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The electronic structure of monolayer MoS2 nanoribbons and quantum dots has been investigated
by means of an effective k · p two-band model. Both systems with borders exhibit states spatially
localized on the edges and with energies lying in the band gap. We show that the conduction
and valence band curvatures determine the presence/absence of these states whose origin has been
related to the marginal topological properties of the MoS2 single-valley Hamiltonian.

I. INTRODUCTION

Since the discovery of graphene,1 atomically thin
layered structures have attracted growing interest and
several new two-dimensional (2D) materials have been
prepared,2 including hexagonal BN and several transi-
tion metal dichalcogenides (TMDCs).3,4 There is a great
variety of TMDCs, as many metal and chalcogen atoms
can be combined to produce materials with properties
that include metallic, semiconducting, and even super-
conducting behavior; the natural diversity of these ma-
terials with different properties make them particularly
promising for electronic and optical applications.5,6 Un-
like graphene, TMDCs such as MoS2 and WS2 have a
finite band gap in the visible frequency range, which is
indirect when in bulk (many layer) form, but becomes di-
rect in the single 2D (trilayer) limit–where two S-layers
are separated by a layer of Mo or W metal atoms.7,8

The direct gap in many of these single trilayer TMDCs
makes them especially attractive candidates for optoelec-
tronic and electronic applications,9–12 such as field-effect
transistors,13–15 or photoaddressable sensors.5

Although we know a great deal about the electronic
states in single trilayers, it is important to gain a de-
tailed understanding of the electronic structure of finite
size systems such as nanoribbons and quantum dots, in
order to fully and reliably tailor the properties of dif-
ferent TMDC materials and possible devices. Several
works16–21 have reported the existence of edge states
in the gap of finite MoS2 systems under different con-
ditions. More recently, consideration of polar disconti-
nuity effects in these and stronger polar materials has
predicted the appearance of charged metallic edge states
in free-standing ribbons22,23. The presence of metallic
(dispersive) edge states in TMDCs nanostructures is es-
pecially relevant as new device geometries and interfaces
become available; they would be expected to strongly af-
fect transport and optical properties of nanoribbons and
2D interfaces.24,25

Edge or surface states also emerge in topological
insulators, as has been intensely discussed in recent
literature.26,27 In those systems, it has been well estab-
lished that the presence of edge states is a direct conse-

quence of the principle of bulk-edge correspondence:26,28

gapless states must be present at the domain wall sep-
arating two regions with different topological invariants.
Although pristine graphene is not a topological insulator
due to its weak intrinsic spin-orbit interaction, the ori-
gin and character of edge states in gapped and bilayer
graphene has been analyzed in terms of the topological
properties of the Hamiltonians for individual valleys.29,30

This analysis is made possible by the close analogy be-
tween graphene systems and 2D topological insulators.
The details of this analogy and its limitations have been
discussed in the literature, but allow one to understand
the appearance and characteristics of symmetry allowed
states at the edges of finite size systems.31 In light of
the similar hexagonal structure of graphene and TMDCs,
one may wonder if edge states in TMDCs single trilayers
could be also analyzed in terms of the topological char-
acter imparted by the structure.

In this work, we use a two-band effective k · p model
to investigate the electronic properties of MoS2 nanorib-
bons and small triangular crystallites (‘quantum dots’) as
those appearing naturally in growth chambers. We find
the generic appearance of midgap states with wave func-
tions strongly localized near the edges of the structure,
which can be clearly identified as edge states. Calcula-
tions for various sets of model parameters show that the
appearance and characteristics of edge states are con-
trolled by the curvature of the 2D ‘bulk’ band structure.
In particular, the sign of the band curvature parameters
near the edge of the valence/conduction bands is found
to be responsible for whether the edge states exist or
not, and the relative magnitude of the effective masses
determines the location of the states in the gap. As in
graphene systems,31 all of these results can be under-
stood as arising from the marginal topological properties
of the MoS2 single-valley Hamiltonians. In particular,
we demonstrate that the Chern number per inequivalent
valley is non vanishing in this structure, which suggests
the system may sustain edge states (and yet the system
is topological trivial, with overall vanishing Chern num-
ber).

We should comment that microscopic details such as
bond saturation and/or reconstruction of edges in finite
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size systems do affect the appearance and details of edge
states. However, the lattice-symmetry “protection” that
gives rise to the existence of edge states, as we discuss
here, will strengthen the occurrence of such states under
the effect of diverse microscopic details.
The remainder of the paper is organized as follows.

Sec. II presents the Hamiltonian used to describe the
MoS2 trilayers. Then, in Sec. III, we show and discuss
typical numerical results for the two different systems
under study: MoS2 nanoribbons (Sec. III A) and MoS2
quantum dots (Sec. III B), as defined by triangular crys-
tallites. Finally, conclusions are given in Sec. IV.

