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A method is described for calculating the energetics of planar defects in alloys based on the
special-quasirandom-structure (SQS) approach. We examine the accuracy of the approach employ-
ing atomistic calculations based on a classical embedded-atom-method (EAM) interatomic potential
for hexagonal close packed (hcp) alloys, for which benchmark results can be obtained by direct con-
figurational averaging. The results of these calculations demonstrate that the SQS-based approach
can be employed to derive the concentration dependence of the energies of twin boundaries, unstable
stacking faults and surfaces to within an accuracy of approximately 10 %. The SQS considered in
this study contain up to 72 atoms and hence are small enough to be considered in first-principles
density-functional-theory (DFT) based calculations. The application of the SQS-based approach
in direct DFT-based calculations is demonstrated in a study of the concentration dependence of
interfacial energies for {112̄1} twins in hcp Ti-Al alloys.

I. INTRODUCTION

Dislocation slip and deformation twinning are the most
commonly observed mechanisms for plastic deformation
in metals and alloys. Which of these mechanisms domi-
nates for a given material and loading condition is gen-
erally governed by the ease of nucleation of the relevant
defects, and their growth and propagation. These pro-
cesses are in turn strongly influenced by the energetics
of planar defects, such as generalized stacking faults and
twin boundaries. The competition between plastic de-
formation and fracture, underlying the intrinsic ductility
of a material, is thus commonly investigated through the
consideration of the relative values of the energies for rel-
evant planar faults and the free surfaces formed by crack
propagation1–4.

For example, in the theory of Thomson and Rice2,5,
larger values of the ratio of the surface energy (γs) to
the unstable stacking fault energy (γUSF) are an indica-
tor of increasingly ductile behavior, as γUSF corresponds
to the barrier for dislocation slip at the crack tip, while
γs measures the increase in surface energy due to crack
growth. This theory has been used in the literature to
study the ductility in metals from first principles (e.g.6,7).
Similarly, for hcp metals larger values of the ratio γs/γt
between surface and twin-boundary (γt) energies have
been shown to correlate with higher ductility under con-
ditions where twinning at the crack tip is the relevant
mechanism for plastic deformation8. For body centered
cubic (bcc) and face centered cubic (fcc) materials, sim-
ilar measures of twinnability have been developed and
employed, which are based on (unstable) stacking fault
energies and unstable twin energies7,9–12.

In applications of computational modeling to guide al-
loy design, methods for calculating the effect of composi-
tion on the planar fault energies defined above are useful
to understand whether the introduction of specific solute
species will tend to increase or decrease the ductility and
strength of a given material. However, the calculation of

planar defect energies in alloys is considerably more dif-
ficult than for elemental metals or ordered intermetallic
compounds, due to the presence of configurational sub-
stitutional disorder, leading to a lack of translational pe-
riodicity. At present, two main approaches have been in-
troduced for computing the composition dependence of
planar defect energies in alloy solid solutions from first-
principles.

In the first, stacking fault energies in alloys have
been computed within the axial next-nearest-neighbor
Ising (ANNNI) lattice-model formalism13–26. In this ap-
proach, the energies of fcc, hcp and double-hcp struc-
tures are computed to derive pairwise interactions that
parametrize the change in energy associated with differ-
ent stacking sequences of close-packed planes. Once de-
rived from bulk energy calculations, these interactions
are used to predict the excess energy of an isolated
stacking fault. This method has been used for alloys,
in which case the special-quasirandom-structure (SQS)
approach27–29 has been used to model the energetics
of compositionally disordered fcc, hcp and double hcp
structures27–31. While this approach provides a powerful
framework for computing the composition dependence of
stable stacking fault energies, it is not possible to apply
the method to calculations of unstable stacking fault en-
ergies, defined as the energy maximum in the generalized-
stacking-fault (GSF) surface. Further, it is not apparent
how to generalize the approach in the consideration of the
energies of surfaces, or the large variety of twin bound-
aries observed in the deformation of hcp metals.

Another approach that has been employed to compute
planar defect energies in alloys is based on the use of the
coherent potential approximation (CPA)32–34. In appli-
cations of the CPA to the calculation of energies of bulk
alloys, a disordered substitutional arrangement of atoms
over the sites of a parent lattice is modeled using a sin-
gle effective atomic species defined to have the average
electron-scattering properties of the alloy. This proce-
dure restores the translational symmetry of the under-
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lying parent lattice, facilitating direct DFT calculations
of bulk alloy energetics. The CPA approach has been
generalized to consider layered structures, to enable cal-
culations of stacking fault (stable and generalized) and
surface energies32,35–43. At present, however, the imple-
mentations of the approach do not allow for the accurate
treatment of atomic displacements and the generalization
of the method to general low-symmetry twin boundaries,
such as those found in hcp metals, for which significant
atomic shuffles may arise, has not been demonstrated to
the best of our knowledge.

