ṅp,A
. (21)

Thus, determining the efficiency and power output of a pV cell requires the relationship

between the current (or net-generation) and voltage.

Before deriving a model for this relationship, consider the diode equation

Je(ϕa) = Jo − Jd(ϕa), (22)

where Jo = Je(0) is the short-circuit current and Jd is the dark, adverse current driven across

the junction by a potential (or, alternatively, the net-recombination driven by the potential

induced difference in electron and hole Fermi-levels). In an open-circuit, no current leaves

the cell (Je = 0). Instead, the potential develops within the cell until it reaches the open-

circuit voltage (∆ϕoc) and the dark current balances with the short-circuit current generated

by the hot optical phonon population.

Note that short-circuiting the pV cell (ϕa = 0) and maximizing the current, or open-

circuiting the cell (Je = 0) and maximizing the voltage generates no power. The maximum
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power and maximum efficiency conditions reside between these limits. The fill-factor (FF )

quantifies the fraction of power achieved by a diode to the product of the short-circuit

current and open-circuit voltage, i.e.,

FF =
Pe

Jo∆ϕoc
. (23)

The fill-factor is limited to between 1/4 and 1, where the former requires a linear current-

voltage curve and the latter requires a square curve. Next, analytic equations for the current-

voltage relationship of an ideal pV cell and the resulting performance are derived.

A. Net generation

The electron-phonon interband interaction falls into the class of band-to-band recombina-

tion and generation events, which also includes radiative decay. A band-to-band recombina-

tion rate (ṅe,b−b) depends on the number of conduction electrons (ne) which can recombine

and the number of empty valence states, i.e., holes (nh), with which they can recombine.

Thus, the generation or recombination rate is expected to be proportional nenh. Noting

that no net recombination occurs under equilibrium, when nenh = n2
i and ni is the intrinsic

electron and hole concentration. Thus, the net band-to-band recombination rate is

ṅe,b−b = ab−b(nenh − n2
i ), (24)

where ab−b is a coefficient which depends on the interaction. We show below that the net rate

of generation due to the electron-phonon interaction exhibits a similar form when derived

from the ab initio rate [Eq. (6)].

Consider Eq. (6), integrated over kp for a dispersionless optical phonon (~ωkp,O = Ep,O)

with a constant interaction strength for generation [Mg = M
(e+p,O)
vc (ke,kp)] and recom-

bination [Mr = M
(e−p,O)
cv (ke,kp)] events. Further, assume there is equilibrium within the

electron, hole, and optical phonon populations and thermal equilibrium between the electron

and hole populations. Finally, assume a non-degenerate semiconductor where Maxwellian

statistics hold, i.e., the population of the the electron (i = e), hole (i = h) and phonon

(i = p) are

fi(Ei, T ) = exp(
EF,i −Ei

kBT
) ≪ 1, (25)
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where Ei and T are the population energy and temperature, and EF,i is the Fermi energy

(EF,p = 0).

Under these assumptions, the generation [γ̇e−p,g(Ee)] and recombination [γ̇e−p,r(Ee)] rates

for an electron at initial energy Ee are

γ̇e−p,g(Ee) = ae−p,g

∫
dkpδE(Ee − E ′

e + Ep,O)fp,O(Ep,O, Tp,O)

γ̇e−p,r(Ee) = ae−p,r

∫
dkpδE(Ee −E ′

e −Ep,O)fe(Ei, T )fh(Ef , T ), (26)

where ae−p,i = π~|Mi|
2/(Ep,O〈m〉). Using the definition of the density of states, Di(Ei) =∫

dkpδE(Ei), reduces the rates to

γ̇e−p,g(Eh) = ae−p,gDe(Ef,h)fp,O(Ep,O, Tp,O)

γ̇e−p,r(Ee) = ae−p,rDh(Ef,i)feh(Ep,O, Tp,O), (27)

where feh uses the differences in Fermi energy EF,eh = ∆EF = EF,e − EF,h, and Ef,i =

Ep,O −∆Ee,g − Ei.

Integrating over the allowed electronic states gives the total rate of generation (ṅe,g) and

recombination (ṅe,r). Let D be the integral of De(Ee)Dh(Ef,e) over 0 ≤ Ee ≤ Ep,O −∆Ee,g

and Eh = Ep,O −∆Ee,g − Ee, then the net rate of generation is

ṅe = ṅe,g − ṅe,r = ae−p,gDfp,O(Ep,O, Tp,O)− ae−p,rDfeh(Ep,O, T ). (28)

As the net generation must vanish under equilibrium (Tp,O = T ), we require ae−p,g = ae−p,r.

