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When graphene is placed on a substrate of heavy metal, Rashba spin-orbit interaction of substan-
tial strength can occur. In an open system such as a quantum dot, the interaction can induce spin
polarization. Would classical dynamics have any effect on the spin polarization? Here we consider
the quantum-dot setting, where the Rashba interaction is confined within the central scattering
region whose geometrical shape can be chosen to yield distinct types of dynamics, e.g., regular or
chaotic, in the classical limit. We find that, as compared with regular or mixed dynamics, chaos can
lead to significantly smooth fluctuation patterns of the spin polarization in its variation with the
Fermi energy. Strikingly, in the experimentally feasible range of the Rashba interaction strength,
the average polarization for a chaotic dot can be markedly larger than that for a regular or mixed
dot. From the semiclassical viewpoint, a key quantity that determines the average spin polarization
is the angle distribution of the outgoing electrons at the interface between regions with and without
the Rashba interaction, respectively. Classical chaos generates a different distribution which, in
turn, leads to higher average spin polarization. There was little previous work on the interplay
between classical chaos and electron spin, and the phenomenon of chaos-enhanced spin polarization
uncovered here can be exploited for spintronics applications.

PACS numbers: 05.45.Mt,03.65.Pm,73.63.-b,73.63.Rt,71.70.Ej,75.76.4j

I. INTRODUCTION

In a two-dimensional (2D) solid state system, when the
potential in the direction perpendicular to the 2D plane
is asymmetric, the atomic spin-orbit coupling can lead
to a momentum-dependent splitting of the spin bands, a
phenomenon known as the Rashba effect! or the Rashba-
Dresselhaus effect?. This effect can be exploited for ma-
nipulating spin in various settings such as electrical spin
injection®, 2D superconducting devices*, spin modula-
tion through an electrical field®, spin filtering®, and spin
field effect transistor”. In two-dimensional Dirac materi-
als of current interest such as graphene® '3, topological
insulators'*, and molybdenum disulfide (MoS3)!%16, in-
trinsic or extrinsic spin-orbit interactions of various de-
grees can arise. The interaction typically leads to energy
splitting and can result in fascinating phenomena such as
the spin Hall effect'™'®, weak anti-localization'%2?, spin-
flipping scattering and spin polarization®! 23. There are
two types of spin-orbit coupling: intrinsic and external.
In graphene, the intrinsic spin-orbit coupling is usually
quite weak, but significant interaction (e.g., character-
ized by energy splitting on the order of 200meV) can
be realized?* 26 through the Rashba effect by depositing
graphene on the surface of Ni(111) or Ir(111). Rashba
spin-orbit interaction preserves the time-reversal symme-
try but breaks the inversion symmetry in the direction
perpendicular to the two-dimensional material plane, and
has wide applications in spin transport devices?” 23, For
example, for a two-terminal (source-drain) system with
a Rashba field in the middle region, electrons of pure
spin (say, spin up) are injected from the source and enter

the central region. The Rashba coupling causes the elec-
tron spin to precess. When these electrons move into the
drain terminal, some of them will have their spin flipped
down. The flipping process leads to imperfect spin po-
larization. The degree of the spin polarization can then
be modulated by the Rashba interaction strength.

In addition to the Rashba interaction strength, the ge-
ometric shape of the central interaction region can affect
the electron scattering dynamics and, consequently, can
have an effect on spin polarization. For convenience, we
call the central region where the Rashba coupling exists,
the scattering region. Domains of different geometry can
lead to characteristically distinct types of classical dy-
namics. For example, if the scattering region is rectan-
gular, the underlying classical dynamics is integrable (or
regular). However, a simple addition of two semicircular
segments on two opposite sides of the rectangle leads to
the stadium geometry, for which the classical dynamics
is chaotic without any stable periodic orbits. If, a small
circular region at the center of a square is converted into
a classically forbidden region (e.g., through the applica-
tion of a localized electrical potential), the domain be-
comes that of a Sinai billiard®*3°, for which the classical
dynamics is fully chaotic with all periodic orbits being
unstable. The main result of this paper is that chaos can
enhance spin polarization, a beneficial property that can
be exploited for spintronics applications.