II. THEORETICAL MODEL

As mentioned above, single trilayers of TMDC mate-
rials such as MoS2 are composed by a layer of Mo atoms
sandwiched between two layers of S atoms. The metal
atoms in this structure present trigonal prismatic coor-
dination with the S atoms. The electronic structure of
the single trilayer has a direct gap at two non-equivalent
points K and K’ of the Brillouin zone. Several works
have derived an effective k · p model in the vicinity of
these points in order to study the low-energy physics of
TMDC monolayers.32–35 The proposed two-band Hamil-
tonian describing the valence and conduction bands up
to second order in k can be written as

H =

(

εv + αk2 τγk−
τγk+ εc + βk2

)

, (1)

where k± = kx ± iτky, and εc = ∆/2 and εv = −∆/2
are the band-edge energies with ∆ = 1.9 eV standing for
the material band gap; k is the momentum relative to
the K/K’ points. The constants α, β and γ are material
parameters, while τ identifies the valley K (τ = 1) or K’
(τ = −1).
For the sake of simplicity, trigonal warping and other

minor modifications present in the original model are ne-
glected, although their inclusion would not qualitatively
alter the main conclusions of the work presented here.
Hamiltonian (1) takes into account the electron-hole sym-
metry breaking obtained from first principles calculations
by using unlike parameters α and β. Although different
authors report different values of these parameters, some
dependent on the details of the calculations, we employ
here α = 1.72 eVÅ2, β = −0.13 eVÅ2 and γ = 3.82 eVÅ,
as fitted from DFT calculations,33 unless noted other-
wise.
Notice that (1) ignores the spin degree of freedom for

clarity of presentation. Consideration of spin-orbit cou-
pling in these materials results in effectively producing
two valence band edges, as a spin-dependent gap appears,
with corresponding spin-valley coupling in the valence
band. The conduction band in MoS2 has a sizable but
relatively weaker spin-orbit splitting.36,37 Spin-orbit in-
teractions will then result in a doubling of the states we

discuss here. We revisit this issue in the discussion sec-
tion below. We also notice that the edges of the nanos-
tructures are defined by hard-wall boundary conditions
in all simulations, and are assumed to result in no inter-
valley coupling–as expected of zigzag edges, although the
full equivalence of these conditions would require further
investigations, especially as detailed comparisons with
experiments develop.21

III. NUMERICAL RESULTS AND DISCUSSION

We study the electronic properties of two different
types of 2D nanostructures: nanoribbons, where particles
are confined in one direction, and quantum dots, where
they are confined to triangular nanocrystallites. The cal-
culations are carried out using COMSOL utilities over
a fine grid (the finest default), and converged until the
desired accuracy (typically 10−12 in the eigenvalues).

A. Nanoribbons

The nanoribbons are defined over a finite width along
the direction x in our calculations, while maintaining
translational invariance along the y direction. As such,
the momentum ky is a good quantum number and the
two-component spinor wave function of Hamiltonian (1)
can be written in the form ψ(x, y) = eikyyφ(x), where ψ
and φ have components over the c, v basis. As a conse-
quence, the eigenvalue equation of this 2D Hamiltonian
turns into a set of two coupled second-order differential
equations in one-dimension that depend on the quantum
number ky. We solve numerically these equations for an
MoS2 nanoribbon of 10 nm width, wide enough to al-
low decoupled states on both edges, as we will see. The
results obtained are summarized in Fig. 1.
Fig. 1(b) shows the calculated subband dispersion. No-

tice that the finite width of the ribbon has only slightly
opened the gap, as the effective masses near the band
edges, mv and mc, are both ≈ 0.5, and the size quanti-
zation is only a few meV. Most importantly, we find two
states inside the band gap, with a nearly linear disper-
sion. The levels cross at ky = 0 and E = 0.816 eV,
relatively close to the edge of the conduction band.
These midgap states disperse upwards in energy, close
to the conduction band for not large ky values (ky ≈
±0.05(2π/a0), see Fig. 1b), and soon admix with the
band states, becoming indistinguishable from them. For
lower energies, however, the midgap states remain well
defined and exhibit increasing edge localization, as we
will see below.
In order to study the origin of these states, and de-

pendence on band structure features, we carry out the
same calculations but for other sets of parameters than
those in Ref. 33. We only tune the α and β values since γ
does not qualitatively affect the results. In Fig. 1(a) we
exchange the signs of both α and β (α = −1.72 eVÅ2
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FIG. 1. Energy band dispersion for MoS2 nanoribbons con-
sidering different values of α and β: (a) α = −1.72 eVÅ2 and
β = 0.13 eVÅ2, (b) α = 1.72 eVÅ2 and β = −0.13 eVÅ2, and
(c) α = 1.72 eVÅ2 and β = −1.72 eVÅ2. The edges are par-
allel to the y direction, and the wave vector ky is measured
with respect to the K valley, where a0 = 3.193 Å is the lattice
constant.