In the present work we describe an approach for cal-
culating the energies of planar defects in disordered sub-
stitutional alloys, based on a generalization of the SQS
method27,28 developed to compute the electronic struc-
ture and energetics of bulk substitutional alloys. Com-
pared to previously employed methods, the present ap-
proach offers the advantage that it readily enables con-
sideration of arbitrary crystal structures; for example,
most of the previous work on this topic has considered
fcc materials, while in the present work we demonstrate
applications to lower-symmetry hcp structures. It should
be noted that the intended application of the approach
outlined in this work is to compute planar fault ener-
gies in solid solutions relevant to deformation processes
at low temperatures. Hence, we do not consider the ef-
fect of configurational rearrangements and segregation on
planar-fault energetics. In other words, the approach is
intended to be applied to situations where planar faults
form, e.g., due to glide of dislocations, on time scales
for which the the atomic configuration can be considered
“frozen in” due to the slow rate of atomic interdiffusion.
Also, we note that the SQS-based approach presented
here is demonstrated for non-spin-polarized binary solid
solutions; extensions of the approach to the consideration
of multicomponent alloys and/or spin degrees of freedom
are beyond the scope of the present work.

The approach presented in this work was demon-
strated recently in applications to the calculation of twin-
boundary and surface energies in hcp Re-based alloys44.
In this paper we describe a refinement of the approach,
employing planar averaging, and provide details of the
SQS structures used in the method. Further, we demon-
strate the application of this approach also in the study of
unstable stacking fault and surface energies. We present
a test of the accuracy of the approach, through com-
parisons with large-supercell benchmark results derived
employing a classical embedded-atom-method (EAM) in-
teratomic potential model for Ti-Al alloys45. Finally, an
application of the SQS-based method in DFT calcula-
tions of the dependence of twin boundary energies on Al
content in Ti-Al hcp alloys is demonstrated.

II. METHODOLOGY

In this section we describe details associated with the
calculation of planar defect energies in alloys, employing

supercell models in conjunction with the SQS approach
for configurational averaging. The focus is on hcp alloys,
considering three types of planar defects that are rel-
evant to their mechanical properties: twin boundaries,
unstable stacking faults and free surfaces. Specifically,
we consider the {112̄1} twin boundary, which is observed
in the deformation microstructures of many hcp metals
and alloys such as Ti, Re, Mg and Be8,46–48. Further
we consider calculations of the generalized stacking fault
(GSF) surface corresponding the common {11̄00} 〈112̄0〉
slip system in hcp metals. Finally, the energies of {11̄00}
free surfaces are considered. We begin by describing the
supercells and planar averaging employed for the model-
ing of these planar defects and the calculation of their en-
ergies. A discussion of the generation of the SQS models
is then presented, followed by the computational details
for the present studies.

A. Supercell Geometries

1. Twin Boundaries

The {112̄1} twin boundary in the hcp structure can
be described by 4 twinning elements K1 = (112̄1), K2 =
(0001), η1 = [1̄1̄26] and η2 = [112̄0].49,50 These twinning
elements denote the twinning plane, conjugate twinning
plane, twinning direction and conjugate twinning direc-
tion, respectively. The amount of twinning shear for this
twin is S = γ−1, where γ = c/a, i.e. the axial ratio of
the c and a lattice parameters. Since hcp metals have
2 atoms in the motif corresponding to a hexagonal Bra-
vais lattice-point, in general twins cannot be formed by
the application of a homogeneous twinning shear alone,
and additional atomic shuffles are required49,51. For the
{112̄1} twin boundary, the required atomic shuffles on
both sides of the twin boundary plane are given by the
vector τ = ±0.5 [11̄00]51.

In this work, the {112̄1} twin boundary is constructed
directly from an appropriate bulk cell as follows. First,
as illustrated in Fig. 1 (a) the bulk cell is constructed
with lattice vectors parallel to a = [101̄2], b = [101̄0]
and c = [1̄100]. The dimension along b is 8 times the
conventional bulk hcp lattice constant a. This dimen-
sion is chosen such that the bulk cell can be employed
to build twin boundary geometries, with sufficient spac-
ing between the twin and its periodic images to minimize
spurious interactions. The required bulk cell size is es-
tablished by convergence studies, which show for the sys-
tems considered in this work that beyond 6 planes from
the twin boundary, the solute formation energies are es-
sentially converged to the bulk value. This leads to a
bulk cell consisting of 64 atoms. The distance separat-
ing the two twins in the periodic cell that is required to
achieve converged interfacial energies is expected to be
system dependent, such that the dimensions of the cells
employed in this work may not transfer directly to other
alloy compositions. For each system, convergence testing
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should be undertaken.

In the second step, the twin boundary cell is formed
by i) applying a twinning shear S to all atoms located
on one side of the twin plane in the middle of the super-
cell (i.e., half way along the periodic length along the b
direction), followed by ii) an atomic shuffle on one side
of the twin plane, as described above. This results in
a twinned cell with a twin plane in the middle and an-
other on the edge of the cell, as illustrated in Fig. 1 (b).
Note that there exists a direct mapping between atoms
in the bulk and twinned cell, which is important for the
application of the SQS approach. Further note that sev-
eral possible independent locations exist in the bulk cell
where the twin plane can be inserted. In Fig. 1, the twin
is placed in the center of the cell, but this location is ar-
bitrary and for studying planar defects in alloys, we have
found improved accuracy when results are averaged over
all possible locations of the planar interface, as described
below.

