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We present a general hybrid model based upon the continuum generalized Peierls-Nabarro model
(with density functional theory parametrization) to describe interlayer dislocations in bilayer sys-
tems. In this model, the bilayer system is divided into two linear elastic 2D sheets, the strains in
each sheet can be relaxed by both elastic in-plane deformation and out-of-plane buckling; this de-
formation is described via classical linear elastic thin plate theory. The interlayer bonding between
these two sheets is described by a 3-dimensional Generalized Stacking-Fault Energy (GSFE) deter-
mined from first principle calculations and based upon the relative displacement between the sheets.
The structure and energetics of various interlayer dislocations in bilayer graphene was determined by
minimizing the elastic and bonding energy with respect to all displacements. The dislocations break
into partials and pronounced buckling is observed at the partial dislocation locations to relax the
strain induced by their edge components. The partial dislocation core width is reduced by buckling.
An analytical model is also developed based upon the results obtained in numerical simulation. We
develop an analytical model for the bilayer structure and energy and show that these predictions
are in excellent agreement with the numerical results.

PACS numbers: 68.65.Pq, 68.55.-a, 62.20.mq

I. INTRODUCTION

Since the successful exfoliation of monolayer graphene,
its extraordinary physical properties have been widely in-
vestigated and show promise for future nanotechnology
applications1. Recently, bilayer graphene, the stacked
counterpart of monolayer graphene, has attracted in-
creasing attention, in part, because its bandgap is tun-
able up to 300 meV1. Bandgap modulation induced by
application of an electric field in bilayer graphene has
been experimentally confirmed2. The bandgap of layered
materials, such as bilayer graphene3–5, hexagonal boron
nitride, MoS2 as well as phosphorene can also be varied
by changes in bilayer stacking3–8 and elastic strain8–10.

While the relatively weak vdW-like interactions be-
tween graphene layers (compared to the strong inter-
layer covalent bonds) are sufficient to adhere two lay-
ers, the energy difference and barriers between different
(sliding) translational states are sufficiently small that
several distinct bilayer states can be realized. Mechanical
procedures used to assemble bilayer graphene inevitably
lead to a variety of translation states, often in a single
graphene bilayer. Dislocation lines, lying between the
two graphene sheets that compose the bilayer, separate
domains in the bilayer that are in different translational
states. Grain boundaries between two layers that are ro-
tated with respect to one another (i.e., twist boundaries)
can be described as arrays of dislocations plus stacking
faults (metastable translation states). The Generalized
Stacking-Fault Energy11 (GSFE, i.e., the energy land-
scape associated with uniformly translating one layer
with respect to the other) can be used to understand
(and predict) both dislocation and bilayer twist bound-

ary structure and properties.

In two-dimensional materials, such as monolayer
graphene, the term dislocation is usually used to de-
scribe point like (0D) defects lying within the sheet; e.g.,
pentagon-heptagon or square-octagon pairs . Such de-
fects are edge dislocations with line directions oriented
normal to the sheet. Unlike in monolayers, in bilayers
it is also possible to have one-dimensional (line) disloca-
tions. Such linear defects are interlayer dislocations that
lie between the two layers of a bilayer material - these
dislocations do not require the generation of any topo-
logical defects within either sheet to form. Also, unlike
in monolayers, where the motion of point-like dislocations
require a large energy ∼ 7 eV12 (because of the covalent
nature of the bonding), we expect that the weak van der
Waals bonding between graphene layers should lead to
very small activation energies for the glide of such 1D
interlayer dislocations in bilayer graphene.

A general model for describing dislocations and twist
boundaries in bilayer systems can be derived on the ba-
sis of earlier models for dislocations in three-dimensional
materials and thin films. For example, an edge disloca-
tion in a free-standing thin film will bend bend the film
through an angle θ = 3b/2h, where b is the magnitude
of the Burgers vector and h is the film thickness13. This
demonstrates that the elastic field of a dislocation can
bend/buckle free standing films. The applicability of this
result to bilayer graphene is not straightforward because
it is both extremely elastically anisotropy and sliding be-
tween layers can occur. The latter can lead to different
translational states on each side of the dislocation; i.e.,
dislocations in graphene can break into partial disloca-
tions. An appropriate model must account for both of
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these effects.
Recently, buckling has been observed in bilayer

graphene and investigated via TEM, diffraction and
atomistic simulation14. Butz et al.14 showed that the
amplitude of the buckling in bilayer graphene is ∼ 1 nm
and the width of the buckled region is several tens of
nanometers. Compared with a flat bilayer, buckling sub-
stantially reduces the dislocation core width and relaxes
the dislocation line energy in a free standing bilayer. An-
other recent study analyzed interlayer dislocations in bi-
layer graphene on the basis of a one-dimensional, Frenkel-
Kontorova-like model15, in which a dislocation is treated
as a soliton. While interesting and reasonable, such an
idealized model predicts dislocation core widths signifi-
cantly larger than experimentally observed15.

