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This paper considers a system of two parallel quantum Hall layers with total filling factor 0 or 1.
When the distance between the layers is small enough, electrons and holes in opposite layers form
inter-layer excitons, which have a finite effective mass and interact via a dipole-dipole potential.
I present results for the chemical potential u of the resulting bosonic system as a function of the
exciton concentration n and the interlayer separation d. Both p and the interlayer capacitance
have an unusual nonmonotonic dependence on d, owing to the interplay between an increasing
dipole moment and an increasing effective mass with increasing d. A phase transition between
superfluid and Wigner crystal phases is shown to occur at d n~ /10 Results are derived first via
simple intuitive arguments, and then verified with more careful analytic derivations and numeric

calculations.
I. INTRODUCTION

The idea of realizing Bose condensation or superfluid-
ity in a solid state system goes back more than half a
century.' ® The basic electronic excitations in solid state
systems, electrons and holes, are fermionic, but these can
be combined to form an electron-hole bound state, an
exciton, that has bosonic statistics. A collection of exci-
tons in a semiconductor is therefore capable of assuming
a Bose-Einstein condensate (BEC) or superfluid phase.
Such phases are difficult to realize in three-dimensional
semiconductors, since the electrons and holes can re-
combine and thereby eliminate the exciton population.
But in two-dimensional (2D) systems the exciton popu-
lation can be maintained by electrostatic gating or optical
pumping, and indeed the first measurements of exciton
condensation have been seen during the last fifteen years
in two-dimensional semiconductors.” 1°

One particularly fruitful method for producing a sta-
ble excitonic condensate, as first suggested by Lozovik
and Yudson,'! is to spatially separate the electron and
hole into parallel layers [as illustrated in Fig. 1(a)]. In
this spatially separated, bilayer configuration the elec-
tron and hole are prevented from recombining by the
suppression of inter-layer tunneling. However, if the in-
terlayer spacing d remains small enough, then the elec-
tron and hole can still be bound together by their mu-
tual Coulomb attraction to form a bosonic exciton. Real-
ization of exciton condensation was therefore largely en-
abled only by the development of sufficiently clean and
sufficiently thin bilayer devices. The ongoing, rapid de-
velopment of ultra-clean, nanoscale 2D materials contin-
ues to provide new platforms and contexts for realizing
bilayer exciton physics.!? 14

So far, most experimental studies of bilayer exciton
condensates have sought to exploit the quantization of
the electron and hole energies that arises in the presence
of a large transverse magnetic field.”®1517 Such a mag-
netic field effectively quenches the electron kinetic energy
by quantizing the electron and hole motion into Landau
levels. By thusly eliminating any competing Fermi en-
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FIG. 1. (Color online) Schematic depiction of a quantum
Hall bilayer exciton. (a) The exciton comprises electron (blue
area) and hole (orange area) wave packets, each with size
~ Ip, residing in opposite layers and bound by their mutual
Coulomb attraction. (b) The finite mass of the exciton arises
from the relationship between the internal Coulomb energy of
the exciton and its drift velocity. When the electrons and hole
are displaced laterally relative to each other by an amount 9,
the resulting crossed electric and magnetic fields (E and B,
respectively) produce a drift with velocity vq o 0.

ergy, the electrons and holes can more readily bind to-
gether to form excitons.

In this paper I consider the properties of a system of
such quantum Hall bilayer excitons as a function of the
exciton concentration n and of the separation d between
layers. I focus on the case where there is an equal concen-
tration n of electrons in the (say) top layer and holes in
the bottom layer, and where the density is small enough
that the corresponding filling factor v = 27nf% < 1.
Here, {g = y/hc/eB is the magnetic length (in CGS
units, which are used throughout this paper); 7 is the
reduced Planck constant, ¢ is the speed of light, e is the
electron charge, and B is the magnetic field. This de-
scription applies to either a pair of conventional semi-
conductor quantum wells with filling factors v < 1 and
1 — v, respectively, or to a pair of parallel layers in which
one layer is n-type and the other is p-type (as is common
in double-layer graphene), so that one layer has filling
factor v and the other —v.