For calculations of the twin boundary energy, the ini-
tial and final geometries shown schematically in Figs. 1
(a) and (b), respectively, are calculated and γt is ex-
tracted from the energy difference divided by the twin
boundary surface area, taking into account the presence
of two twin boundaries per periodic supercell. In the en-
ergy calculations for the twinned supercells ionic relax-
ations are performed, and the dimension perpendicular
to the twin plane is relaxed, while holding the periodic
distances in the twin plane (i.e., along a and c) fixed at
the values dictated by the bulk hcp supercell.

(a) (b)

FIG. 1: Example supercell geometry for (a) a bulk alloy
with an appropriate orientation for defect calculations
and (b) a {112̄1} twin boundary cell, formed from the

bulk after an appropriate combination of shear and
shuffle. This figure shows a projection along the

[1̄100]-direction. The twin-plane is inserted in the
center of the bulk cell and is also indicated.

2. Unstable Stacking Faults and Surfaces

Supercells for the calculation of the {11̄00} 〈112̄0〉 GSF
energy, and the {11̄00} surface energy are constructed
by choosing lattice vectors in the directions a = [112̄0],
b = [0001] and c = [11̄00], as illustrated in Fig. 2 (a).
As above, the cells contain atomic configurations derived
from the SQS algorithm described in the next section.
When performing calculations of the GSF and surface
energies, two planes are picked which will be (i) rigidly
shifted along the a = [112̄0] direction in order to cre-
ate a stacking fault, or (ii) separated by a vacuum layer
in order to create two free surfaces. All possible choices
for these neighboring planes are considered and the pla-
nar energies are derived by averaging results over these
different sets of planes.

Considering first the calculation of the GSF energy, the
bulk supercell is set up initially to be periodic along all
three directions. The size of the original bulk supercell
is three times the bulk hcp lattice constant (a) along a,
two times the bulk hcp lattice parameter (c) along b, and
there are 6 layers of prismatic planes (for each plane there
are two sub-layers) along c, resulting in a total number
of 72 atoms. To calculate the GSF energy and γUSF in
particular, all atoms in the half supercell below a given
(11̄00) plane in the middle of the supercell are rigidly
shifted along the [112̄0] direction with the slip distances
set as 0, 0.35, 0.45, 0.5 and 0.6 a, respectively. These
shifts are accommodated by distorting the unit cell to
have an angle different from 90 degrees between the a
and c directions, so there is only one stack fault inter-
face in this periodic supercell, as illustrated in Fig. 2
(b). For each slip vector, all the atoms in the supercells
are relaxed along the c direction but fixed along the a
and b directions. The supercell size along the c = [11̄00]
direction is also relaxed to remove the normal stress per-
pendicular to the (11̄00) plane. The GSF energy surface
is plotted based on the energy increase at these slip dis-
tances relative to the undeformed structure, and γUSF is
derived by interpolating the maximum point on the GSF
curve.

To compute the {11̄00} surface energy γs, we start by
calculating the energy of the bulk supercell illustrated
in Fig. 2 (a). This reference energy is computed with
periodic boundaries in all three directions, the same as
the reference supercells for GSF calculations. The en-
ergy of this periodic bulk supercell reference energy is
then compared to the energy obtained for the supercell
illustrated in Fig. 2 (c), where a vacuum layer of 15 Å is
introduced in the middle of the relaxed supercell, giving
rise to two {11̄00} surface planes. From the energy differ-
ence of these two supercells, divided by twice the cross-
sectional area parallel to the surface planes, the value of
γs is derived. In the calculations of the energies of the
bulk and surface supercells the positions of all atoms are
relaxed.
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(a) (b) (c)

FIG. 2: Supercell geometry for (a) a bulk cell with an
appropriate orientation for defect calculations (b)

calculation of the generalized stacking-fault energy and
(c) calculation of free-surface energies. These figures

show a projection along the [0001]-direction.

B. SQS Generation

The SQS structures were developed for each of the bulk
supercells defined in the previous subsection at differ-
ent compositions starting at approximately 3 at.% so-
lute, up to a maximum concentration of 25 at.% solute,
with increments of approximately 3 at.%. A genetic al-
gorithm (GA) was used for optimizing the SQS configu-
ration, as described below. GA’s have been employed in
the materials-science community in the study of different
topics such as crystal-structure prediction52–54 and in the
construction of cluster expansions55,56.

We illustrate the use of a GA for the optimization of
SQS with an example. Consider a hypothetical A-B bi-
nary alloy consisting of 16 atoms, at composition A12B4.
The occupations of A and B atoms across the atomic
sites are encoded as a binary string, for example as fol-
lows: [0010100000100001]. Each entry in the string cor-
responds to a given atomic site and can be occupied by
either an A-atom (represented by 0’s) or a B-atom (rep-
resented by 1’s). The ordering of the different atomic
sites in the string is irrelevant, as long as it is consistent
throughout the optimization process. The example alloy
has B-atoms located at atomic sites with indices 3, 5, 11
and 16 and A-atoms otherwise.