In this paper, we present a general approach based
upon a Peierls-Nabarro model to describe interlayer dis-
locations in bilayer materials. In the classical Peierls-
Nabarro model16–18 (and its generalizations19,20), the
material is divided into two semi-infinite linear elastic
continua by the dislocation slip plane, the interface be-
tween these two continua have a relative displacement
(disregistry) in the presence of dislocations, and the two
continua are connected via a nonlinear function (atomic
bonding) of the disregistry. We adopt a similar ap-
proach, replacing the semi-infinite crystal continua with
2D membranes. The strains in the membranes relax in-
plane elastic deformation and out-of-plane buckling; the
membrane deformation is described via linear elastic thin
plate theory21–23. The GSFE describes the bonding be-
tween graphene sheets. The structure and deformation of
the bilayer with a dislocation is determined by the force
balance between the local stresses in the graphene sheets
and the restoring force from the interlayer bonding, as
represented by the GSFE. We apply this approach to de-
termine the structure and energetics of four interlayer
dislocations in bilayer graphene: edge, screw, 30◦, and
60◦ (i.e., the angles between the Burgers vector and the
line direction). We determine the buckling amplitude, in-
plane strain distributions, partial dislocation structures,
core widths and dislocation energies. Based on these
results, we construct a simple analytical model to de-
scribe the buckling and in-plane deformation of bilayer
graphene with dislocations of arbitrary Burgers vector
and show that the analytical model is in excellent agree-
ment with the simulation results.

II. HYBRID MODEL FOR BILAYER
STRUCTURE

Figure 1(a) shows 2D views of the bilayer with an inter-
layer dislocation. First, the natural state consists of two
flat, parallel elastic sheets without any deformation. In
the x1 direction, the lengths of the upper and lower layers
are l01+ and l01− (Fig. 1(a1)). Next, we uniformly com-
press/stretch the upper/lower layer to the same length l01
such that there is no net stress in the bilayer (Fig. 1(a2)).
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FIG. 1. Schematic illustrations of the bilayer system with (a)
2D and (b) 3D views, indicating [(a1) and (b1)] its natural
state; [(a2) and (b2)] its uniformly strained state; [(a3) and
(b3)] its buckled state; and [(a4) and (b4)] its reference state.
The Burgers vector is b = (l01+ − l01−)x̂1.

The “buckled state” is found by minimizing the system
energy (Fig. 1(a3)). Its projected length is l1 (l1 < l01 due
to buckling); we also introduce a flat “reference state” of
the same length (Fig. 1(a4)). There are uniform normal
strains ε0ii± = (li − l0i±)/l0i± (i = 1, 2) in the reference

state (Fig. 1(b4)), ε0ii+ = (l0i−/l
0
i+)ε0ii− − (l0i+ − l0i−)/l0i+,

where i ∈ {1, 2}.
The total energy of the bilayer consists of the elastic

energy Ee and the misfit energy Em (the bonding energy
between the two layers); i.e.,

Et = Ee+ + Ee− + Em, (1)

where +/− represents the upper/lower layers.
The elastic energy of a single layer Ee± has contribu-

tions from in-plane strains Es± and bending Eb±
21,23,24

(Ee± = Es± + Eb±):

Es± =
1

2

∫
εT±C±ε±dx1dx2, (2)

Eb± =
1

2

∫
κ±H

2
±dx1dx2, (3)

where ε± are the in-plane strain tensors, C± are the
anisotropic elastic constant tensors, κ± are bending
rigidities corresponding to the mean curvature H±. The
strains in the buckled layer need to include the effects of
deflection away from the flat configuration,

ε± = ε0± +
(
∇u± +∇uT

± +∇f± ⊗∇f±
)
/2, (4)

where u± = (u1±, u2±) are the x1, x2 displacement vec-
tors and ε0± are the reference strains. The mean cur-
vature of each layer is calculated from its vertical (z)
displacement f±.21