This model, like the band-to-band model, is driven by the temperature difference Tp,O−T .

However, the population terms fp,O(Ep,O, Tp,O)−feh(Ep,O, T ) rely on Ep,O rather than ∆Ee,g,

as in the band-to-band model (ṅe,b−b), i.e.,

ṅe,b−b ∝ [exp(−
∆Ee,g

kBTp,O

)− exp(−
∆Ee,g −∆EF

kBT
)] (29)

ṅe ∝ [exp(−
Ep,O

kBTp,O

)− exp(−
Ep,O −∆EF

kBT
)]. (30)

This difference leads to a substantial divergence in the predicted behavior, and most notably,

the open-circuit voltage. Noting that the ∆EF = ecϕa under the current assumptions,

i.e., negligible internal resistance in an ideal junction, the open-circuit voltage [ṅe(∆EF =

ec∆ϕoc) = 0] is

∆ϕoc,b−b = ηC∆Ee,g/ec (31)

∆ϕoc = ηCEp,O/ec, (32)
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where ηC = 1− T/Tp,O.

Typically, the open-circuit voltage in a photovoltaic cell is limited by the bandgap33 rather

than the photon energy. While it has been proposed that harvesting electrons before they

relax enhances the open-circuit voltage34, this has not been realized experimentally. In a pV

cell, a similar phenomena is expected, where the relaxation of the generated carriers towards

the bandedge ensures the same, bandgap-limited behavior. Therefore, the analytical model

uses the band-to-band model for net-generation.

B. Current-voltage curve

As previously discussed, the current-voltage relationship is proportional to the net-

generation, i.e.,

Je(ϕa) = ecVaṅe = ecVaae−p,b−b[exp(−
∆Ee,g

kBTp,O

)− exp(−
∆Ee,g − ϕa

kBT
)], (33)

where ae−p,b−b ensures that the short-circuit band-to-band current matches the derived model

in Eq. (28). The maximum power (Pm) and the corresponding voltage (∆ϕm) are found by

maximizing Pe(ϕa) = Je(ϕa)ϕa. The maximization gives

∆ϕm =
kBT

ec
{W [exp(1 +

∆ϕoc

kBT
)]} (34)

where W (z) is the principle solution for w in z = wew and limx→∞W [exp(1+x)] = x. That

is, as the open-circuit voltage grows large in comparison to kBT , the ∆ϕm approaches the

open-circuit voltage. Intuitively, this also implies the current (Jm) approaches the short-

circuit current and the Fill-Factor approaches unity under the same condition. While the

expressions for Jm and Pm becomes progressively more complicated and less insightful,

numerical investigation confirms this. Indeed, the fill-factor expression corresponding to the

maximized power condition is well approximated by

FF =
Jm∆ϕm

Jo∆ϕoc
≃ 1−

3

4
exp(−0.1ηC∆E∗

e,g) for ηC∆E∗
e,g < 10, (35)

where ∆E∗
e,g = ∆Ee,g/kBT and the limits 1/4 ≤ FF ≤ 1 are reproduced, and this equation

confirms these suppositions.
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C. Efficiency

From Eq. (31), the fraction of the optical phonon energy achieved by the pV cell in an

open-circuit is

ηϕ =
ec∆ϕoc

Ep,O

= ηC
∆Ee,g

Ep,O

. (36)

Additionally, the number of electrons extracted per optical phonon (quantum-efficiency)

follows from Eqs. (20) and (33)

ηQE =
Jo

Jp,O

=
ecVaṅe

ecVa(ṅe + ṅa)
=

ṅe

(ṅe + ṅa)
= γ̇∗

e−p, (37)

where γ̇∗
e−p is the fraction of optical phonon scattering events which result in the generation of

an electron [from Eq. (12)]. Thus, the efficiency for a square current-voltage curve (FF = 1)

is

ηpV,max = ηCγ̇
∗
e−p

∆Ee,g

Ep,O
= ηCZpV, (38)

where ZpV = γ̇∗
e−p∆Ee,g/Ep,O is the pV figure of merit.