The mating process entails combining pairs of par-
ents (alloys) into offspring by means of a process called
crossover57,58. This process can be illustrated as fol-
lows. Consider again the alloy configuration introduced
above (referred to as P1) but now also another alloy con-
figuration referred to as P2, given by the binary string
[1000010000000011]. Crossover is performed by picking
a random number N between 1 and 15, splitting the bi-
nary strings of the parents at this number and cross-
combining them into two children. For example, con-

sider the case N = 9. We obtain 4 strings after split-

ting the parents, S1, S2, S3, S4:

001010000︸ ︷︷ ︸
S1

0100001︸ ︷︷ ︸
S2


and

100001000︸ ︷︷ ︸
S3

0000011︸ ︷︷ ︸
S4

. The crossover process com-

bines these parents P1 and P2 into two children, P3 and
P4. Child P3 consists of S1 and S4: [0010100000000011]
and P4 consists of S2 and S3: [1000010000100001]. In
order to perform this process at constant composition, a
special type of crossover has to be used that preserves
the number of 0’s and 1’s in the binary string. This type
of crossover, called edge crossover59, is used in this work,
and is slightly more complex than the example described
above.

Mutation refers to introducing “defects” in the mating
process and is designed to escape from local minima that
may occur during the optimization process (similar to the
ability of simulated-annealing optimization to allow for
energetically unfavorable moves). For the optimization
of SQS, mutation is implemented by allowing for a small
probability to swap a 0 and a 1 in each child in each
iteration.

The optimization procedure is initiated by generating
an initial population of 800 randomly generated config-
urations at a given composition. The selection method
used is roulette wheel selection, in which selection proba-
bility for mating is proportional to the fitness score. Fur-
ther, a 0.5 % probability of mutation is allowed and the
algorithm is run for 1000 generations. In every itera-
tion, the pairs of “fittest” (most random) alloys are al-
lowed to produce offspring via crossover, while allowing
for the possibility of mutation to take place. In prac-
tice, we found that after only about 100 generations the
resulting optimum SQS had converged to the optimum
near-random atomic correlation functions.

The objective function to be minimized for SQS op-
timization is the Euclidean difference norm between the
vector describing the atomic correlation functions of a
random solid solution, xrandom and the vector describ-
ing the correlation functions of the finite-sized super-
cell xscell. The fitness of any given configuration is in-
versely proportional to this Euclidean difference norm∥∥xrandom − xscell

∥∥. In this work, 6 atomic correlation
functions are considered for pairs, and 3 for triplets. The
6 pair terms are obtained by selecting all pairs smaller
than a distance r such that r < 1.8a, where a is the con-
ventional lattice constant (nearest neighbor distance) for
hcp in the basal plane. Further note that the relaxed
hcp cell of Ti obeys c ≈ 1.585a (where c is the conven-
tional lattice constant perpendicular to the basal plane),
so that the nearest-neighbor atomic pairs perpendicular
to the basal plane are included in the analysis. In addi-
tion, all triplets were selected that contain no pairs longer
than a, leading to a total of 3 triplets. The point clusters
are imposed by the desired composition for the SQS. The
atomic correlation functions for both the random alloys
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and the trial configurations are calculated using the alloy
theoretic automated toolkit (ATAT)60,61 and fed to the
GA during the iterative optimization process. In defin-
ing the fitness function, we explored different weighing
factors for the different pair and triplet clusters, e.g., giv-
ing higher weight in the difference norm to shorter pairs
and/or to clusters with higher multiplicities. Several dif-
ferent sets of weights were explored and even though dif-
ferent SQS were obtained for each, we found minimal
influence on the resulting planar defect energies.

For an optimized bulk SQS such as shown in Fig. 3,
there are several choices for where the planar faults can
be inserted. As an explicit example, Fig. 3 shows 8 possi-
ble locations for a twin-boundary plane within a 64-atom
SQS. A single SQS cell contains (after the deformation
process illustrated in Fig. 1 (a) and (b)) both a twin
boundary at the center (location 5 in Fig. 3) as well as
another at the periodic boundary at location 1. Hence,
all possible twin planes can be considered with a sin-
gle bulk SQS configuration that is deformed according
to 4 separate shear modes. The local atomic environ-
ment and solute-concentration vary along the b-direction
and hence, the twin-boundary energy will vary depend-
ing on the location of the twin plane in the supercell.
As discussed above, planar defect energies are calculated
by inserting the planar defect into different locations in
a single SQS and taking an average over those individ-
ual configurations. For the calculation of twin boundary
energies, periodic boundary conditions are employed and
hence, the 8 possible twin planes (Fig. 3) are covered
with only 4 distinct cells. Consequently, we do not ob-
tain twin boundary energies for each of the 8 twin planes
individually, but rather the sum of pairs. For example, if
the bulk cell in Fig. 3 is sheared into a twin cell (such as
illustrated in Fig. 1), the sum of twin boundary energies
at locations 5 and 1 is obtained. Other configurations are
obtained by translating all atoms in the bulk cell in 3 by
one unit along the b lattice vector. As such, all combina-
tions of twin planes considered are 1 & 5, 2 & 6, 3 & 7 and
4 & 8, yielding a total of 4 calculations on twinned cells
and a single calculation on the reference bulk cell. The
averaging procedure simply entails taking the mean of all
these computed planar defect energies. Similarly, for the
GSF and surfaces, there are six independent choices for
the location of the surfaces and planar defect energies are
computed by averaging over each.