The misfit energy Em associated with the vdW inter-
actions between the layers is

Em =

∫
Γ
(
u⊥, f⊥

)
dx1dx2, (5)
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where Γ
(
u⊥, f⊥

)
is the 3D GSFE5,11, and u⊥ = (u⊥1 , u

⊥
2 )

is the relative in-plane displacement between the layers
(measured in the deformed configuration), and f⊥ is the
interlayer separation (measured along the layer normal).
The relative displacements between the two buckled lay-

ers are u⊥i = (ε0ii+ − ε0ii−)xi + (ui+ − ui−) + 1
2 (∂f+

∂xi
+

∂f−
∂xi

)(d0 + f+ − f−) and f⊥ = f+ − f− + d0. In the re-
sults presented below, we use the 3D GSFE reported by
Zhou, et al.5.

The equilibrium bilayer structure can be obtained by
minimizing the total energy with respect to the six func-
tions, u1±(x1, x2), u2±(x1, x2), and f±(x1, x2). The equi-
librium equations for those variables are

δEt

δui±
= − Cijkl±

∂εkl
∂xj

± ∂Γ

∂u⊥i
= 0, (6)

δEt

δf±
= − Cijkl±

∂

∂xi

(
εkl

∂f±
∂xj

)
+ κ∆2f± ±

∂Γ

∂u⊥i

∂f∓
∂xi

± ∂Γ

∂f⊥
− 1

2

∂2Γ

∂u⊥i ∂u
⊥
j

∂u⊥j
∂xi

(f+ − f−) = 0. (7)

The minimum energy configuration can be found by
iterating the following set of equations to convergence:

∂ui±
∂t

= − δEt

δui±
,

∂f±
∂t

= − δEt

δf±
. (8)

These equations are solved using the fast Fourier trans-
form method with a semi-implicit scheme, i.e., the linear
(non-linear) terms are discretized using an implicit (ex-
plicit) scheme. The numerical details are in the Supple-
mental Material (SM).

III. INTERLAYER DISLOCATION-INDUCED
BUCKLING

We apply the model to describe the buckling of bilayer
graphene in the presence of interlayer dislocations. We
assume that the dislocation is straight and lies along the
x2-axis; the edge and screw components of the Burgers
vector of the dislocation are be = b· x̂1 and bs = b· x̂2,
respectively. For the case of a straight dislocation, all
of the displacements and strains are uniform along x2;
hence, there is only one variable x1 in all of the simu-
lations. The edge component be can be thought of as
originating from the addition of an extra atomic period
in the x1-direction; this is the origin of the length differ-
ences of the two layers along x1 contributes to the natural
state in Fig. 1; i.e., l01+ = l01−−be. The screw components
of the Burgers vector do not induce any natural length
differences between the two layers, i.e., l02+ = l02−.

In this paper, we consider four types of dislocations
(i.e., with different orientations of the Burgers vector
with respect to the line direction, θ): (1) edge 90◦

(be = −a0, bs = 0); (2) mixed 60◦ (be = −
√

3a0/2,

bs = −a0/2), (3) mixed 30◦ (be = −a0/2, bs =
√

3a0/2),

and (4) screw 0◦ (be = 0, bs = −a0), where a0 = 0.242 nm
is the carbon-carbon separation along the zigzag direc-
tion. For the edge and mixed 30◦ dislocations, the x1
and x2 axes are along the [112̄0] and [1̄100] directions,
respectively, and for the mixed 60◦ and screw disloca-
tion, the x1 and x2 axes are along the [11̄00] and [112̄0]
directions. It is well known that basal dislocations in
graphite can dissociate into pairs of partial dislocations,
separated by a planar stacking-fault25 with a finite stack-
ing fault energy (per area). In bilayer graphene, the same
type of dissociation occurs14; see Table I. Upon cross-
ing from one side of a partial dislocation to the other,
the local stacking order changes from AB to AC . These
two stacking sequences are equivalent in bilayer graphene
(not so in graphite) and, hence, there is no energy dif-
ference between these (i.e., the stacking fault energy in
bilayer graphene is exactly zero)5,14.

TABLE I. Partial dissociation in bilayer graphene.