This setup has been the subject of a number of the-
oretical studies during the past two decades.'® 24 Most
of these studies have focused on describing the phase di-
agram of the system, and have restricted their analysis



to relatively narrow regimes of the particle density, such
that v ~ O(1). In this paper, on the other hand, the em-
phasis is on describing the scaling behavior of the chem-
ical potential 1 over wide, parametric regimes of density
and interlayer separation. The corresponding analysis
highlights a range of phases and behaviors that can be
understood from the perspective of an interacting bosonic
system. Specific predictions are also made for the exci-
ton compressibility, which can be used as a probe of the
strength of inter-particle interactions and the degree of
spatial correlations. As discussed below, these predic-
tions can be tested using capacitance measurements.

Importantly, the analysis of this paper is restricted to
the case of sufficiently high magnetic fields that the mag-
netic length ¢p is much shorter than the zero-field ef-
fective electron Bohr radius aj = h%k/(mee?). (Here,
K is the dielectric constant and m, is the electron band
mass.) This condition guarantees that the size of elec-
tron/hole wave functions are determined by the radius of
the corresponding cyclotron orbits, and are not strongly
modified by the electron-hole attraction. g < a}; is eas-
ily satisfied in materials with light mass (or in graphene,
where the mass m, is effectively zero), and in this limit
the zero-field mass m,. becomes irrelevant to the exciton
behavior. The high-field condition also guarantees that
the contribution of higher Landau levels is unimportant
for the exciton behavior. Finally, this paper also focuses
on the case where excitons are dilute: v <« 1. Under
this condition the typical exciton momenta p are small,
|p| < h/€p, and the dispersion relation of excitons is
well approximated by a quadratic dependence with a B-
dependent mass.25~27

The remainder of this paper is organized as follows.
The following section, Sec. II, presents a qualitative dis-
cussion of results, and outlines the dependence of the
interaction energy on the density and the inter-layer sep-
aration. A schematic phase diagram of the system, which
includes Wigner crystal and superfluid phases, is also pre-
sented. Sec. ITI presents a quantitative derivation of the
chemical potential at both small and large d. Numeric
results are presented which capture the correct asymp-
totic behavior of the chemical potential and which give
an approximate description of the the crossover. Specific
predictions are made for the interlayer capacitance and
for the superfluid-Wigner crystal transition. I conclude
in Sec. IV with a discussion of experimental implications.

II. SCALING DERIVATION OF THE
CHEMICAL POTENTIAL

In order to understand the qualitative behavior of a
system with a finite concentration of excitons, one can
first consider the properties of a single exciton. Under
the assumption {p < a}; (discussed above), each exciton
is composed of a pair of laterally-aligned electron and
hole wavepackets of size ~ . [In the symmetric gauge,
the corresponding wavefunction for a single electron or

hole is ¢(r) = exp(—r?/40%)/+/2n¢%]. The binding en-
ergy of the electron-hole pair is given by ~ —e?/kr, where
r ~ min{fg,d} is the typical distance between the elec-
tron and hole. Below I omit this (density-independent)
binding energy term from expressions for the chemi-
cal potential in order to focus on the density-dependent
terms that contribute to the compressibility.

An isolated electron (or an isolated hole) in a strong
magnetic field does not have a finite mass. One can think
that because the kinetic energy has been quenched by
Landau quantization, the electron mass is effectively in-
finite. Nonetheless, the electron-hole bound state does
have a finite effective mass, which can be understood
as follows. When the electron and hole wavepackets are
given a small lateral displacement § relative to each other,
there is a corresponding internal Coulomb energy cost
Eint ~ 6252/I€7"3. In this displaced state, the electron
and hole also produce for each other an in-plane electric
field E| ~ ed /kr3, and as a consequence there is a fi-
nite drift velocity vy ~ c¢E|/B ~ ¢*(}6/(rkhr?) resulting
from crossed electric and magnetic fields [see Fig. 1(b)].
This drift velocity is in the same direction for both the
electron and the hole. Since vg ox § and iy o< d2, one
can define the exciton mass via the relation ey, ~ mvﬁ.
This relation gives m ~ h?kr3/(e(}), where, as before,
r ~ min{lp,d}. Effectively, at small d the magnetic
length ¢p plays the role of the Bohr radius.??