C. Computational Methods

1. Embedded-Atom-Method Calculations

The purpose of the computations based on classical
embedded-atom-method (EAM) potentials performed in
this work is to enable a comparison of planar defect
energies obtained from the relatively small SQS super-
cells, with benchmark results obtained by direct config-
urational averaging over much larger supercells having

FIG. 3: Illustration of an SQS and configurational
averaging-procedure used to compute the {112̄1} TB

energy. For the TB-calculations, a configurational
average over 8 configurations within a single SQS-cell is

employed. This figure shows a projection along the
[11̄00]-direction.

a size that ensures minimal effects of periodic bound-
ary conditions and accurate configurational averaging.
These large cells are beyond the size that can be mod-
eled directly by DFT, but their energies can be read-
ily calculated using EAM potentials. Specifically, due to
the small computational cost of performing EAM energy
calculations, we consider as our benchmark results ob-
tained from supercell models containing up to a million
(1M) atoms in total, with the configuration of A and B
atoms generated randomly for a given fixed overall alloy
composition. These very large 1M cells are assumed to
provide adequate configurational averaging to yield con-
verged planar-defect energies for random solid solutions.
As in the small SQS models, the planar defect energy
is computed by subtracting the energy of the bulk cell
from the energy of the corresponding cell containing the
desired twin, surface or unstable stacking-fault defect.
We note that, due to the large size of the 1M atom su-
percells, planar averaging, as is done for the smaller SQS
cells, was not required and all benchmark values are de-
rived by considering a single location for the interface in
the supercell. This procedure can be repeated for dif-
ferent solute compositions such that the concentration
dependence of the defect energies for a random substi-
tutional alloy can be computed. The results computed
as such from the 1M cells form a benchmark for the de-
fect energies in disordered substitutional alloys, and the
aim is to assess the accuracy of the SQS models in repro-
ducing these values. In all of the EAM calculations we
consider the defect energies for hcp-based Ti-Al alloys,
modeled with the potential of Zope and Mishin45.



6

2. Density Functional Theory Calculations

In addition to the EAM modeling described in the
previous section, we also demonstrate the application of
the SQS methodology in DFT-based computations of the
concentration dependence of {112̄1} twin boundaries in
hcp-based Ti-Al alloys. These DFT calculations were
performed using the Vienna Ab Initio Simulation Pack-
age (VASP)62,63. The VASP calculations made use of the
generalized-gradient-approximation exchange-correlation
energy due to Perdew-Burke-Ernzerhof generalized gradi-
ent functional (PBE-GGA)64. All calculations made use
of the projector augmented wave (PAW) formalism65,66,
in which the potentials for Ti (Al) treat 4s and 3d-
states (3s and 3p states) as valence. An energy cutoff
for the plane waves of 600 eV was used, and smearing
of the electronic occupancies was performed using the
Methfessel-Paxton scheme67, with a broadening of 0.05
eV. Integrations in the Brillouin zone were carried out
using Monkhorst-Pack k-point sampling68 with a density
chosen such that the number of k-points in the first Bril-
louin zone times the number of atoms in the cell equals
approximately 25,000.

III. RESULTS AND DISCUSSION

A. Embedded Atom Method Results

1. Twin Boundary Energies

In Fig. 4, the variation of the {112̄1} twin boundary
energy is plotted as a function of the atomic concentra-
tion of Al. The (red) open circle symbols are the bench-
mark results, labeled “Random-1M,” obtained from a su-
percell containing approximately a million atoms, with
randomly generated atomic configurations. The results
labeled “SQS-64” were obtained by averaging over the
different possible positions of the twin planes in SQS 64-
atom supercells, generated as described in the previous
section, and are plotted with (blue) filled squares. The
error bars for the SQS results denote one standard de-
viation in the values obtained for the different choices
of the TB plane position, and provide a measure of the
width of the distribution in the individual planar defect
energies. In addition, the individual SQS planar fault
energies, corresponding to the different choices for the
twin-boundary plane, are shown in Fig. 4 and labeled
“SQS raw data”.

It can be seen from Fig. 4 that the SQS and bench-
mark results at each composition agree to within approxi-
mately 10 %. To further quantify the degree of agreement
between the SQS and benchmark results, we consider the
composition dependence of the twin-boundary energies,
as characterized by a dimensionless parameter, defined
as ηγ = (∂γ/∂x)/γ0, where γ represents the planar de-
fect energy corresponding to the atomic fraction of Al in

FIG. 4: {112̄1} twin boundary energies (γt) in Ti1−xAlx
alloys calculated using EAM potentials with two

different supercell models: the benchmark Random-1M
supercell, and the SQS-64 supercell. For the 64-atom

SQS supercell, the results are an average over 8 planes
in one SQS, and the error bars are standard deviations.

The “SQS raw” data points at each composition
correspond to the individual values of the planar fault
energies for different positions of the twin boundary.

The line through the benchmark Random-1M results is
a guide to the eye.

the Ti1−xAlx binary alloy, and γ0 is the defect energy for
the pure-Ti reference state. The results obtained for ηγ ,
from a linear least squares fit (forced through the pure-Ti
value) to the data sets in Fig. 4 are listed in Table I. The
SQS-64 supercells yield a value for ηγ that is about 10
% larger in magnitude than the corresponding value for
the random-1M cells. Overall, the results in this section
suggest that for atomic fractions of solute up to approx-
imately x = 0.25, estimates of the twin boundary energy
at each composition converged to within about 10 % (10
mJ/m2) can be derived by averaging results for 8 planes
of a single 64-atom SQS-supercell configuration.