We focus on a class of two-terminal graphene devices
with Rashba interactions occurring in the central scat-
tering region whose geometrical shape can be chosen to
yield distinct types of dynamics in the classical limit.
The shape of the scattering region is that of the cosine



billiard?¢ 39 with an upper and a lower hard boundaries
at y(x) = W + (M/2)[1 — cos (2mz/L — )] and y = 0,
respectively, for —L/2 < x < L/2. To make the scat-
tering region symmetrical, we choose the lower bound-
ary to be y(z) = £W + (M/2)[1 — cos (2mx/L — )] for
—L/2 <2 < L/2, and the lead width is accordingly 21V.
The type of the classical dynamics in the billiard can
be controlled by the parameter ratios W/L and M/L.
For example, for W/L = 0.18 and M/L = 0.11, there are
both stable and unstable periodic orbits, and the classical
phase space is mixed (nonhyperbolic) with both chaotic
regions and KAM islands. However, for W/L = 0.36 and
M/L = 0.22, all periodic orbits are unstable and the clas-
sical dynamics is fully chaotic (hyperbolic). Given a bil-
liard shape, we construct the Hamiltonian incorporating
Rashba interaction and use the Green’s function method
to calculate the conductance and spin polarization for
systematically varied strength of the Rashba interaction.
We find that, classical chaos can not only smooth the
fluctuations of the spin polarization with the Fermi en-
ergy, but more importantly, can enhance the average spin
polarization. We provide a heuristic argument based on
semiclassical theory to understand the chaos-induced en-
hancement effect.

II. HAMILTONIAN AND CALCULATION OF
SPIN POLARIZATION

In the tight-binding framework, the Hamiltonian of
the graphene system with Rashba spin-orbit interaction
(RSOI) is given'” by H = Hy + Hp, where the first and
second terms describe the electron hopping and RSOI,
respectively. The explicit forms of Hy and Hp are
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where, CZU (¢j,0) is creation (annihilation) operator,

o@) =t () or L (1), di; is the vector from site i to
site j, and (- - ), represents the z component of the vec-
tor quantity in the parenthesis. The hopping energy is
t = 2.8eV and Ag is the strength of RSOI. We define the
region with A > 0 as the RSOI region. For convenience,
we call the region for which Ar = 0 the NR region.

The spin conductance of an open NR-RSOI-NR system
can be calculated from the Green’s function technique
and the classic Landaurer-Biittiker formula
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where I'y(g) = i[X] ) =X )], and G"(@) is the retarded

(advanced) Green’s function of the central scattering re-

gion, which are given by
= (@) =[E-Ho-S;-Sp ™. (9

We use the recursive Green’s function method with high
computational efficiency*®*!. The conductance can be
obtained as30:42

(4)
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where Gri22) = Gy = Gr) + Gy and the to-
tal conductance is given by Gy = Gt + G. The non-
diagonal element G121y contains the projection of the
spin polarization into the (z,y)-plane. The spin polar-
ization P = [Py, P,, P.] can be calculated through?!:42:43
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IIT. NUMERICAL RESULTS

We vary two parameters: the Fermi energy E and the
Rashba interaction strength Agr. The range of E is be-
tween zero and a fraction of ¢, the nearest-neighbor hop-
ping energy of graphene, and the maximum value of Ag
is set to be 0.07t =~ 200meV, which is the currently ex-
perimentally achievable value?*26,

Effect of chaos and Rashba interaction on conduc-
tance and spin-polarization fluctuations. Figures 1(a)
and 1(b) show the conductance fluctuation patterns with
the Fermi energy for the nonhyperbolic and hyperbolic
dot systems, respectively, where the Rashba interaction
strength is Ag = 0.07t &~ 200meV for both cases. For
graphene quantum dots, a previous work3? that did not
treat Rashba interactions showed that, fully developed
chaos can eliminate sharp (Fano) resonances in the con-
ductance curve and lead to smooth fluctuations. Com-
paring the conductance curves in Figs. 1(a) and 1(b),
we see that the same holds: chaos can make the con-
ductance fluctuations dramatically more smooth even in
the presence of Rashba interaction. A similar behavior
occurs for all three components, [P,, Py, P.], of the spin
polarization, as shown in Figs. 1(¢) and 1(d). In partic-
ular, Fig. 1(c) exhibits Fano-like resonances in the spin
polarization for the nonhyperbolic dot system, while the
resonances entirely disappear when the classical dynam-
ics becomes hyperbolic, as shown in Fig. 1(d). Note that,
in the window of the Fermi energy from 0.16¢ to 0.19¢,
the y-component of the spin polarization for the hyper-
bolic case maintains at a stable and relatively high level:
P, ~ 0.4, but this behavior does not occur for the nonhy-
perbolic system. As we will demonstrate, this stable re-
gion leads to a markedly higher value of the average spin