This finite mass has important implications for the be-
havior of the excitons at finite density. In particular, it
implies that, unlike for a Wigner crystal of electrons or
holes at small filling factor, a Wigner crystal of excitons
can melt at low concentration due to quantum fluctua-
tions. Alternatively, one can say that because quantum
fluctuations of the lateral alignment between electron and
hole lead to a drift velocity, the exciton has a finite zero-
point motion. It is this zero-point motion that enables
the crossover between a Wigner crystal and a superfluid
phase for bilayer excitons at finite interaction strength.
Of particular significance for the discussion below is that
the mass has a weak dependence on the interlayer separa-
tion d at d < £g, but it increases strongly with increasing
datd>lpg:

d/gB <1

d/lg>1" (1)
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A more exact expression for the mass was derived in Refs.
19 and 26, and is presented in Sec. III.

The interaction potential between excitons takes the
form of a dipole-dipole interaction, which is V(r) ~
e2d?/kr3 at distances 7 > d. In two spatial dimensions,
this interaction can be classified as short-ranged, with
an effective range b ~ d?me?/(kh?) that is equivalent to
the s-wave scattering length. [One can arrive at this es-
timate for b by equating V(b) with A%/(mb?).] At very
short distances » < £p, one should think that the 1/73
divergence of the interaction is truncated, since two ex-
citons cannot approach each other closer than the size



~ {p of the quantum Hall wavefunction. One can there-
fore say that two excitons have a maximum interaction
energy of Vipax ~ €2d?/kl% at d < (.

In the remainder of this section, I discuss the behavior
of the chemical potential at finite exciton density and its
dependence on the two relevant dimensionless parame-
ters: the interlayer separation d/¢g and the filling factor
v. For the sake of presention, I assume a filling factor
v < 1 and consider regimes of increasing d/{p.

A. d</lp: “Exciton condensate”

At d/fp < 1, the interaction between excitons is weak
because of their small dipole moment, and the system
assumes a spatially uniform state. At strictly zero tem-
perature, this state is a BEC, but at finite temperature
and in the thermodynamic limit any 2D system has a con-
densate fraction of zero due to the presence of low-energy
fluctuation modes in the superfluid phase.?® Nonetheless,
at small but finite temperature this state is a superfluid
with long, power-law correlations in the superfluid phase
and a chemical potential that is essentially identical to
that of a Bose condensate.

To estimate the chemical potential, one can notice that
at d/fp < 1 the scattering length b becomes shorter
than the wavefunction size ¢p, and therefore only exci-
tons with separation comparable to £g have a significant
interaction. The interaction energy per exciton can thus
be estimated as

o~ Vinax - % ~ e2d?v/(kl%). (2)

This expression is equivalent to the energy of an ex-
citon Bose condensate, nVj, where V| is the Fourier-
transformed interaction law evaluated in the limit of zero
wave vector.

The “exciton condensate” regime is depicted as the
bottom region in Fig. 2(a).

B. 1<d/lp < v~ '/'% “Hard core bosons”

As d/lp is increased at a given filling factor v < 1,
the exciton dipole moment grows and interparticle in-
teractions become stronger. At d/¢p 2 1 interactions
are strong enough that the BEC is destroyed even at
zero temperature. Nonetheless, as long as the typical
lateral separation R = n~Y/2 ~ ¢gv=1/2 between par-
ticles is longer than the range b of the interaction, the
system remains in a spatially homogeneous phase, which
at sufficiently low temperature corresponds to a super-
fluid. Equivalently, one can say that the system remains
in a spatially homogeneous phase as long as the quantum
confinement energy that would be required to spatially
separate bosons from each other, ~ h?/mR?, is larger
than the inter-particle interaction energy, ~ V(R). In-
serting the result for the mass at d/fp > 1 [Eq. (1)]
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FIG. 2. (Color online) Schematic diagram showing the de-
pendence of the chemical potential on filling factor v and in-
terlayer separation d/fp. All axes are depicted in logarithmic
scale. (a) Phase diagram showing the superfluid and Wigner
crystal phases, as well as the different scaling regimes for the
chemical potential p. The thick (blue) line denotes a phase
transition, and the (grey) dotted lines denote crossovers from
one scaling regime to another. Regions of the phase diagram
are labeled by the corresponding equation that describes the
chemical potential. The boundaries between different regimes
of the phase diagram are labeled by the corresponding equa-
tions. (b) Dependence of the chemical potential on interlayer
separation d at a fixed filling factor v < 1. Different seg-
ments of the curve are labeled by the corresponding equa-
tion describing them. For brevity, this plot uses the notation
y=p/(e*/kls) and x = d/lp.

into the inequality h?/mR? > V(R) gives v < ({5 /d)'°,
which is equivalent to the condition b < R.