Unfortunately, the analytic expressions for the maximum efficiency condition is much

more complicated than the already complex expressions for ∆ϕm and Pm. Thus, a realis-

tic and maximized analytic efficiency offers little insight. However, consider the following

conservative procedure to derive an analytic and insightful efficiency relation (ηpV).

The maximum heat flow required by a pV cell occurs in the short-circuit condition, where

ṅe is maximized. Assuming Qin does not strongly depend on ϕa and remains near this limit,

we can derive a useful relation. If Qin does not depend on ϕa, then the maximum power

and efficiency conditions coincide. Thus,

ηpV = ηCZpVFF ≃ ηCZpV[1−
3

4
exp(−0.1ηC∆E∗

e,g)], (39)

where FF is approximated as in Eq. (35).

Assuming a constant Qin presumes that either γ̇∗
e−p → 0 or FF → 1 (ηC∆E∗

e,g → 1).

For large γ̇∗
e−p and small FF , the heat decreases quickly with increasing ϕa (and decreasing

Je). In this case, the maximum efficiency and power conditions diverge, and the maximum

efficiency increases significantly over Eq. (39). A parameterized investigation of Eq. (39)

and its implications follows, and in the next section we look at the divergence of this relation

from the results of a relaxed, hydrodynamic model.
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D. Results
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FIG. 5. The pV efficiency as a function of the nonequilibrium, ηC∆Ee,g/kBTc, and the pV figure of

merit, ZpV [Eq. (39)]. Significant nonequilibrium is required to outperform a TE with ZTET = 1,

unless the figure of merit exceeds 0.7. When Tc vanishes, the pV cell achieves ηpV = ηCZpV ≤ 1.

When ZpV → 0, the efficiency vanishes, and when ηC → 0, the efficiency approaches 0.25ηCZpV.

The hydrodynamic model (HM) simulations use a standard set of parameters slightly exceeding

the TE cell.

Figure 5 depicts Eq. (39), showing ηpV/ηC for variations in ZpV and ηC∆E∗
e,g. In order

to surpass ηTE, a pV must achieve ηC∆E∗
e,g > 1, unless ZTET > 0.7. Thus, an efficient pV

cell requires either an optical phonon resonant with its bandgap and a linewidth dominated

by the electron-phonon coupling, or it requires extreme nonequilibrium and a bandgap sig-

nificantly more energetic than the thermal energy. That is, unless ZpV is large, the pV is

limited to low-temperature operation. However, if the ZpV and nonequilibrium are large,

the pV cell approaches the Carnot limit.
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VI. HYDRODYNAMIC EFFICIENCY AND OPERATION

The analytical model requires a number of assumptions including fast transport and no

surface recombination (ηQE = γ̇∗
e−p). A numerical, hydrodynamic model (given in Appendix

A) is used to validate Eq. (39), relax its assumptions, and reveal additional cell parameters

which influence the pV efficiency. The hydrodynamic model considers the same nonequilibria

as the analytic model, i.e., local e-p and p-p nonequilibria, but adds the spatial nonequilibria

within electron and phonon populations. It takes the first three moments of the electron BTE

(continuity, momentum, energy), includes the conduction of optical and acoustic phonons,

and uses the Poisson equation to ensure self-consistency.

TABLE III. Material and parameters used in hydrodynamic model simulations at Tc = 300 K.

Parameters are chosen to represent a hydrogenated graphite pV cell. Parameters are defined in

Appendix A.

Figure of Merit

Ep,O 198 meV ∆Ee,g 150 meV

ae−p 20 cm−9s−1 ap−p 20 cm−9s−1

τe−p,E 20 ps ∆Ee,g/Ep,O 0.75

γ̇∗

e−p 0.5 ZpV 0.38

Transport

ne,v 7.1× 1018 cm−3 ne,c 7.1× 1018 cm−3

µe 0.2 m2/V-s ǫe 12

κp,A 0.3 W/m-K κp,O 0.001 W/m-K

Cell

L 50 nm La 10 nm

ηC 2/3 ∆EF,p−n 150 meV

SR w/o

This section uses the parameters baseline given in Table III, and then varies important

parameters from among this collection to investigate their effects. The parameters are chosen

to reflect a functionalized graphene material utilizing its E2g optical phonon mode. The ZpV

is chosen to examine a moderate pV material which requires significant nonequilibrium to

surpass a TE cell. Parameters a varied to both validate the analytic model, examine what

is required for such a material to surpass the TE limit, and investigate pV cell operation

under extreme nonequilibrium.