| (a)

" (b)

1 1 1

1 1 1

0.16 0.2 0.24

E/t 0.16 02 0.24

FIG. 1. (Color online) The total conductance and spin polarization versus the Fermi energy for a nonhyperbolic (a,c) and a
hyperbolic (b,d) graphene quantum dot. In both cases, the Rashba interaction strength is Agr = 0.07t ~ 200meV and the
unit conductance is Gy = Zeg/h. The geometric parameters for the nonhyperbolic and hyperbolic dots are (W/L = 0.18,
M/L = 0.11) and (W/L = 0.36, M/L = 0.22), respectively, with W = 40a and @ = 0.142nm, and their dot shapes are
illustrated in the insets in (a) and (b). The dashed boundaries are symmetrical with respect to solid boundaries about y = 0,
and the scattering region is defined as the region in between the two vertical line segments. The blue, red and green curves
correspond to the x, y and z components of the spin polarization. The gray dotted lines highlight the identical locations of the

resonant peaks in the conductance and spin-polarization curves.

polarization for the hyperbolic case as compared with
the nonhyperbolic case. Note that, the results shown in
Fig. 1 are for zigzag boundaries in the horizontal direc-
tion. Since the average spin polarization is obtained over
the energy range with two transverse modes (which is not
close to the Dirac point), the edge type has little effect on
the average spin polarization. In fact, our computations
indicate that using armchair boundaries yields essentially
the same result.

To understand the effect of chaos on fluctuations in
the conductance and spin polarization, we calculate the
width of the resonances®>** from the non-Hermitian
Hamiltonian of the corresponding open system. In par-
ticular, the Hamiltonian H¢c of the central scattering
region is Hermitian with a set of real eigenvalues de-
noted as {Epa|a = 1,---, N}, where N is the size of
the Hamiltonian matrix (the number of carbon atoms
in the graphene lattice in the scattering region). For
the open system, the Hamiltonian matrix is Hy ,(Ep) =
He + 37 (Ey) + X3 (Ey), where X7 (Ey) and X5 (Ey) are
the complex self-energy matrices associated with the left
and right leads, respectively, which characterize the cou-
pling between the states in the scattering region and
those in the leads. Solving the eigenvalues of Hf,,(Fy),
we obtain a set of complex numbers {ES|ao=1,--- N},
where ES = Epo — Ay — 17a. The imaginary part of ES
characterizes the coupling strength between the states in
the scattering region and in the leads, which effectively
measures®?4® the resonance width 7. If 74 is small, e.g.,
less than 10~%¢, a sharp, Fano-type of resonance emerges
in both the conductance and spin-polarization curves. If

Yo is relatively large, e.g., larger than 1073, the conduc-
tance and spin-polarization variations would be smooth.

Figures 2(a-d) show, for the nonhyperbolic and hyper-
bolic systems, the locations of various eigenvalues E¢ in
its own complex plane, for two cases where the Rashba
interaction is absent and present with strength 0.07¢t, re-
spectively, where we choose Fy = 0.2t from the energy
range in Fig. 1. Based on values of 7,, qualitatively we
can divide the complex plane into three regions: regions
I-111, corresponding to v, < 1074, 1074 < ~, < 1073,
and 7, > 1073, respectively, which are specified with
the dashed lines. Roughly, the values of 7, in regions I
and IT correspond to the Fano-like resonances in the con-
ductance and spin-polarization curves [Fig. 1(c)], while
those in region III correspond to the smooth variations
[Fig. 1(d)]. For the nonhyperbolic dot, as shown in
Figs. 1(a,c), without Rashba interaction, some values of
~a are located in region I [Fig. 1(a)]. Generally, Rashba
interaction can increase the width of the resonanceS. In
the presence of the interaction [Fig. 1(c)], the values of
Yo tend to increase slightly, but there are still a number
of values in region II. For the hyperbolic dot, as shown
in Figs. 1(b,d), without or with Rashba interaction, no
eigenvalue is located in region I and almost no eigenval-
ues are in region II. In fact, almost all values of v, are
located in region III, giving rise to smooth conductance
and spin-polarization variations.