The chemical potential can be estimated by using the
known result for the chemical potential of a 2D gas of
hard core bosons with radius b,29:39
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That is, in this regime the s-wave scattering length plays
the role of an effective “hard core” radius for the exciton
interactions. Using Eq. (3) together with the expression
for the effective mass at d/¢p > 1 gives

22
e“lgy

o~ (4)
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One can notice that Eq. (4) implies a chemical poten-
tial that decreases with increasing interlayer separation



d. This is a somewhat unusual result, since the strength
of interparticle interactions increases monotonically with
increasing d, and one might therefore expect the energy
per particle of a bosonic system to also increase mono-
tonically. However, the effect of increasing interaction
strength is overturned by a sharp growth in the effective
mass at d/¢p > 1, which reduces the energy associated
with quantum confinement. Consequently, at d/fg 2 1
the system enters a regime where excitons avoid each
other spatially in order to minimize their interaction en-

ergy.

I emphasize, however, that the present subsection and
the previous one do not describe truly different phases
of matter. As explained in more detail in Sec. III, both
regimes correspond to a superfluid, and the transition
from Eq. (2) to Eq. (4) is merely a crossover associated
with renormalization of the interparticle interaction.

C. vV« d/lp < v~ /2 “Dipolar Wigner crystal”

When d/¢p is increased even further, the exciton-
exciton interaction becomes strong enough (and the mass
becomes heavy enough) that the system can save en-
ergy by undergoing Wigner crystallization. This exci-
tonic Wigner crystal can be thought of as equivalent to an
electron Wigner crystal that is locked with a hole Wigner
crystal below it, so that electrons and holes are laterally
aligned.

One can verify that the Wigner crystal description
is appropriate by calculating the typical displacement
6 associated with the zero point motion of excitons
in the Wigner crystal. This calculation gives §/R ~
(RU% /dO)4 ~ (039 /vd'*)/8. The Wigner crystal is sta-
ble when 6/R < 1, which is equivalent to the condi-
tion that the inter-particle spacing R is shorter than the
range b of the interaction potential. This condition is
fulfilled when v > (¢;/d)*°, which is the opposite limit
as in Sec. IIB. Notice that, unlike for unscreened elec-
tron systems, Wigner crystallization corresponds to the
limit of high density. This behavior is typical for dipo-
lar systems,?! given the short-ranged interaction, which
can overwhelm the kinetic energy only when the interac-
tion energy ~ e2d?/kR? is much larger than the quantum
confinement energy ~ h%/mR2.

In the Wigner crystal configuration, the dominant con-
tribution to the energy comes from the exciton-exciton
interaction at the nearest-neighbor distance: p ~ V(R).
As long as the excitons are sufficiently far apart that
R > d, this interaction still has a dipole form, so that

e2d213/2

po~ (5)
k3,

D. d/ts> v~ 1/%; “Normal Wigner crystal”

Finally, when d/{p is made so large that the dipole
arm d of electron-hole pairs is longer than the interpar-
ticle spacing R, one can no longer describe interparticle
interactions using a 1/r3 dipole-dipole interaction. This
regime of d/fp > R corresponds to v > ({5 /d)?.

In this regime the energy per particle is dominated
by long-ranged Coulomb interactions, and the Coulomb
energy of the system is similar to that of two uniformly
charged planes. As in a standard plane capacitor, this
energy is ~ ne2d per particle. In other words, at d/{p >
v~1/2 the chemical potential is

p o~ netd ~ e*dv /0%, (6)

In-plane positional correlations between excitons give
a sub-leading correction to this expression, of order ~
—e21/2 [kl 3233

Of course, as with Secs. IIA and IIB, the present
subsection and the previous one also describe identical
phases. The difference between Eqgs. (5) and (6) is asso-
ciated only with a crossover in the behavior of the inter-
particle interaction law.

The different regimes of behavior for p are summarized
in Fig. 2(a). The progression of the chemical potential
at a fixed filling factor with increasing d/fp is shown
schematically in Fig. 2(b).