The length (L) is sufficiently small and the transport of the electron (µe), hole (µh),

and acoustic phonon (κp,A) are sufficiently fast to ensure that these population do not

equilibrate with the optical phonon mode (limited spatial nonequilibrium). As long as this
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condition is satisfied (i.e., L ≫ δp−p ≃ δe−p, where δe−p is the electron cooling length),

the pV behavior is independent of these parameters. However, the slow optical phonon

transport (κp,O) influences pV efficiency when La/L < 1, as it restricts the hot optical

phonon population to the active region. In the standard cell, the active length (La), i.e., the

region where the optical phonon population is excited, is restricted to the junction itself,

which is approximately 10 nm, and the diode is doped such that the difference between the

Fermi energy in the p and n regions (∆EF,p−n) equals the bandgap. Finally, the surface

recombination (SR) is inhibited, a requirement for efficient operation (Section VIB) and an

assumption of the analytical model.

Note that the extent of the nonequilibrium, ηC, rather than the input heat or optical

phonon temperature, is maintained at ηC = 2/3. This enables a simplified comparison

between the hydrodynamic and the analytical models, which predicts ηpV ∝ ηC. This

represents a substantial nonequilibrium state. Moreover, this leads to large current and

heat densities. For example, at Tc = 300 K, the optical phonon is excited to 900 K, a short

circuit current density of nearly 1000 A/mm2 is generated, and a heat flux of 1000 W/mm2

is required. To avoid such large fluxes, a smaller phonon linewidth, a high figure of merit or

small nonequilibrium are required.

Figure 6 summarizes the hydrodynamic results for variations in the dimensionless

bandgap (∆E∗
e,g = ∆Ee,g/kBTc) and the Carnot limit (ηC: primarily influences the fill-

factor and open-circuit voltage), the intrinsic diode potential (∆EF,p−n/ec: primarily affects

the open-circuit voltage) and the active length (La: primarily affects pV operation at high

temperatures). While γ̇∗
e−p, ∆Ee,g/Ep,O, and ZpV are constant in these pV cell, Fig. 9 (end

of section) shows the pV efficiency for variations in these parameters and highlights the

agreement between the analytical and hydrodynamic models when γ̇∗
e−p < 0.5 and La = L.

The analytical model gives a reasonable estimate across a wide range of parameters. How-

ever, there is significant discrepancy. This section explains the factors responsible for the

difference and highlights the additional diode parameters required for effective pV operation.

A. Device operation

Before delving into the myriad parameters influencing the pV efficiency and its divergence

from the analytical model, Fig. 7 illustrates the internal operation of the pV cell at 300

24



0.0

0.1

0.2

0.3

0.4

0.0

0.1

0.2

0.3

0.4

η
C 

{min(∆E
e,g 

, ∆E
F,n-p

)}/k
B
T

c

η
p
V

  
/ 

η
C Z

p
V

0 2 4 6 8 10 12 14 16 18 20

Analytical Model

Z
pV  

η
TE  

/ η
C
 for Z

TE
T = 1

η
C

1/3

1/2

2/3

3/4

L
a
/L

1

1/5

∆E
e,g

75

150

300

E
p,O

150

200

400
m

eV

∆E
F,n-p

130

110

90

70

Hydrodynamic Model
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nonequilibrium (ηC∆E∗
e,g) is required to exceed the TE efficiency (shown for ZTET = 1.0) when

ZpV < 0.7.

K under the applied voltage which maximizes ηpV (∆ϕa = 5 mV). In this cell, the optical

phonon is excited within the junction, driving generation. The electrons and holes are

separated by the junction and transported to and collected by the contacts. The applied

voltage simultaneously drives carriers across the junction, reducing the net generation of

electrons within the active region and inducing their recombination outside of it. While

downconversion primarily occurs within the active region, it extends throughout the entire

cell. The analytic model, in comparison, assumes the hot optical phonon population diffuses

throughout the entire volume (La = L), driving substantial downconversion and generation.

This leads to a decrease in the open-circuit voltage and performance loss, as shown in Figs.