Signatures of the band splitting and the weak anti-
localization effects can be seen in Fig. 2, which are caused
by the RSOI. In particular, the Fano-type resonance is
caused by the interplay between the quasi discrete en-
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FIG. 2. (Color online) Width of resonance 7. for nonhy-
Y y

perbolic [squares, panels (a) and (c)] and hyperbolic [circles,
panels (b) and (d)] quantum dot systems. The Rashba in-
teraction strength is Ag = 0 for (a,b) and Ar = 0.07¢ for
(c,d). Blue and red colors correspond to the cases where the
Rashba interaction is absent and present, respectively. The
gray dashed lines divide the complex plane of E¢ into three
regions for the purpose of qualitative analysis.

ergy levels from the quantum dot and the continuous
background of the semi-infinite leads*”. As the Rashba
coupling strength is tuned up, a single discrete level splits
into two. As a result, for both nonhyperbolic and hyper-
bolic quantum dots, the number of the Fano-type of res-
onances doubles [c.f., dot doubling in Figs. 2(c,d)]. How-
ever, we note that a sharp resonance corresponds to a
pointer state in which the electrons is localized in the
dot region, but the ROSI can smooth out the resonance.
This is because of the weak anti-localization effect!9:20,
which reduces the degree of localization and consequently
broadens the width of the sharp resonances. In fact, as
can be seen from Fig. 2, comparing with the case where
there is no RSOI, the values of the imaginary eigen en-
ergies 7, with the RSOI in regions I and II are generally
higher. In general, as the electron energy is increased,
the total conductance will increase, reaching higher con-
ductance plateaus?®®.

Enhancement of spin polarization by chaos. In our
coordinate setting, the y component of the spin polariza-
tion, P,, is much larger than the x and z components.
To be concrete, we focus on P,. For both nonhyperbolic
and hyperbolic dot systems, P, fluctuates with the Fermi
energy. A surprising finding is that, for a relatively large
energy interval, e.g., 0.15 < E/t < 0.25, the average spin
polarization tends to be larger for the hyperbolic system.
For example, for Ar = 0.07¢, we have (P,) ~ 0.275 for
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FIG. 3. (Color online) Average spin polarization versus
Rashba interaction strength (a) for integrable (black dashed
curve), nonhyperbolic (blue dashed-dotted curve), and hyper-
bolic (red solid curve) quantum dots, (b) for rectangular (blue
dashed-dotted curve) and Sinai billiard (red solid curve) dot
systems. The maximum spin polarization of integrable dots,

PJ", is equal to 0.347 in (a) and 0.09 in (b). The side length

of the rectangular billiard dot is D = 118a and the lead width
is W = 6.5a. The radius of the circular hard disk in the Sinai
billiard system is R = 0.258L.

the nonhyperbolic dot and (P,) ~ 0.302 for the hyper-
bolic dot. This is indication that chaos can enhance the
average spin polarization. The average spin polarization
is obtained over the energy range covering two subbands.
The reason to choose a relatively small lead width for the
rectangular and the Sinai billiard systems in Fig. 3(b) was
to reduce the effect of the lead on the scattering prop-
erties of the specific geometric domains to maximize the
contrast between classical integrable and chaotic dynam-
ics.