It can be seen from Fig. 4 that the raw twin boundary
energies for each composition broadly follow the over-
all downward trend with increasing solute concentration.
However there are several outliers, in particular near 9 at.
% solute, which underscores the importance of the aver-
aging procedure proposed in this work in order to obtain
reliable statistics for the random alloy. For the {112̄1}
twin boundary, convergence testing of the composition
dependence of the fault energy is performed with respect
to the size of the SQS. By consecutively doubling both
dimensions of the cell in the twin plane (with respect to
the 64-atom cell), we obtain cells consisting of 256, 576
and 1024 atoms, respectively. Table I shows the composi-
tion dependence of the twin energy obtained with the 64-
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SQS, 256-SQS, 576-SQS and 1024-SQS supercells. Based
on the results in Table I, the SQS-64 and SQS-256 both
yield results within 10 % of the benchmark Random-1M
values. Further, it can be seen that increasing the size of
the SQS leads to gradual convergence of the results to-
wards the benchmark Random-1M values. In particular,
values obtained with the 576-atom and 1024-atom SQS
yield comparable agreement (within approximately 1 %).

It is noted that atomic relaxations have profound ef-
fect on the calculated {112̄1} twin-boundary energy. The
as-constructed {112̄1} twin boundary has several pairs of
atoms bond lengths contracted by approximately 25 %,
relatively to bulk hcp. This is heavily penalized by the
repulsive energy term in the interatomic potentials, and
leads to high unrelaxed planar fault energies. Allowing
for atomic relaxations drives down the planar fault en-
ergy to lower values: in the case of elemental Ti from 650
mJ/m2 (unrelaxed) to 164 mJ/m2 (relaxed), amounting
to a reduction of 75 %. For the SQS Ti-Al alloys, similar
or slightly larger effects caused by the atomic relaxations
are observed, ranging from approximately 80 to 90 %,
depending on the precise composition and SQS configu-
ration. We believe this slightly larger effect of relaxations
in the alloys can be attributed to atomic size mismatch:
Al-atoms are smaller than Ti-atoms and hence, the Ti-
atoms are less constrained and can more freely relax into
their lower energy configurations in the alloy.

2. Unstable Stacking-Fault Energies

In Fig. 5 the unstable stacking-fault energy γUSF re-
sults are plotted as a function of solute concentration,
based on calculations employing the 72-atom SQS su-
percells illustrated in Fig. 2 (a)-(b), and benchmark
Random-1M supercells. As in the previous section, the
error bars on the SQS results were obtained from the
standard deviation in the six values corresponding to dif-
ferent choices for the prismatic plane defects. In addition,
the individual SQS USF energies, corresponding to the
different choices for the stacking-fault plane, are shown
in Fig. 5 and labeled “SQS raw data”.

A roughly linear variation of γUSF with Al concentra-
tion is obtained for the benchmark Random-1M super-
cells, up to the concentration of x = 0.25 considered in
the calculations. Compared to these benchmark values,
those obtained with the smaller 72-atom SQS supercell
show significantly more scatter. However, for all com-
positions the SQS-72 supercells produce values for γUSF

that agree to within approximately 10 mJ/m2 (≈ 2.5 %)
with the benchmark values. The concentration depen-
dence of γUSF is slightly underestimated relative to the
benchmark results, by 5.3 %, with the SQS-72 supercells,
as shown in Table I. Further, the raw SQS results obey
the upward trend in the defect unstable stacking fault
energy, although several data points show large devia-
tions from the average value, by up to approximately 50
mJ/m2. The averaging procedure mitigates this effect

FIG. 5: Unstable stacking fault energies in Ti1−xAlx
alloys calculated using EAM potentials with two

different supercell models: the benchmark Random-1M
supercell, and the SQS-72 supercell. For the 72-atom

SQS supercell, the results are an average over 6 planes
in one SQS, and the error bars are standard deviations.

The “SQS raw” data points at each composition
correspond to the individual values of the unstable
stacking fault energies for different positions of the

stacking-fault plane. The line through the benchmark
Random-1M results is a guide to the eye.

and leads to a value of the USF energy that shows good
agreement with the benchmark results.

3. Surface Energies

In Fig. 6 results for the calculated {11̄00} surface en-
ergy (γs) are plotted as a function of Al concentration.
As in Fig. 5 results are plotted for the benchmark super-
cells, and for the 72-atom SQS supercells. The average
values and error bars for the SQS cells have again been
obtained from an average over 6 planes. The averaged
values obtained from the SQS-72 supercells show agree-
ment with the benchmark results to within 10 mJ/m2,
or less than 1 % of the magnitude of γs. As for the twin
boundary and unstable stacking fault energies, the indi-
vidual “SQS raw data” surface energies, corresponding
to the different choices for the surface plane in the SQS
structure, follow the overall composition trend, but av-
eraging is required to obtain good agreement with the
benchmark results.