Dislocation ba Partial A Partial B

bA
b θc bB θ

Edge 90◦ a0[1̄1̄20]/3 a0[1̄010]/3 60◦ a0[01̄10]/3 120◦

Mixed 60◦ a0[2̄110]/3 a0[1̄100]/3 90◦ a0[1̄010]/3 150◦

Mixed 30◦ a0[2̄110]/3 a0[1̄010]/3 60◦ a0[1̄100]/3 0◦

Screw 0◦ a0[1̄1̄20]/3 a0[01̄10]/3 150◦ a0[1̄010]/3 150◦

a b is the Burgers vector of the full dislocation.
b bA and bB are the Burgers vectors of partial dislocations A
and B, respectively.

c θ is the angle between the Burgers vector and the dislocation
line direction.

In our simulations, the only input into the hy-
brid model is the elastic properties of each monolayer
(based on AIREBO26 potential calculations23 - C11 =
312.67 J/m2, C12 = 91.66 J/m2, C44 = 110.40 J/m2,
and κ = 22.08 × 10−20 J) and the interlayer 3D GSFE.
The 3D GSFE employ here was determined by fitting to
accurate density functional theory results obtained using
the adiabatic-connection fluctuation-dissipation theorem
within the random phase approximation27–29 (ACFDT-
RPA) by Zhou et al.5.

A. Edge dislocation

Figure 2 shows the main edge dislocation results. In
the buckled state, the bilayer projection length (see
Fig. 1(a3)) is l1 = 72.52 nm. The edge dislocation de-
composes into two partials and buckles upward by ∼ 1.4
nm. Note that the amplitude of the buckling is almost
identical in the upper and lower layers. The slope of
the bilayer profile (Fig. 2(b)) shows a sawtooth-like form,
with two abrupt jumps at the positions of the partial dis-
locations. Figure 2(c) shows that the curvature of each
layer is nearly constant except very near the partial dis-
location cores where it is approximately Gaussian. The
width of the Gaussian provides a good measure of the
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dislocation core size; we measure the FWHM core size
from this to be ∼ 2.4 nm.
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FIG. 2. The first two panels are the variation of the layer (a)
profiles f , (b) gradient of the profiles df/dx1, (c) the mean
curvature of the layers, (d) the relative displacements between
two layers u⊥, strains (e) ε11 and (f) ε12 as a function of dis-
tance x1 along the bilayer. The blue and red solid curves
correspond to the upper and lower layers, and the solid and
dashed curves to the buckled and flat bilayer cases, respec-
tively. The third panel is the layer profiles f for (g) Mixed
60◦, (h) Mixed 30◦, and (i) Screw 0◦ dislocations.

Figure 2(d) shows the relative displacements along
the x1 and x2 direction, u⊥1 and u⊥2 (corresponding to
the edge and screw components of the Burgers vector).
These displacement profiles are approximately piecewise
constant (each constant region corresponds to perfect
AB/AC stacking of the bilayer) with jumps in between

these. The jump magnitudes are (−a0/2, a0/2
√

3) and

(−a0/2,−a0/2
√

3). These two components correspond to
the edge and screw components of the partial dislocation
Burgers vectors. The dislocation core widths, deduced
from these data, are nearly the same width as estimated
from Fig. 2(c).

The in-plane strains ε11 and ε12 for each layer are
shown in Fig 2(e) and (f). In both cases, the strains
are nearly zero except in the vicinity of the dislocation
cores. ε11 shows peaks of the same sign in each layer,
while ε12 shows peaks with opposite signs in each layer.
This corresponds to the sign of the edge and screw com-
ponents of the two partials, i.e., bA,e = bB,e = −a0/2 and

bA,s = −bB,s = a0/2
√

3. Unlike in bulk materials, here,
the amplitude of the strain ε11 is much smaller than the
strain ε12; we return to this below.

In order to clarify the effects of layer buckling, we also
consider the case where the bilayer is flat f± = 0; see the
dashed lines in Fig. 2. Trivially, the profile of f versus
x1 and all its derivates are zero in this case (Fig. 2(a)-
(c)). However, comparison of the results in Fig. 2(d)-(f)
between the buckled and flat geometries is instructive.
The partial dislocation core widths for the case where
the layers are flat can be estimated from Figs. 2(d)-(f).
We measure the core widths to be ∼ 6.3 nm which is
larger than in the buckled case by a factor of ∼ 2.5.