To obtain a better understanding of the role of chaos in
enhancing spin polarization, we make the quantum dot
system symmetric in y so that the z- and z-components
of the spin polarization vanish, while keeping the length
of the scattering region unchanged*®. Figure 3(a) shows
(P,) versus Ap for the symmetrical hyperbolic, nonhy-
perbolic and integrable dot systems, where P, is averaged
over the energy range 0.083 < E'/t < 0.141 in which there
are two modes in the leads. As Apg is tuned up from
zero, (P,) increases initially and then plateaus at a max-
imum value. For the integrable and nonhyperbolic dots,
the curves of (P,) versus Ag are nearly identical. The
remarkable phenomenon is that the average spin polar-
ization for the hyperbolic dot is consistently larger than
that for the nonhyperbolic or integrable dots.

To demonstrate the generality of the phenomenon of
enhancement of spin polarization by chaos, we study a
characteristically different class of quantum dot systems
subject to Rashba spin-orbit interaction. In particular,
a rectangular quantum dot, as shown in the inset of
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FIG. 4. (Color online) (a) Schematic diagram of transmission

behavior at the RSOI-NR interface. (b) The y-component
of the spin polarization, Py(0), versus the outgoing angle for
Agr/E = 0.005 (blue), 0.025 (red) and 0.05 (green). Dashed
lines represent the maximum outgoing angles for different val-
ues of Ar/E.

Fig. 3(b), has classically integrable dynamics. However,
when a circular hard disk is introduced at the center of
the rectangle, the classical dynamics becomes that of the
Sinai billiard, which is fully chaotic3*3°. The lead width
is chosen to be small to minimize the effect of the leads
on the scattering properties, so as to maximize the effect
of the classical dynamics on spin transport. Calculations
show that, depending on the strength of the Rashba in-
teraction, P, can be either positive or negative. We thus
focus on (| P,|), where the average is again taken over the
energy range in which the semi-infinite leads permit two
modes: 0.696 < E/t < 0.965. As shown in Fig. 3(b),
the normalized (|P,|) values (by its maximum for the
integrable case) for the chaotic case is markedly larger
than that for the integrable case, for all possible values
of Ar. For Ar = 0.04¢, chaos induced enhancement in
the average spin polarization reaches maximum.

IV. SEMICLASSICAL ARGUMENT FOR
ENHANCEMENT OF SPIN POLARIZATION BY
CHAOS

In our system, a spin-up/down electron enters the
RSOI region from the left lead, where the Rashba inter-
action leads to spin precession. For simplicity, we assume
that each scattering event changes only the propagation
direction of the electron (as for the situation of classical
reflection) and does not affect the spin precession. Due to
the surface reflections experienced by the electron at the
hard boundaries, the electron will scatter into the right
lead with certain outgoing angle, on which the trans-
mission coeflicients ¢, », depends, where o r denote
the spin states at the left and right leads, respectively.
The angle-dependent transmission coefficients give rise
to angle-dependent spin polarization. Spin polarization
generation can then be treated as a refraction process
at the RSIO-NR interface, as shown as schematically in

Fig. 4(a).

The Hamiltonian of a Dirac fermion with RSOl is given
by H = Hy+Hg = hvp(0gke +oyky) +Ar(0z8y —$20y),
where vp is the Fermi velocity. The energy dispersion is
given by E = k for the NR region if we set A = vp = 1.
In the RSOI region, due to the Rashba effect, the energy
band splits into two subbands: ky+ = E? F EAg and
the eigen wavefunction is a linear superposition of the
+ states: Ui = cpvy + c—1p_, where cy and ¥4 are
the expansion coefficients and the eigenfunctions associ-
ated with the + states, respectively. Following a previ-
ous work?®, we set ¢y = ¢ = 1/4/2. The transmission
coefficient ¢,, ,, can then be obtained by imposing ap-
propriate boundary conditions. The three components of
the spin polarization are given by?30:43:50
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where the total conductance is given by Gior = G4 +
Gy +G 4 +Gyyp and Gopop = 62/h|thgL |2. Figure 4(b)
shows the y-component of the spin polarization, P,, ver-
sus the outgoing angle 6, where we observe a valley at
the central region. As the RSOI strength is increased,
the width of the valley in the P, curve narrows down
and the maximum value of P, gradually increases. Note
that P, (@) vanishes. For a system with an angular sym-
metry, we have P,(0) = P,(—0) and, hence, P,(0) does
not contribute to the spin polarization®3:°9.