6 and 8. Note that the electron, hole, and acoustic phonon transport are sufficiently fast to

ensure their respective population does not equilibrate with the optical phonon.

In Fig. 8, the (a) dimensionless and (b) dimensional current-voltage curves for this cell

are shown for variations in the contact temperature. The dimensionless curves highlight

the analytical limits, ηQE = γ̇∗
e−p, and ∆ϕo = ηC∆Ee,g/ec, while the dimensional curves

illustrate how a practical pV cell should behave. In particular, it depicts the efficiency

loss at high temperatures, where the increased dark current reduces the fill-factor and the

open-circuit voltage. While the short-circuit current vanishes with the temperature, the
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FIG. 7. Spatial distributions of (a) the electron and hole densities, (b) population temperatures,

and (c) generation and downconversion rates for a pV cell under 5 mV of applied voltage (maximum

power) with Tc = 300 K and Tp,O = 900 K in the active region. The abrupt drop in the optical

phonon temperature outside the active region leads to recombination and a lowered open-circuit

voltage. Downconversion, however, extends throughout the cell.

quantum efficiency remains constant. Indeed, low temperatures reduce both generation and

downconversion rates, such that the current loss is balanced by the reduced downconversion

rate. Additionally, the reduced relaxation rate in a cold cell enables the optical phonon to

diffuse throughout the cell, despite its slow transport, and drive generation. Thus, the open-

circuit voltage in a cold pv cell approaches that of a pV cell with La = L, i.e., that predicted

by the analytical model. Furthermore, Fig. 8 shows that both the quantum efficiency and

open-circuit voltage are significantly reduced when the surface recombination (SR) is not

inhibited.

Furthermore, the dimensional curves in Fig. 8(b) emphasize the substantial current den-

sities in a pV cell (and thus the heat density required to drive it). Three factors influence the

current density: (i) the hot phonon temperature, Tp,O, (ii) the extent of the nonequilibrium,

ηC, and (iii) the coupling strengths, ae−p and ap−p. Increasing these parameters increases

the rate of hot optical phonon relaxation (heat required for a given ηC) and the electron pro-
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FIG. 8. (a) Dimensionless and (b) dimensional current-voltage curves for variations in Tc for the

pV cell parameters in Table III. As expected, the quantum efficiency, open-circuit voltage (∆ϕo),

and efficiency are limited by γ̇∗e−p, ηC∆Ee,g, and ZpV . This limiting efficiency is approached as Tc

vanishes and the nonequilibrium extends across the entire cell, i.e., when FF → 1 and La = L.

duction (je). Thus, if lower current densities are desired, a cold cell and an optical phonon

weakly coupled to the electron and phonon systems are required. Additionally, restricting

La reduces the current generated within the pV cell.

B. Achieving Analytic Efficiency

A myriad factors influence cell operation. In order to achieve the predictions offered

by the analytic model, a few cell design factors are crucial, the most crucial of which are

highlighted here in order of importance. (i) Electron transport and pV length must ensure

the electron-phonon nonequilibrium persists. (ii) Surface recombination must be inhibited.

(iii) There must be sufficient doping. (iv) The optical phonon must diffuse throughout the

cell. Briefly, these four factors are discussed below.
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The core concept of the pV cell requires that local electron-phonon nonequilibrium exists.

If electron transport is exceptionally slow or the cell is sufficiently long (e.g., order of µm),

a large concentration gradient forms between the active region and the contact. The excess

electrons in the active region block generation and reduce the quantum efficiency.

Surface recombination decimates the pV efficieny, and it does so in two ways. First,

the minority carriers generated near the contacts tend to diffuse into those contacts and

recombine. These generation events only produce entropy and lower the quantum efficiency,

as shown in Fig. 8. Second, the small size of the pV cell implies that minority carriers

driven over the junction by an applied voltage tend to reach the contact. If their entrance

is not inhibited,35

With no doping, no junction forms, minority and majority carriers are not separated, and

the open-circuit voltage vanishes. Indeed, while the analytical model predicts that the open-

circuit voltage is limited by the bandgap, it is truly limited by the change in the Fermi level

from the p to n regions of the pV cell (∆EF,p−n). Thus, to achieve the analytic prediction,

the change in Fermi level must exceed ηC∆Ee,g.