The total energy has contributions from in-plain strain,
bending and misfit, as shown in Table III and the corre-
sponding profiles shown in Fig. 3. Focusing first on the
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FIG. 3. The total and component energy densities of the
buckled (solid lines) and flat (dashed lines) graphene bilayers
containing an edge dislocation.

buckled case, we see that the in-plane strain energy is
larger than the misfit and much larger than the bending
energy (these energies are the integrals under the curves
in Fig. 3). The energy density peak heights for the bend-
ing and strain are nearly equal to the misfit energy. This
demonstrates that very little energy is stored in the bend-
ing degree of freedom of the bilayer. For the flat case, the
in-plane strain energy (since there is no bending here,
this energy is the entire elastic energy) and the misfit
energy are almost perfectly balanced. Comparison of the
buckled and flat cases show that buckling decreases the
dislocation energy by nearly a factor of two. The energy
density curves show that peak heights for the total energy
and misfit energy are almost identical in the two cases.
The difference in energy is attributable to the fact that
buckling decreases the dislocation core width (Fig. 3).

TABLE II. Core width for different partial dislocations (nm).

Edge 90◦ Mixed 60◦ Mixed 30◦ Screw 0◦

Buckled (Flat) 1.5 (7.2) 2.4 (6.3) 3.7 (5.3) 4.5 (4.5)

We also compare our bilayer graphene simulation re-
sults to those obtained from the fully atomistic sim-
ulations of Butz et al.14, as shown in Fig. 4 (we in-
terpolate the discrete atomistic data, as discussed in
the Supplementary Material).30 In the atomistic sim-
ulations14, the empirical AIREBO potential26 and a
registry-dependent interlayer potential31 were used to de-
scribe the in-plane carbon bonds and interlayer inter-
actions in bilayer graphene, respectively. Butz et al.14

implemented these potentials 26,31 within the molecular
dynamics simulation package LAMMPS32. Examination
of this figure and the more detailed Fig. S1 in the SM
show that our continuum-based model provides an excel-
lent quantitative match to the atomistic simulation re-
sults and validates our continuum-based model. The very
small deviations are likely the result of two factors. First,
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the atomistic simulations are based on an empirical inter-
atomic potential (the registry-dependent interlayer po-
tential was fit to density functional theory results in the
local density approximation) while our continuum-based
model was parameterized from accurate first principles
(GSFE) data (obtained using the more reliable ACFDT-
RPA approach5) and elastic constants. The second is due
to the differences of relaxation methods and convergence
criteria (the energy differences involved are extremely
small, hence exact coincidence between our model and
the atomistic simulations is not expected). The overall
excellent agreement suggests that model is quantitative.
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B. Simulation results for other dislocations

In this section, we show the results for other three types
of interlayer dislocations: (1) mixed 60◦ (be = −

√
3a0/2,

bs = −a0/2), (2) mixed 30◦ (be = −a0/2, bs =
√

3a0/2),
and (3) screw 0◦ (be = 0, bs = −a0). For the mixed 30◦

dislocations, the x1 and x2 axes are along the [112̄0] and
[1̄100] directions, respectively, and for the mixed 60◦ and
screw dislocation, the x1 and x2 axes are along the [11̄00]
and [112̄0] directions.

The edge dislocation results demonstrate that the dis-
location dissociates into a pair of 60◦ partial disloca-
tions that are identical (apart from a mirror symmetry;
AB/AC vs. AC/AB). We demonstrate here that other
dislocations also dissociate into partials but these partials
are, in general, inequivalent (the exceptions are the pure
edge and pure screw cases). In Fig. 5, we show the model
results for the 60◦, 30◦, and pure screw dislocations, as
shown for the edge dislocation in Fig. 2.

The 60◦ dislocation (Fig. 5(a)) decomposes into edge
and 30◦ partials. The amplitude of the profile and the
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FIG. 5. Results for general dislocations in buckled configura-
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column: Mixed 30◦ dislocation; Middle column: Mixed 60◦

dislocation; Right column: Screw dislocation.