If the electronic wavelength is much smaller than the
device size, i.e., A\c < L, the electron motion can be de-
scribed as that of a classical particle, rendering applicable
a semiclassical approximation. For a chaotic domain, its
boundary plays the role of random scattering sources for
the electron. As a result, the electron trajectories extend
all over the domain. Since the system is open, the elec-
tron has a finite average dwelling time 74,¢; in the RSOI
region. However, for a nonhyperbolic/integrable domain,
quantum pointer states®* %4 can arise. As a result, the
classical quantity 7gye; diverges. For the electrons that
do escape, the angle distribution can be characteristi-
cally different from that of the chaotic case, as shown
schematically in Figs. 5(a) and 5(b). To verify this, we
numerically calculate the distribution of outgoing angles,
£(0), for both nonchaotic and chaotic systems, as shown
in Fig. 5(c), where the classical particles are initialized
from the left lead with their incident angles and y loca-
tions chosen randomly and uniformly. We see that fy
is flatter for the chaotic domain and cosine-like for the
nonchaotic domain. A fourth-order polynomial fit of the
angle distribution gives fg = —0.0576* — 0.03302 4 0.416
and fs = 0.02460* — 0.2606% + 0.504 for the chaotic and
nonchaotic domains, respectively.
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FIG. 5. (Color online) (a,b) Schematic illustration of classical
outgoing trajectories for the nonchaotic and chaotic quantum-
dot systems. (c) Numerically obtained angle distribution
of the outgoing classical particles (blue - nonchaotic; red -
chaotic), where the green solid and brown dashed curves are
fourth-order polynomial fitting curves for the respective cases.
(d) The average y spin polarization versus the RSOI strength
(blue dashed curve - nonchaotic, red solid curve - chaotic).
The maximum average spin polarization for the nonchaotic
case is P;" ~ 0.075.

The average spin polarization can be calculated from

Om
P =55 [, SOPO®, ™

where 6,, is the maximum outgoing angle, as indicated in
Fig. 4(b). Figure 5(d) shows the average spin polarization
versus A g, where we see that for the chaotic device it has
higher values than those for the nonchaotic systems, in
agreement with the numerical results in Fig. 3(a).

Figure 6(a) shows the outgoing angle distributions for
the rectangular and Sinai billiard systems. For the for-
mer, the outgoing angle distribution is identical to that
of the incident angles. For the Sinai system, the escap-
ing probability is larger (smaller) for large (small) outgo-
ing angles. The fitting functions are f(f) = —0.1200° +
0.3630*—0.28462+0.368 and f(0) = —0.7750%+4.1426° —
7.0590% 4 3.84360% + 0.056 for rectangular and the Sinai
systems, respectively. Figure 6(b) shows the average spin
polarization versus the RSOI strength for the two cases.
In general, chaos has a more pronounced effect on spin
polarization for large outgoing angles. When the angle
distribution is taken into account, this leads to enhanced
average spin polarization.
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FIG. 6. (Color online) (a) Angle distribution of the outgo-
ing classical particles for the rectangular (blue squares) and
Sinai (red circles) dot systems, with the respective polyno-
mial fitting curves. (b) The y component of the average spin
polarization versus the RSOI strength (blue dashed curve -
rectangular dot; red solid curves - Sinai dot). The maxi-
mum average spin polarization for the rectangular system is
PJ" = 0.0024.

Would it be possible to obtain an explicit analytic ex-
pression for the average spin polarization? To address
this question, we note that, in general, the spin polariza-
tion depends on the angle in a sophisticated way, and it
seems not feasible to carry out the integration in Eq. (7)
analytically so as to obtain an explicit formula for the
average spin polarization. However, the behavior of the
average spin polarization can be assessed by numerically
integrating Eq. (7). Our results indicate unequivocally
that the average spin polarization can be enhanced by
chaos. Note that Eq. (7) is obtained based on semiclassi-
cal considerations, which is approximate with respect to
the results from the tight-binding Hamiltonian. practi-
cally, it may not be necessary to write down an explicit
formula for the average spin polarization.