III. ANALYTICAL EXPRESSIONS AND
NUMERICAL RESULTS

In this section I provide a more quantitative deriva-
tion of the chemical potential at different values of v and
d/lg. These results are then used to calculate the in-
terlayer capacitance and the phase diagram of the sys-
tem. I focus first on describing the chemical potential
in both the superfluid and Wigner crystal phases, and
then present a numerical scheme that reproduces both
limits and approximately describes the crossover between
them. Calculations in this section make use of the analyt-
ical expressions for the effective mass m and the Fourier-
transformed interaction potential V(¢) derived in Refs.
26 and 19. These are given by

T @[ [m( L @Y (L e )_ 4
m 22k [\ 2 )P\ )N\ Var, ) T s
(7)

and

~ 4rre?
1% =
(9) o

where erfc(x) is the complementary Gaussian error func-
tion. The first term on the right hand side of Eq.
(8) corresponds to the usual dipole-dipole interaction,
and the term —YN/O represents the truncation of the
interaction at short distances r < /{p, with ‘70 =

~

(€2l /)83 [1 — exp(d?/20%)erfc (d/V205)].

(1 — exp[—qd]) — Va, (8)




A. Superfluid phase

In a weakly-interacting BEC at zero temperature, the
chemical potential is given by p = nV (¢ = 0). While
a macroscopic 2D bosonic system at finite temperature
cannot strictly be described as a condensate, owing to
long-wavelength fluctuations in the phase,?® when inter-
actions are weak this expression provides a good approx-
imation to the chemical potential. As the strength of
interactions is increased, however, the condensate-like
state is destroyed. In Ref. 34 it was shown that the
chemical potential of the superfluid state can described
in general by replacing the zero-momentum interaction
Vo = V(g = 0) with the value of the self-consistent ¢-
matrix. This procedure gives a self-consistent expression
for the chemical potential:

] o
1+ (mVp/4mh?) In [12 /(uma? explys])]

Iz (9)
where vg ~ 0.5771 is the Euler-Mascheroni constant and
a is the effective interaction range. The value of a can be
taken as the larger of /5 and the s-wave scattering length
b for the dipole-dipole interaction, which is given by?3?

_ h2kd?

b= ——5 exp(27p). (10)

A numerical evaluation of Eq. (9) is presented below in
Fig. 3.

From Eq. (9) one can see the non-monotonic depen-
dence of p on the interlayer separation d that was ex-
plained qualitatively in Sec~. II. When d is small, the mass
is relatively small and mVy/h? < 1, and so pu ~ nVp,
which increases quadratically with d. However, when
d/lp becomes greater than ~ 1, the quantity mV;/h?
becomes larger than unity and dominates the denomina-
tor. Consequently, the chemical potential becomes pro-
portional to 1/m, which falls as 1/d°.

The critical temperature for the superfluid phase is
given by34

T~ Arh®n
¢ 2mkp In[In(1/na2)]’

(11)

where kp is the Boltzmann constant. At small d/¢p,
kgT,. is of order e*v/(xkfg), while at d/fp > 1 it has the
smaller magnitude e*(4v/(rkd?).

B. Wigner crystal phase

In dipolar systems the Wigner crystal phase appears at
sufficiently high densities that the typical inter-particle
spacing is shorter than the interaction range, which here
corresponds to v > (£p/d)'°. In this limit the system
is essentially classical, since the zero-point fluctuations
in the particle positions are much shorter than the inter-
particle spacing, and so the wavefunctions of neighboring

excitons have exponentially small overlap. The dominant
contribution to the energy can therefore be found by cal-
culating the electrostatic energy of a classical crystal of
dipoles. This leads to the following expression for the
energy € per exciton:

B ) E—— (12)

where the indices {i,j} label the position of points in
a triangular lattice, and run from —oo to oo, with
{i,j} = {0,0} excluded from the sum. The vari-
able r;; denotes the Cartesian distance from the origin
({7,5} = {0,0}) to the lattice point r;;, and is given by

\/Q(iQ +1j 4 52)/(v/3n). The chemical potential is
related to the energy per particle by u = d(ne)/dn. Its
numeric value is plotted in Fig. 3 for one particular value
of the filling factor v.

The lowest-order (quantum) correction to Eq. (12) can
be derived by considering that in a Wigner crystal each
particle sits in a parabolic potential well u(z) created by
its neighbors, where z indicates a displacement relative to
the bottom of the well. This potential can be calculated
by expanding the potential energy created by neighboring
particles to second order to give u(z) ~ ug + fmw?z?
The first correction to Eq. (12) is then given by fuw, the
ground state energy of a 2D harmonic oscillator.