To compare the predictions of the 72-atom supercells
for the concentration dependence of γs, we fit each data
set in Fig. 6 with a parabola, to account for the non-
linear behavior that can clearly be observed in the fig-
ure. The composition dependence, as characterized by
the ηγ parameter, is evaluated for two compositions and
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TABLE I: Concentration dependence of planar defect energies in hcp Ti1−xAlx solid solutions, ηγ = (∂γ/∂x)/γ0, as
calculated with EAM interatomic potentials, using benchmark Random-1M and SQS-72/64 supercell models. For
the twin boundary, 64-atom SQS supercells are employed, and for the surface and stacking fault energies, 72-atom
SQS supercells are employed. For comparison, the results for the twin boundary, using several larger SQS are also

shown. The Al atomic fraction is denoted by x for the {11̄00} surface.

Planar defect EAM (Random-1M) EAM (SQS)
{112̄1} Twin (64-atom SQS) -1.56 -1.43
{112̄1} Twin (256-atom SQS) -1.56 -1.47
{112̄1} Twin (576-atom SQS) -1.56 -1.58
{112̄1} Twin (1024-atom SQS) -1.56 -1.57
{11̄00} 〈112̄0〉 USF 0.57 0.55
{11̄00} Surface x ≈ 0.08 -0.12 -0.10
{11̄00} Surface x ≈ 0.195 -0.19 -0.22

FIG. 6: {11̄00} surface energies in Ti1−xAlx alloys
calculated using EAM potentials with two different

supercell models: the benchmark Random-1M supercell,
and the SQS-72 supercell. For the 72-atom SQS

supercell, the results are an average over 6 planes in one
SQS, and the error bars are standard deviations. The

“SQS raw” data points at each composition correspond
to the individual values of the surface energies for
different positions of the surface plane. The line

through the benchmark Random-1M results is a guide
to the eye.

the Random-1M and SQS-72 values are compared in Ta-
ble I. The agreement is seen to be at the level of 15-17
% at the two different compositions listed.

4. SQS Versus Random Supercells

It is interesting to consider whether the SQS configu-
rations used in the comparisons above lead to improved
agreement with benchmark results, relative to values de-
rived from supercells with the same size, but with the
atomic configurations generated randomly rather than

by the SQS algorithm. In other words, it is of interest
to consider whether the extra work that is required to
generate the SQS configurations for a given defect super-
cell leads to a significant increase in accuracy. To test
this, we have undertaken a statistical analysis comparing
the performance of random and SQS supercell configu-
rations against the benchmark values. Results of such
tests are reported in this section for the specific case of
the twin-boundary planar defects, but similar conclusions
were reached for the GSF and surface defects.

We begin by generating a large number of randomly
occupied structures and rank these according to a per-
formance metric that measures how close the pair and
triplet correlation functions are to the values for a ran-
dom alloy with the same composition. For the dilute
compositions, an exhaustive enumeration69–71 is per-
formed of all symmetrically inequivalent atomic configu-
rations at a fixed composition. For the more concentrated
alloys, exhaustive enumeration is beyond reach and we
instead generate a million symmetry inequivalent struc-
tures. These configurations are then ranked from #1,
indicating the best agreement with random correlation
functions, in ascending order towards the worst. For all
the configurations generated, the {112̄1} twin boundary
energy is calculated by planar averaging and it is exam-
ined how well the resulting defect energies approximate
the benchmark Random-1M results. In this section, Ti-
Al alloys with a solute concentration of 12.5 at. % Al
are considered, but similar conclusions hold for different
compositions.

In total, a million symmetry-inequivalent alloys are
generated at a composition of Ti56Al8 and for each, the
atomic correlation functions (6 pairs, 3 triplets) are cal-
culated. These are referred to as corrSQS. The mil-
lion structures are then ranked according to the metric
‖corrSQS − corrRandom‖. Smaller values for ‖corrSQS −
corrRandom‖ indicate a configuration that is a better ap-
proximation of the true random alloy. Figure 7 shows
the distribution of this metric over the million struc-
tures, together with a β-distribution that is fit through
the data. The mean of the distribution is approxi-
mately 0.26, the best SQS structures exhibit qualities
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‖corrSQS − corrRandom‖ ≈ 0.10 and for the worst config-
urations ‖corrSQS − corrRandom‖ ≈ 0.65.

FIG. 7: The distribution of ‖corrSQS − corrRandom‖
over a million substitutional configurations for an hcp
Ti56Al8 bulk alloy. A β-distribution is fit to the data
and plotted by the solid (red) line in the histogram.

It is now addressed how well the structures used to
generate Fig. 7 perform in their prediction of {112̄1}
twin boundary energies, compared with the Random-
1M benchmark results. To this end, the million struc-
tures are split-up in 1,000 bins of 1,000 structures, where
the first bin represents the 1,000 best configurations
(corresponding to ‖corrSQS − corrRandom‖ ≈ 0.10), the
second bin represents the second best group of config-
urations, and so forth. The last bin corresponds to
‖corrSQS − corrRandom‖ ≈ 0.65 and represents the bin
containing the worst performing configurations. It is next
examined for each of the bins how large the probabil-
ity is that a structure picked at random from the bin
yields a {112̄1} twin boundary energy that is within 10
% of the Random-1M benchmark value. The results are
shown in Fig. 8, in which a second order polynomial is fit
through the calculated probability data. The horizontal
axis again represents the value of ‖corrSQS−corrRandom‖,
as in Fig. 7. The vertical axis in Fig. 8 represents

P
(
‖
(
γSQS
t − γRandom

t

)
/γSQS
t ‖ < 0.1

)
, i.e., the proba-

bility that a configuration in the bin and the random-1M
benchmark twin-boundary energies are within 10 %.