jump in df/dx1 at the edge partial is larger than that
of the 30◦ partial. The jump in df/dx1 at the disloca-
tion core tells us the turning angle of the profile f there.
Figure 5(a4) shows the ε11 profile and also shows that
this strain associated with the edge partial is larger than
that associated with the 30◦ partial; this is because this
strain component is related to the edge component of
the Burgers vector. On the other hand, the strain that
couples to the screw component of the Burgers vector
ε12 (Fig. 5(a5)) does show the edge partial. The 30◦

partial also appears in this profile because it has mixed
edge/screw character. Finally, the displacement differ-
ence profile (Fig. 5(a6)) shows either just the edge par-
tial or both partials, depending upon whether the dis-
placement component is parallel or perpendicular to the
dislocation line direction.
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A mixed 30◦ dislocation dissociates into a 60◦ partial
and a screw (0◦) partial. Surprisingly, examination of
Fig. 5(b1) shows only the 60◦ partial (the other partial
is present, but not visible). Comparison with Fig. 2(a)
shows that that this partial is identical with the 60◦ par-
tial seen in the pure edge case. The missing partial is
pure screw. This suggests that the edge component of the
partial dislocation Burgers vector controls sharp bending;
no edge component implies no sharp bend. The curva-
ture between the partial and next image (across the peri-
odic boundary condition) is nearly constant (Figs. 5(b1)-
(b3)). Figure 5(b4) shows no hints of the second partial;
this is because this partial has no edge component. The
profile of ε12 (Fig. 5(b5)) does show this screw partial.
Examination of Figs. 5(a) and (b) show that the turn-
ing angle increases in magnitude from the screw partial
to the 30◦ partial to the 60◦ partial to the edge partial
(Fig. 5(a)). This is, in fact, the order in which the edge
component of the Burgers vector increases.

As noted above, the bilayer curvature is uniform be-
tween the edge partial and its periodic image, (i.e., the
slope of d2f/dx21 vs. x1 is constant). However, more
care examination of Figs. 5(b2) and (b3) demonstrate
that this is only approximately true. We believe that this
is a numerical convergence issue; since the bending en-
ergy is so small, achieving very uniform curvature would
require a more severe convergence criteria than we are
able to achieve within our numerical method (also see
Figs. 5(a2) and (a3)).

Figure 5(c) shows that a screw dislocation dissociates
into two 30◦ partials. The structures of these partials
are identical to that of the 30◦ partial found upon the
dissociation of the 60◦ dislocation case, Fig. 5(b). Unlike
the layer profiles found for the other dislocations (edge,
30◦ and 60◦ dislocations), each of the layers here is flat,
except for in the immediate vicinity of the dislocation
cores. At the dislocation cores, the bilayer profile bends
on a small length scale, resulting in a sawtooth bilayer
profile. This observation is also confirmed by Fig. 5(c2)
where we see that df/dx1 is approximately piecewise con-
stant.

We now examine the question of how the out-of-plane
buckling affects the dislocation core size. This can be
deduced from Figs. 2 and 5, where we plot the results
for the flat (dashed curves) and buckled bilayers, and
from Table II. As we saw in the previous section in the
discussion of the edge dislocation case, buckling leads to
a large reduction in partial dislocation core width. We
observe exactly the same result for the partials of the non-
screw dislocations. However, examination of Fig. 5(b5)
and Table III shows that this is only true for non-screw
partials; i.e., the dislocation core for the screw partial
is exactly the same width in the flat and buckled cases.
Table III further demonstrates that the magnitude of the
reduction of the core width on going from flat to buckled
increases as the edge character of the partial increases.

The core width is determined by a competition be-
tween the misfit energy (favoring perfect AB/AC reg-

TABLE III. Contributions to the energy (per unit length) for
the edge dislocation (10−10 J/m). The values in the brackets
are for the flat case. All energies refer to the entire bilayer.
θ is the angle between the Burgers vector and the dislocation
line direction.

θ l01−
Buckled (Flat)

Es Eb Em Et

90◦
200a0 1.30 (1.65) 0.13 (0.00) 0.53 (1.61) 1.97 (3.26)

300a0 1.00 (1.63) 0.14 (0.00) 0.53 (1.63) 1.67 (3.26)

400a0 0.85 (1.63) 0.14 (0.00) 0.53 (1.63) 1.52 (3.26)

60◦
200a0 1.16(1.54) 0.13 (0.00) 0.60(1.52) 1.89(3.06)

300a0 0.96(1.53) 0.13(0.00) 0.61(1.53) 1.69(3.06)

400a0 0.86(1.53) 0.13(0.00) 0.61(1.53) 1.60(3.06)

30◦
200a0 0.95(1.35) 0.069(0.00) 0.79(1.35) 1.81(2.69)

300a0 0.88(1.35) 0.07(0.00) 0.79(1.35) 1.74(2.69)

400a0 0.85(1.35) 0.07(0.00) 0.79(1.35) 1.71(2.69)

0◦
200a0 0.88(1.26) 0.03(0.00) 0.91(1.26) 1.81(2.51)