Tij =

C. Numeric calculations

Equations (9) and (12) give relations for the chemi-
cal potential that are valid in the asymptotic regimes
d/tp < v=110 and d/fp > v=1/10 respectively. In or-
der to describe the crossover between these two regimes,
one can use a numerical calculation based on the varia-
tional principle. One particularly straightforward choice
is to write a variational wavefunction that is a product
of Gaussian wave packets ;;(r) centered at each point
r;; of the triangular lattice. These are given by

( ) 1 |I‘ — Tij |2
(1) = exp | ———| .
i V2mw? P dw?

The width w of the wave packet is used as a variational

parameter. In this state, the kinetic energy per particle
is given simply as

ek = /@00(1‘) < hQVQ> ¢oo(r)d’r

2m
h2

Amw?’

(13)

(14)

The interaction energy (Hartree energy) per particle can
be written as36

n ~ 1 7 1%
er =75 V(g exp[-¢*w’] - i/dqq Z(q) exp|—¢*w?),
qeG 0 g

(15)



where G represents the set of all reciprocal lattice vectors
of the triangular lattice, and the second term on the right-
hand side comes from removing the self-interaction term.
The sum over G amounts to summing over the values of
q given by

2n
i =2my | —= (1% +ij + j2), 16

where the indices i, j range from —oo to co. The best es-
timate for the variational parameter w is the one which
minimizes the quantity ex + ;. In the Wigner crys-
tal regime, the optimal value of w is generally such that
w < n~1Y/2, In the superfluid regime, on the other hand,
w > n~'/2 and the exciton density is essentially uniform
spatially.

Figure 3 shows the results of this variational calcula-
tion at a fixed small filling factor v = 0.01, along with
the analytical results from Egs. (9) and (12). For com-
parison, I also plot results from a quantum Monte Carlo
(QMCQ) study3” of bosonic dipoles interacting with the
point dipole potential V(r) = D?/r®, where D is the
dipole moment. Results have been scaled by the corre-
sponding unit of energy hS/(m3D*), using D = ed and
the mass given by Eq. (7). While the point-dipole in-
teraction studied in Ref. 37 is not identical to the case
being studied here, for which excitons have a finite dipole
arm d, in the limit of vd?/¢% < 1 the results should be
similar. Indeed, Fig. 3 shows that the calculated energy
is within a few percent of the values from QMC.
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FIG. 3. (Color online) Dependence of the energy ¢ per exci-
ton on the inter-layer separation d, evaluated at fixed filling
factor v = 0.01. The (black) dashed line shows the result for
the superfluid state given in Eq. (9), and the (red) dotted line
shows the energy of a classical Wigner crystal, Eq. (12). The
(blue) solid line gives the result from the variational calcu-
lation. The (green) points show results from a QMC study
of bosonic point dipoles (Ref. 37), which have been down-
sampled for visual clarity. The down-facing arrow shows the
estimate for the liquid-solid transition obtained from the vari-
ational calculation, and the up-facing arrow shows the esti-
mate from the QMC studies.

One can notice that in Fig. 3 the regime of decreasing
energy with increasing d depicted in Fig. 2 is practically

not seen due to the narrowness of its window of appli-
cability: 1 < d/fp < v~ Even at the small fill-
ing factor v = 0.01, this window comprises only a factor
~ 1.6, and is therefore easily washed out by the crossover
behavior. Still, some indication of this regime is visible
in the wide “shoulder” feature centered at d/fp ~ 1. A
more obvious non-monotonic dependence of p on d ap-
pears in the numeric solution if v is made as small as
0.001 or smaller.

Nonmonotonic behavior is more apparent if one ex-
amines the interlayer capacitance C' per unit area, de-
fined by C' = e?(du/dn)~!. As an experimental quan-
tity, the capacitance can be measured using a capacitance
bridge,36:3® or by field penetration experiments.??4° For
a uniform system with large density of states and un-
screened Coulomb interactions, the capacitance is given
by the “geometric capacitance” Cy = k/4wd; in the
present system this situation corresponds to d/fp >
v=12. As d/lp is reduced, however, the capacitance
becomes enhanced over the geometric value due to the
presence of strong correlations and the finite range of the
dipole-dipole interaction. This enhancement is shown in
Fig. 4, which plots the inverse capacitance C,/C as a
function of d/¢p. Notably, the capacitance acquires a lo-
cal maximum (and Cj/C acquires a local minimum) near
the point of the superfluid-Wigner crystal phase transi-
tion. This maximum is more prominent at small v.
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FIG. 4. Plot of the inverse interlayer capacitance, Cyq/C, as a
function of the interlayer separation d. The curves are labeled
by the corresponding value of the filling factor v. The local
minimum in Cy4/C appears near the point of the superfluid-
Wigner crystal phase transition.