Less important, but noticeable, is the ratio of the active region to the total volume. While

generation occurs only in the active region, the applied voltage tend to drive minority carriers

throughout the entire pV cell, where they recombine. This in turn reduces the open-circuit

voltage, as shown in Fig. 8. Note that the analyitcal model assumes La/L = 1, such that

La/L = 0.2 leads to a slight underperformance. At higher temperatures, this is especially

noticeable, as the optical phonons relax quickly and do not escape the active region. At

low temperatures, the cooling length is much larger, such that the optical phonon diffuses

throughout the pV cell, regardless of the active length.

C. Exceeding Analytic Efficiency

Just as a myriad factors reduce pV performance below that predicted by the analytic

model, there are a few important factors that enhance pV cell operation. Primarily, these

factors are slow acoustic phonon transport and large γ̇∗
e−p. When acoustic transport is slow,

the acoustic phonon population in the active region heats up significantly. This reduces the

net rate of downconversion. When γ̇∗
e−p is large, the analytic model overpredicts the heat

requirements.

28



η
p
V

  
/ 

η
C

 Z
pV

, F
F 

, η
C  

< 1

η
TE  

/ η
C
 for Z

TE
T = 1

Z pV

γ
e-p 
*

0.0
0.4 0.6 0.8 1.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

HM

AM

HM

AM

E
p,O 

(meV)       

150

150

200

200

∆
E

e,g

L
a
/L = 1,  T

c
 = 300 K
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(HM) models. While increased resonance between Ep,O and ∆Ee,g increases efficiency, increasing

γ̇∗e−p enables the efficiency to approach its limit: ηCZpV. Moreover, it greatly reduces the impact

the temperature has on the efficiency and enables efficient room-temperature operation. The TE

efficiency is shown for comparison.

Consider a pV cell with a large γ̇∗
e−p. In this case, the optical phonon relaxes solely

through the production of electrons. At open-circuit conditions, no heat is required to

maintain the hot optical phonon population.36 The analytic model, conversely, predicts that

the heat requirement does not change, even as the electron-phonon coupling slows. Thus,

the analytic model greatly overestimates heat requirements when γ̇∗
e−p approaches unity and

the fill-factor is small (i.e., when the net generation rate decreases quickly as the applied

voltage grows).

In Fig. 9, this discrepancy is illustrated for a pV cell at room temperature (300 K).

Moreover, these results are for a moderate fill-factor (around 0.7). When ηC vanishes, the

current-voltage curve becomes linear. In this case, achieving a large γ̇∗
e−p ensures a significant

reduction in the heat required to operate at maximum efficiency. Thus, the hydrodynamic

simulations (HM) diverge from the analytical model (AM) for γ̇∗
e−p > 0.4. Indeed, as γ̇∗

e−p

aproaches unity, the pV nearly reaches its limit: ηpV = ηCZpV. Figure 9 also shows the

role of resonance in achieving high efficiency. When no kinetic energy is produced during a

generation event, no optical phonon energy is wasted. Thus, a pV with a resonant bandgap
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surpasses the TE performance even at lower γ̇∗
e−p.

Finally, Fig. 9 shows the potential of a pV cell to substantially outperform the TE, even

at room temperature. Indeed, with a resonant and energetic optical phonon mode which

primarily generates electrons, the pV cell triples the efficiency of a TE with ZTTE = 1. Even

under reduced nonequilibrium, such a pV cell doubles the TE efficiency. These encouraging

results motivate the search for a high ZpV material, which we conduct in Part II20.

VII. CONCLUSIONS

Here, we proposed and discussed the phonovoltaic cell which harvests energetic optical

phonons resonant with the bandgap to generate power in a p-n junction. The central mech-

anisms, the electron-phonon and anharmonic three-phonon coupling, are discussed to quan-

tify the quantum efficiency (ηQE = γ̇∗
e−p). The Monte-Carlo simulations of the Boltzmann

transport equation depicts the cell function using these couplings. Then, an approximate

efficiency is developed analytically and a pV figure of merit proposed, i.e.,

ZpV = γ̇∗
e−p

∆Ee,g

Ep,O

≤ 1 γ̇∗
e−p =

γ̇e−p

γ̇e−p + γ̇p−p

,

ηpV ≃ ηCZpV[1− 0.75 exp(−
ηC∆Ee,g

kBTc
),

ηC = 1−
Tc

Tp,O
. (40)

These results are most accurate when the surface recombination is suppressed, hot phonon

relaxation is slow compared to the transport (or La = L), and γ̇∗
e−p is small or FF is large.