V. CONCLUSION AND DISCUSSION

Quantum chaos is referred to as the study of quantum
manifestations of chaotic behaviors in the corresponding
classical system®%%, a field that has been extremely ac-
tive for more than three decades. In the past decade,
due to the tremendous development of the science of
2D Dirac materials initiated by the experimental real-
ization of graphene® 2758  relativistic quantum man-
ifestations of classical chaos® have emerged as a new
field of study3?:69 65 with the basic goal to uncover and
understand the possible role of chaos played in relativis-
tic quantum systems. From a practical point of view,
exploiting the interplay between chaos and relativistic
quantum mechanics can lead to novel ideas for develop-
ing electronic devices.

This paper investigates the role of chaos in quantum



transport in graphene systems subject to Rashba spin-
orbit interaction (RSOT), an important quantum effect in
solid state systems"2. Using the setting of a two-terminal
graphene quantum dot where RSOI occurs in the central
dot region, we focus on the average spin polarization,
a key quantity in the study of spintronic devices. By
varying the geometric shape of the dot region, we gen-
erate a spectrum of characteristically distinct classical
behaviors such as integrable (regular), mixed, and fully
developed chaotic dynamics. The quantum dot setting
thus represents a generic platform to study the interplay
among classical chaos, RSOI, and relativistic quantum
mechanics. We find that, in the presence of RSOI, chaos
can significantly reduce the sharp fluctuations in the spin
polarization (e.g., as the Fermi energy is varied) that oc-
cur when the corresponding classical system is regular.
A remarkable phenomenon is that, in the experimentally
feasible range of the variation of the Rashba interaction
strength, the average spin polarization for the chaotic
dot can be markedly larger than that for the regular or
mixed dot. We develop a semiclassical understanding
of the phenomenon of chaos enhanced spin polarization.
In particular, a key quantity that determines the average
spin polarization is the angle distribution of the outgoing
electrons at the interface between regions where RSOI is
present and absent, respectively. We find that the angle
distribution generated by classical chaos favors the spin
alignments.

Our finding has practical values for developing
graphene or other 2D Dirac material based spintronic
devices, such as nanoscale magnetic sensors using the
mechanism of the Datta-Das transistorf6:67. In particu-
lar, due to its high mobility and weak intrinsic spin-orbit
coupling, graphene can preserve the spin orientation of
spin-polarized electrons over long distances (e.g., ~ 4um
at room temperature and even up to ~ 200um at low
temperature)%73. However, for a RSOI-based graphene
device, the high spin-polarized currents can lead to vari-
able magnetoresistances when the device is connected to
a ferromagnetic material. The relatively large range of
variation in the magnetoresistances can be used to de-
velop magnetic sensors for reading magnetic information
at a higher speed.

APPENDIX: CALCULATION OF SPIN
POLARIZATION AT THE INTERFACES
BETWEEN THE FREE AND RASHBA
INTERACTION REGIONS

The continuous Hamiltonian of Dirac fermion with
RSOI is given by H = hvp(ogky + oyky) + Ar(owsy —

$30y). There are two eigenvalues: ki = VE? F EApR,
with their normalized eigen wavefunctions given by

ve= Ve[ (e Y (5507 ) 1]

T e

where Ny = 1/4/2[1 + (E/k4)?] is a normalization con-
stant and 6 =arctan(k,/k,). Due to the RSOI, the non-
diagonal elements are finite and thus the ratio of spin-up
and -down state is equal to unity. The eigen wavefunc-
tion can be written as

bra=| o | 1106 0

The ratio can thus be arbitrary.

We consider a pure spin state incident from the left
lead into the RSOI region and finally reaching the right-
hand NR region, as shown in Fig. 4(a). The wavefunction
in the RSOI and the right-hand NR regions can respec-
tively be written as

VR =44 (o) + c—_(9-)
it (=) +r-v_(—9-) (10)
o = t1o, 1(0) + 110,11 (6)-

At the RSOI-NR interface (x = 0), the boundary condi-
tion is

Vr(z) = Wi (2), (11)

leading to solutions: [ry,7—,t+.4,,t,.0,]7, where we set
cyp =c_ = 1/\/5 for the cases of o, =1 and |. As a
result, we have t,, + = t5, . Note that the coefficients
satisfy the relation 75 + 72 +2 | +17, ~c§ +c2.
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