300a0 0.88(1.26) 0.03(0.00) 0.91(1.26) 1.81(2.51)

400a0 0.88(1.26) 0.03(0.00) 0.91(1.26) 1.81(2.51)

istry) and the elastic energy (favoring uniform strains).
In bulk materials (and the flat case), large in-plane elastic
stiffness and small resistance to shear between the layers
leads to large dislocation core widths16. However, when
the bilayer is not constrained to be flat, the normal strain
(ε11) is almost completely relaxed by buckling - leading
to a significant decrease in Es. This reduces the elastic
contribution in this competition and, hence, leads to a
significant reduction in the core width relative to the flat
case (where ε11 is large). As be decreases, the magnitude
of Es relaxed by buckling is smaller and of course the
core width reduction is also smaller. We note that while
buckling efficiently reduces ε11, associated with the edge
component of the Burgers vector, it cannot reduce ε12,
associated with the screw component. In fact, the peak
height in ε12 is even larger when buckling occurs, com-
pared with the flat case. This is simply the result of the
smaller core size in the buckled case.

IV. ANALYTICAL MODEL FOR BILAYER
DISLOCATION

The results can be used as a guide to develop a simpli-
fied model for the structure of bilayer graphene and de-
termine the interactions between dislocations in bilayer
graphene.

We first observe that the profiles of f+ and f− are
nearly identical (other than a shift) for all of the dis-
locations studied. We also note that these dislocations
always dissociate into partials. It is reasonable to treat
these bilayers as consisting of two distinct regions. The
first is the dislocation core region, where there is a rapid
variation of all of the structural properties with respect
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to x1. df±/dx1 show a (relatively) abrupt jump and the
magnitude of the jump is proportional to the edge com-
ponent of the Burgers vector of the partial dislocation,
i.e., the edge partial has the largest jump, the screw par-
tial has the smallest (none) and the jump of the mixed
partials lies in between. The width of this region (1.6 nm
to 4.5 nm) is very narrow compared with the simulation
cell size or the spacing between partial dislocations. The
second region is between the partials, which is quite wide
compared with the core size. In this region, df±/dx1 has
(nearly) constant slope, which implies that the layer cur-
vature is nearly constant and the bilayer shape between
the partials is nearly parabolic. Moreover, in this region,
the structural properties, including the relative displace-
ments u⊥1 and u⊥2 , the strains ε11± and ε12±, and the en-
ergy density, are nearly independent of position x1 and
ε11+ = −ε11−, ε12+ = ε12−, and d2f+/dx

2
1 = d2f−/dx

2
1.

This implies that the elastic energy here is nearly con-
stant and the misfit energy Em ≈ 0.

Based upon these observations, we construct an analyt-
ical model for dislocations in bilayers, in which the core
width is assumed to be zero such that the gradient of f+
and f− and the relative displacements u⊥1 and u⊥2 have
discontinuous jumps at the position of the dislocation.
The magnitude of the jump in f at the cores is related to
the edge component of the partial dislocation and should
be be/d0, where be is the edge component of the partial.
The magnitude of the jump in u⊥1 (u⊥2 ) at the cores is
equal to the edge (screw) component of the partial dislo-
cation. The slopes of df±/dx1 and the profiles of u⊥1 and
u⊥2 in the inter-partial region are constants. We further
assume f = f+ = f−. In our analytical model, the two
partials are separated by a distance dD; the partials are
at x1 = (l − dD)/2 and x1 = (l + dD)/2. Therefore the
structure and the energy of the bilayer system can be
obtained from the df/dx1, u⊥1 and u⊥2 profiles. See the
SM for more details. The total energy of the bilayer sys-
tem with interlayer dislocations has contributions from
the core and elastic energy (the first is localized in the
core region and the second is associated with the curved
regions between the partials), i.e.,

E =Eedge(sin
2 θA + sin2 θB) + Escrew(cos2 θA + cos2 θB)

+
C11(bA,e + bB,e)

2

4l
+
κ(bA,e + bB,e)

2

ld20
. (9)

By fitting Eq. (9) to the simulation results shown in Ta-
ble III, the core energy for pure edge and pure screw par-
tial dislocations can be obtained: Eedge = 0.318× 10−10

and Escrew = 1.091 × 10−10 J/m. The model discussed
above suggests that the total energy of a dislocation in
bilayer graphene can be determined solely in terms of the
elastic constants, total Burgers vector, bending rigidity
and the partial dislocation core energy (as determined
from the simulation results above). Figure 6 shows a
comparison of the analytical expression for the total en-
ergy of the dislocation (per unit length) Eq. (9)) with
the results from the simulations for bilayer graphene.