Finally, one can also use the variational method to pro-
duce a quantitative estimate for the superfluid-Wigner
crystal phase transition point. According to the Lin-
demann criterion of melting, this transition should oc-
cur when the uncertainty in the particle position ex-
ceeds a critical fraction 7. of the lattice constant. For
2D systems, 7. =~ 0.23.3%37 The uncertainty in the par-
ticle position 4/(r?) is given for the variational wave-
function by \/ﬁw, so the Lindemann criterion becomes
w = nen=1/2/31/4,

Fig. 5 shows the resulting estimate for the phase



boundary. For comparison, I also plot the QMC result
from Ref. 37, which corresponds to nm?ed*/k?h* = 290.
Both are seen to be in good agreement with the analytical
prediction (d/fp) oc v=/10 at small filling factor.
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FIG. 5. (Color online) Phase diagram showing the boundary
between the superfluid and Wigner crystal phases, in double-
logarithmic scale. The (red) solid line shows the estimate
for the phase boundary obtained by scaling the QMC result
from Ref. 37, and the (blue) symbols show results from the
numeric solution using the Lindemann criterion. The dashed
line shows a fit to the form d/{p p~1/10

IV. DISCUSSION

This paper has presented results for the zero-
temperature chemical potential of a system of excitons
made from electrons and holes in a bilayer quantum Hall
system. One of the primary results is the non-monotonic
dependence of the chemical potential on the bilayer sep-
aration d. This non-monotonicity arises from a sharp
increase in the exciton effective mass when d becomes
larger than £p, which leads to a decrease in the renor-
malized interaction strength and eventually to Wigner
crystallization.

One can notice that this non-monotonicity is some-
what difficult to observe experimentally, since it relies on
a large separation between d/fp = 1 and d/fg = v~ /10,
Nonetheless, the “shoulder” in p that can be seen in Fig.
3 may be readily observable, and is a sign of the change
in inter-particle correlation strength driven by decreasing
effective mass with decreasing d/¢p. Probes of the ca-
pacitance also exhibit a more prominent non-monotonic
behavior. The existence of a local maximum in the ca-
pacitance at d/fp ~ v~1/1% may be used as an indication

of the Wigner crystal-superfluid phase transition.

This behavior should be contrasted with that of a sin-
gle quantum Hall layer adjacent to a metal gate. Such
a system is superficially similar to the one considered
here, since screening by image charges in the gate con-
verts the electron-electron interaction into a dipole-dipole
interaction.?>4! However, in such a screened single-layer
system the electrons do not have a finite mass in the limit
of high magnetic field, since there is essentially no pos-
sibility of an electron being laterally displaced from its
image charge in the metal gate.*> This leads to a large,
qualitative difference in the behavior of the two systems.
For a single-layer system with screening by a metal gate,
the electrons remain in a Wigner crystal state down to
arbitrarily small values of d and ¢, and in this limit their
chemical potential has a monotonic dependence on layer
separation: p ~ e2d?v3/? /klp. %3 For bilayer excitons, on
the other hand, the finite mass implies that the Wigner
crystal state melts at d/fg ~ v~1/10 and in the limit of
small density or small d/¢p the chemical potential is a
factor of ~ v~1/2 larger: p ~ e2d?v/klp.

Finally, I note that while I have described the transi-
tion from Wigner crystal to superfluid using the simple
language of “melting”, in principle this phase change is
not a simple first-order transition. For a dipolar sys-
tem, such a phase change has been shown theoretically
to occur through a sequence of “microemulsion” phases,
in which the solid and liquid phases coexist in spatially-
mixed stripe or bubble patterns.** However, the range of
parameter space occupied by these microemulsion phases
is related to the discontinuity in density between the solid
and liquid phases, which is generally very small. To my
knowledge, such phases have not yet been observed.
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