and β = 0.13 eVÅ2) and observe that the states ly-
ing inside the gap disappear. In Fig. 1(c) we keep the
signs unaltered to those in panel (b) but modify β to
have the same absolute value of α (α = 1.72 eVÅ2 and
β = −1.72 eVÅ2). In this case, the two states inside
the gap are still present but they have lower energies
compared to Fig. 1(b). As expected from symmetry, the
dispersion bands now cross at ky = 0 and E = 0, since
α = β confers electron-hole symmetry to the Hamilto-
nian.
By comparing the results in Fig. 1 for the three sets

of parameters, it is clear that the presence or absence of
states inside the gap is determined by the sign of both
α and β curvatures. Midgap states exist if α > 0 and
β < 0 and are absent if α < 0 and β > 0.38 Further-
more, changes in the relative value of these two parame-
ters affect the energy of the states inside the gap. When
|α| > |β| the states are closer to the conduction band as
in Fig. 1(b), and when |α| < |β| they become closer to
the valence band.
One can qualitatively analyze this behavior in terms

of the ‘bare’ effective masses for valence and conduction
bands, as determined by the α and β coefficients. A
negative β (and corresponding negative mass ≃ 1/β) in
the conduction band is ‘inverted’, and that symmetry
is contained in the states even after the mixing due to
γ. The inverse effective masses for the full Hamiltonian
(1) near the edges are however given by 2(β + γ2/∆)/h̄2

for the conduction band, and by 2(α− γ2/∆)/h̄2 for the
valence band, and therefore dominated by the large value
of γ.
To further explore the nature of the states inside the

gap, we analyze the wave functions in Fig. 2. As an ex-
ample, we choose the states for ky = 0.01 × 2π/a0 in

Fig. 1(b), which are slightly away from the degeneracy
point, and well away from the conduction band states.
Fig. 2(a) corresponds to the lower state at E = 0.778 eV
and Fig. 2(b) to the higher one at E = 0.855 eV. We
clearly observe that both states are localized at opposite
edges of the MoS2 nanoribbon–and have opposite disper-
sion, as expected of independent edge states. We see that
the conduction band component (red dashed line) is the
dominant contribution to the wave function. Calcula-
tion of the relative weight of the two components yields
w(φc) = 93% and w(φv) = 7% for the conduction and va-
lence band components, respectively. These values can
be directly obtained from the parameters α and β us-
ing the following expressions w(φc) = |β|/(|α|+ |β|) and
w(φv) = |α|/(|α| + |β|). These expressions hold as long
as the edge states are relatively far from the bulk bands.
Notice also the asymmetry in the wave functions as seen,
for instance, in the different maximum value of |φc|

2, and
their different x-extension. This asymmetry is due to the
proximity of the conduction band. The higher energy
edge state is slightly more admixed with the bulk states
and, thus, its wave function results somewhat more delo-
calized. The asymmetry in the states continues to grow
as ky increases further.
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FIG. 2. Wave function squared modulus |φ|2 of the two states
at ky = 0.01 × 2π/a0, with energies lying in the band gap
(a) E = 0.778 eV, and (b) E = 0.855 eV. Black solid lines
correspond to the valence band component and red dashed
lines to the conduction band.

The results summarized in Fig. 1 and Fig. 2 can be
related to those coming from the model proposed by
Bernevig, Hughes and Zhang (BHZ),39 in connection
with the observation of the quantum spin Hall effect
(QSHE). In that work, the QSHE was predicted in HgTe
quantum wells larger than a critical thickness, due to a
band inversion in the low energy effective Hamiltonian.
For ∆ < 0, bands are inverted and the system shows
topological behavior. One consequence is that edge states
will form when a transition between two distinct topo-
logical phases takes place, as predicted by the principle
of bulk-edge correspondence.26 In our system, Eq. (1),
we have ∆ > 0, which is apparently trivial, although the
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sign of the bare band curvatures (α > 0 and β < 0) yields
also a situation with inverted bands. As such, the origin
of the edge states here can be analyzed in terms of the
topological character of the model in (1).
To explore this relationship further, Fig. 3 shows the

energy spectrum as a function of ∆, for a given set of α
and β parameters. The spectra shown are for ky = 0 and