Regardless, Eq. (40) provides reasonable predictive power across a wide range of ZpV and

ηC∆E∗
e,g, as shown in Figs. 6 and 9. Importantly, this equation shows that either large ηC

or large ZpV are required for efficient pV operation.

Hydrodynamic simulations highlight the device requirements and validate the analytic

model. These requirements are (i) the active volume should be maximized, such that

La/L ≃ 1, unless the relaxation of hot optical phonon populations is slow compared to its

transport; (ii) minority carriers must be blocked from entering the contact and recombin-

ing (i.e., hindered surface-recombination); (iii) the p-n junction must be sufficiently strong

(∆EF,p−n > ηC∆Ee,g), without inhibiting generation and lowering γ̇∗
e−p. Additionally, the

hydrodynamic model predicts that large γ̇∗
e−p increases the efficiency significantly compared

to the linear relationship predicted by the analytic model.
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When these requirements are met, and for ZpV ≥ 0.7, the pV cell is shown to significantly

outperform a TE cell with ZTET = 1 (Figs. 5, 6, and 9). In Part II20 of this study, the

bandgap of graphite is tuned through partial hydrogenation to resonate with its optical

phonon modes in an effort to develop a pV material. However, hydrogenation degrades

the electron-phonon coupling and reduces the γ̇∗
e−p below that required for an efficient pV.

So, while finding and tuning a high ZpV material remains challenging, Part I of this study

shows the benefits of success, and Part II develops the methods for tuning and evaluating a

material candidate.
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Appendix A: Hydrodynamic Model Simulations

The hydrodynamic model takes the first three moments of the BTE to simulate the

electron transport32. These moments conserve the carrier density (ni), momentum density

(ji), and kinetic energy density (wi) for electron (i = e) and hole (i = h), i.e.,

∇ · ji = ecṅi,

ji = µi(±kBTi∇ni + kBni∇Ti − ecni∇ϕe),

∇ ·wi = −ji · ∇ϕ−
∑

ẇi, (A1)

where Ti and µi are the temperature and mobility of carrier i. These equations track the

drift and diffusion of electron and hole populations as well as the diffusion and advection

of kinetic energy, and ṅi and ẇi quantify the addition of carriers and kinetic energy to

population i. The kinetic energy flux is

wi = ∇
3

2
kBTiji − κi∇Ti, (A2)
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where the thermal conductivity is

κi =
π2

3

k2
B

ec
Tiµini, (A3)

from the Weidemann Franz law.

Here, the electron-phonon interaction drives both ṅi and ẇi. The generation model follows

the band-to-band models37 discussed previously, i.e.,

ṅi = −ae−p[nenh − ni(Tp,O)
2], (A4)

where ae−p is the generation coefficient associated with the electron-phonon coefficient and

ni(Tp,O) is the intrinsic carrier concentration at Tp,O. The kinetic energy imparted to the

electron (and hole) population per generation event is, on average, (Ep,O − ∆Ee,g)/2. The

corresponding energy transfer ṡG is

ẇG =
Ep,O −∆Ee,g

2
ṅe. (A5)

Additionally, the electron kinetic energy density (3/2kBTene) equilibrates with the optical

phonon temperature. The corresponding energy transfer is

ẇi−p,O =
3

2
kB

Ti − Tp,O

τi−p,E

ni, (A6)

where τi−p,E is the electron phonon energy relaxation time32.

Furthermore, the Poisson equation ensures a self-consistent simulation, i.e.,

∇ · ǫeǫ◦∇ϕ = −ec(ne + nD − nh − nA), (A7)

where ǫeǫ◦ is the electrical permittivity of the material and nD and nA are the doping

densities for electron donor and acceptor atoms.