Note that the above analysis was based on a total of
5 calculations for each 64-SQS at every composition and
in total 2 calculations for each Random-1M cell at ev-
ery composition. For the Random-1M cell, 1 calcula-
tion of the energy of the (atomically relaxed) bulk cell
is required, together with 1 calculation of the energy of
the (atomically relaxed) twinned cell. For the 64-SQS,
1 calculation of the (atomically relaxed) bulk cell is re-
quired, together with 4 calculations on the 64-SQS twin

cells. Owing to periodic boundary conditions, each cal-
culation on a 64-SQS twin cell yields the average energy
of 2 distinct twin boundaries, hence all 8 distinct planes
are covered by these 4 calculations.

FIG. 8: Probability of reproducing the Random-1M
twin energies to within 10 % as a function of the metric
‖corrSQS − corrRandom‖. The curve indicates a second

order polynomial, fit to the calculated data.

Figure 8 shows clearly that among the best SQS struc-
tures (i.e., amongst the configurations with the lowest
values of ‖corrSQS−corrRandom‖), there is a significantly
higher probability of reproducing the Random-1M results
for the {112̄1} twin boundary energy than among the
poorly performing configurations. For example, in the
bin containing the best configurations, approximately 80
% of the structures reproduce the Random-1M twin en-
ergies to within 10 %. On the other hand, in the bin
containing the configurations with the highest values of
‖corrSQS − corrRandom‖, only 25 % of the structures re-
produce the Random-1M twin energies to within 10 %.
Structures that are located near the mean of the distribu-
tion reproduce the Random-1M energies to within 10 %
in approximately 50 % of the cases. Hence, we conclude
that a high-quality SQS structure is expected statistically
to perform significantly better than structures generated
by random occupations.

B. Density Functional Theory Results

As an illustration of the use of the SQS approach in
combination with DFT-based total-energy calculations,
we plot in Fig. 9 calculated results for the {112̄1} twin
boundary as a function of Al concentration in Ti1−xAlx
hcp-based solid solutions. The DFT results were ob-
tained with a 64-atom SQS supercell, averaging over the
different choices for the TB plane position, as above. The



10

average values and standard deviations obtained by DFT
are plotted with filled circles, and the results are com-
pared to those obtained from the EAM employing the
same SQS approach, which are reproduced in the lower
panel.

FIG. 9: {112̄1} twin boundary energy γt in Ti1−xAlx
alloys calculated with 64-atom SQS supercells by DFT

and EAM. The results plotted are averaged over 8
planes per supercell, with error bars denoting standard

deviations. The lines are guides to the eye.

It is seen in Fig. 9 that the EAM underestimates the
{112̄1} twin boundary energy significantly with respect
to the DFT value for pure Ti. We further note that EAM
and DFT predict different trends of twin energy versus
Al concentration. Whereas EAM predicts a monotonic
and almost linear decrease of the {112̄1} twin boundary
energy with increasing Al content, the DFT calculations
predict a much weaker concentration dependence.

It should be emphasized that the differences between
EAM and DFT observed here are not a result of the
SQS planar averaging, but a reflection of inaccuracies
in the classical potential model for twin boundary en-
ergies in Ti-Al alloys. This is apparent based on the
discrepancies for the results for pure Ti. Additionally,
we have used the 64-atom supercell models with one Al
solute atom present to compute segregation energies to
the {112̄1} twin boundary. It is found that the EAM
potential predicts an energetic preference of an individ-
ual Al-atom to segregate to the twin plane and nearby
planes, whereas DFT shows the opposite: the Al-atom
prefers to reside in positions away from the twin. Since

DFT and EAM yield contradictory results even in this
dilute limit, the discrepancies in the results obtained for
more concentrated alloys are not surprising. We note
that discrepancies between EAM and DFT are not un-
common in cases such as these where the property of
interest (namely twin boundary energetics) were not in-
cluded in the fitting of the EAM potential (e.g.,72). We
note that it has also been shown that this EAM potential
for Ti-Al alloys was not found to yield good agreement
with DFT calculations for the concentration dependence
of the elastic constants73–75.

IV. SUMMARY AND CONCLUSIONS

In the present work we have presented a method for
computing the energetics of planar defects in random
substitutional alloys employing an approach based on the
use of the SQS formalism. It is shown using an EAM
model for hcp-based Ti-Al alloys that averaging over re-
sults obtained for different planes in an SQS cell gives val-
ues for twin boundary, unstable stacking fault and surface
energies that agree to within approximately 10 % with
benchmark values obtained from direct configurational
averaging using large supercells. The SQS-based super-
cells considered in this work are small enough such that
their energies can be computed by DFT. This is demon-
strated in DFT-based studies of the concentration de-
pendence of {112̄1} twin-boundary energies in hcp-based
Ti-Al alloys. We anticipate that the method presented
in this work will be useful in future DFT-based efforts
aimed at alloy design. By combining results obtained
with this approach within continuum theories of mechan-
ical behavior, the SQS-approach described here provides
a framework for investigating the effects of specific solute
additions on the slip and twinning properties of alloys for
targeted applications.
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