Simulation cell size l/a0 
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FIG. 6. Plot of the comparisons of Et based on the multiscale
simulation results and the proposed analytical form (Eq. (9))
for four different types of dislocations with two fitting param-
eters Eedge and Escrew.

Clearly, the agreement between theory and simulation
is good with no fitting parameters other than the pure
edge and screw core energies. This, together with the
comparisons between the predicting bilayer profiles (see
the SM) and the comparison with atomistic simulation
results (Fig. 4) demonstrates the validity of the simula-
tion results and the analytical model.

Note that in an infinite bilayer, Eq. (9) shows that the
force between dislocations is zero (i.e., Etotal is indepen-
dent of dD). This is a direct result of the assumption that
the dislocation core is of zero width. This assumption
implies that there will be no interactions between dislo-
cation cores and that the inter-partial dislocation regions
have profiles determined solely by the elastic properties
of the layers and the boundary conditions imposed by
the core. Clearly, the simulations show that this is not
quite true and the dislocation cores do have (a small,
but) finite width. When the dislocations are well seper-
ated, the effect of finite core width is very small and
can normally be ignored. This does, however, lead to
a small dependence on simulation cell size (spacing be-
tween partial dislocations in our system), as shown in Ta-
ble III. The force between two dislocations arising from
this small core effect can be understood by consideration
of simple models such as the Frenkel-Kontorova model or
sine-Gordon equation33. These models suggest that the
cores are soliton-like and the core-core interaction energy
decays exponentially with dislocation separation dD.

Compared to the forces between dislocations in bulk
crystalline materials, where forces between dislocations
decay inversely with separation, such interactions be-
tween dislocations in bilayer graphene material are ex-
tremely small. Also, unlike bulk crystalline materials
where the energy of a dislocation diverges as the sample
size tends to infinity, in bilayer graphene, the dislocation
energy is always finite.
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V. DISCUSSION AND CONCLUSIONS

We have presented a continuum-based model for gen-
eral dislocations in bilayer systems which are free to
buckle or constrained to remain flat. Our approach is
based upon the Peierls-Nabarro model, generalized to ac-
count for the thin sheet elasticity of vdW layers and an
accurate description of the interaction between graphene
layers. It explicitly considers both the in-plane and out-
of-plane deformation of the layer in addition to a 3D
GSFE for the interactions between layers. The results
show that dislocations in graphene bilayers decompose
into partial dislocations and that the bilayer will buckle
with a magnitude that depends on the edge component
of the partial dislocation. This out-of-plane deformation
is critical for the determination of the structure and ener-
getics of dislocations in bilayer graphene, as well as such
properties as partial dislocation core width. The sim-
ulation results were validated by comparison with the
atomistic simulation results14.

The input for the model only requires the 3D GSFE
and the elastic constants for individual layers. Hence,
this model can be directly applied to any vdW bilayer
system (such as BN/BN) in addition to bilayer graphene.
Further, the model is also directly applicable to hetero-
bilayer systems (such as graphene/boron nitride) where
misfit dislocations are always present (because of mis-
matches in the lattice parameters of the two sheets).
Such mismatch implies the presence of an array of dis-
locations with edge character. This model can also be
extended to the case of twisted bilayer structure, i.e.,
the two layers are rotated with respect to one another.
Such a twist interface/boundary necessarily leads to a

Moiré structure 34. However, the experimentally ob-
served twist boundaries have structures unlike the rigid
twist Moiré patterns15; rather the pattern is strongly in-
fluenced by the types of local relaxation considered here
(for small twist angles such structures are periodic net-
works of predominantly screw dislocations that break
into a partial dislocation array). For twist boundaries
in hetero-bilayers, this predominantly screw dislocation
network will be superimposed on the edge dislocation
network described above.

Based on the continuum-based model results presented
here, we constructed a simple analytical model for dis-
locations in bilayers. We demonstrated that this model
accurately reproduces the simulation results for all dislo-
cations with only two parameters to be determined from
simulation. This model shows that, to first order, dislo-
cations in vdW bilayers do not interact with each other.
However, when two dislocations are very close, there will
be an exponentially decaying force associated with core-
core interactions.
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