The optical (i = p,O) and acoustic phonon (i = p,A) populations are modeled using the

conduction equation, i.e.,

−∇ · ∇κiTi =
∑

ṡi−j, (A8)

where the optical phonon population gains energy from an external source (ṡp,O−in) and

loses energy for each generation event (ṡG), from heating electron (and hole) (ṡp,O−e), and
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downconversion (ṡp,O−p,A), which the acoustic phonon population absorbs, i.e.,

ṡG = Ep,Oṅe,

ṡp,O−i = −ẇi−p,O,

ṡp,O−p,A = Ep,Oap−p[f
◦
p,O(Tp,A)

2 − f ◦
p,O(Tp,O)

2],

ṡp,A−p,O = −ṡp,O−p,A, (A9)

where f ◦
p,O(T ) is the equilibrium optical phonon occupancy at temperature T , and ap−p

is the downconversion coefficient associated with the anharmonic coupling strength. Note

that Eq. (A9) assumes that the acoustic phonon populations (f ′◦
p,A(T ) and f ′′◦

p,A(T )) are

non-degenerate and classical statistics are appropriate, i.e.,

f ◦
p,O(T ) = exp(−

Ep,O

kBT
)

= f ′◦
p,A(T )f

′′◦
p,A(T ). (A10)

The hydrodynamic, Poisson, and phonon equations form a set of seven closed balance

equations. Note that the closure involves the following assumptions: the kinetic energy

is primarily thermal (w = 3/2kBT ), populations are non-degenerate, there is equilibrium

within but not between populations e, h, p,O, and p,A, and the temperature tensor is

diagonal. If the material is anisotropic care must be taken with the transport coefficients

and the assumption of a diagonal temperature tensor; however, the transport has negligible

effect on a sufficiently thin pV cell.

1. Boundary Conditions

The optical phonon is excited to a constant temperature in the active region, and it is

not allowed to escape at the contacts (∇Tp,O = 0). (This assumes that the contact material

has no optical phonon mode of comparable energy.) All other temperatures are maintained

at the contact temperature Tc. An Ohmic contact is simulated for the both carriers when

surface recombination occurs (w/SR). Otherwise, the no minority current is allowed to enter

the contact and only the majority carrier has its density maintained by the Ohmic contact
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(w/o SR), i.e.,

All Simulations:

ecϕ(0) = EF(0), ecϕ(L) = EF(L)−∆ϕa,

∇Tp,O(0, L) = 0, Tp,A(0, L) = Te(0, L) = Th(0, L) = Tc,

nh(0) = ne,v exp[
Ee,v − EF(0)

kBTc

], ne(L) = ne,c exp[
EF(L)− Ee,c

kBTc

].

w/SR:

ne(0) = ne,c exp[
EF(0)−Ee,c

kBTc
], nh(L) = ne,v exp[

Ee,v − EF(L)

kBTc
].

w/o SR:

je(0) = 0, i.e., jh(L) = 0, i.e.,

∇Te(0) = 0, ∇Th(L) = 0,

ne(0) =
kBTe

ec

∇ne

∇ϕe
, ∇nh(L) = −

kBTh

ec

∇nh

∇ϕe
, (A11)

where EF is the Fermi energy and ne,c and ne,v are the effective density of states for conduc-

tion and valence bands.

2. Simulations

The simulations are performed on a 1-D mesh with 0.25 nm spacing between control

volumes. The equations are coupled and solved using the damped-inexact Newton method.

Calculations are considered converged when the change in current changes by less than

10−6% over 1000 iterations. Convergence is reached within minutes across a wide range

parameters.

Appendix B: Surface Recombination Effects

The negative effects outlined in Section VIB are shown in Fig. B.1. When the generation

occurs near the contact, a significant number of minority carriers accumulate in the p-region,

as shown in Fig. B.1(a). When these minority carriers are prevented from entering the

contact and recombining, they diffuse towards the junction, which separates them from the

majority carrier, and then the opposing contact collects them. Conversely, when SR occurs,
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FIG. B.1. (a) Minority carrier density and (b) electron and hole currents in a pV cell with and

without surface recombination (SR) for variations in the active volume and applied potential. With

SR, carriers generated near the contact are lost instead of being collected. Moreover, the applied

voltage drives minority carriers into the contacts, instead of reducing the net generation, reducing

pV performance.

these minority carriers diffuse into the adjacent contact as shown in Fig. B.1(a). Indeed,

for La = L, wherein a the large minority density gradient develops at the contact (x = 0).

This creates a large adverse current near the contact.

While restricting the active region to the junction minimizes this effect, an applied poten-

tial drives a substantial number of minority carriers into the contact regardless of La/L,as

shown in Fig. B.1(a). Thus, an efficient pV cell must utilize window layers on both contacts

in order to prevent surface recombination.
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