band curvatures α = 1.72 eVÅ2 and β = −0.13 eVÅ2 in
Fig. 3(a), and α = 1.72 eVÅ2 and β = −1.72 eVÅ2 in
3(b). Two red dashed lines in each panel show the limits
of the band gap, for reference. In both cases shown, we
see that a trivial situation develops, with no states in the
gap, for negative ∆ values. As ∆ increases and changes to
positive values, the conduction and valence bands seem
to be similar, except for the appearance of a pair (for
ky = 0) of degenerate edge states with energies clearly
in the gap. Notice that the edge states separate from
the conduction band for larger ∆ values in Fig. 3(a), but
remain exactly equidistant from both bands for |α| = |β|
in 3(b), as expected, appearing closer to the conduction
band for more asymmetric |α| > |β| values.
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FIG. 3. Energy spectrum of a MoS2 nanoribbon as in Fig.
1, shown as a function of the bandgap ∆, for ky = 0. Two
sets of parameters are considered: (a) α = 1.72 eVÅ2 and
β = −0.13 eVÅ2, and (b) α = 1.72 eVÅ2 = −β. Red dashed
lines indicate the edges of the bandgap. Midgap edge states
appear for ∆ > 0 in both cases.

Next, we look at these results with the help of the
Chern number associated with the occupied band (topo-
logical invariant). For a two-level Hamiltonian written
in the form H(k) = g(k) · σ, where σ is a vector with
the Pauli matrices as components, the Chern number is
given by26

c =
1

4π

∫

d2k(∂kx
ĝ× ∂ky

ĝ) · ĝ , (2)

where ĝ = g/|g| and the integral is computed over the
entire Brillouin zone. For the Hamiltonian in Eq. (1),
one obtains c = τ/2

(

sgn (∆) + sgn (α− β)
)

, fully inde-
pendent of the value of γ. That means that for ∆ > 0,
one obtains c = 0 for α < β, while c = τ for α > β. A

non zero value of c suggests that a topological invariant
is present, and this goes along with the previous discus-
sion based on band inversion arguments. It is important
to note, however, that the contribution of the K and K’
valleys to the topological invariant has opposite signs,
which produces an overall c = 0. As a result, one can
strictly state that multivalley materials such as graphene
or MoS2 are topologically trivial.
In spite of the strict trivial topology of Eq. (1), a non-

vanishing c for a single-valley can be associated with
marginal topological properties, in analogy with topologi-
cal insulators.31 This analogy has however important lim-
itations. Since c per valley is not a well-defined topolog-
ical invariant, c 6= 0 does not guarantee the existence of
edge states at the boundaries with the vacuum. Further-
more, and perhaps most important, is the fact that if edge
states are present, they are not topologically protected
against backscattering and can then be affected by any
type of disorder and/or valley coupling. Nevertheless, it
is the case that edge states in bilayer graphene have been
shown to be robust under moderate disorder,29 and to ex-
hibit pure valley currents, as indicated by the local valley
Berry curvature and associated Chern number.40,41

We should also comment that although, for simplicity,
we have suppressed the spin degree of freedom in these
calculations, its role can be easily established. The pres-
ence of spin clearly results in two edge states per border of
the structure, instead of the single state presented above–
see Fig. 1(b). As the spin-orbit interaction in the valence
band is large (yet much smaller than the bandgap, and
diagonal, pinning the spin projection to each of the val-
leys), the two edge states on the same border but different
spin projection appear slightly shifted in energy and min-
imally different dispersion (not shown). This simple du-
plication of edge states with different spins and energies
would of course be strongly affected if the edges couple
valleys, something that will depend on the border termi-
nations and corresponding boundary conditions.18,21

B. MoS2 triangular quantum dots

We next investigate the electronic properties of MoS2
quantum dots formed by finite size flakes, using our
Hamiltonian model and appropriate boundary condi-
tions. Similar structures have also been studied by differ-
ent approaches in the small-crystallite regime42,43. The
flakes are equilateral triangles, as it is a commonly syn-
thesized shape.44–47 In this case, carriers are confined in
the two directions of space and we must numerically solve
the coupled differential equations in two variables in or-
der to find eigenvalues and eigenfunctions of the Hamilto-
nian. In the results that follow, Fig. 4, the quantum dot
side length is 10 nm, and we employ the same parameters
as in the previous section–see Fig. 1(b).
The results obtained for this system show the presence

of several states with energies in the gap. They can be
seen as the result of the discretization of the edge states
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FIG. 4. Wave function squared modulus of selected states
with energies close to the conduction band. Left and right
columns illustrate the valence |φv |

2 and conduction band |φc|
2

components, respectively. Different states are arranged in
rows with increasing energy: (a)-(b) E = 0.907 eV, (c)-(d)
E = 0.962 eV, (e)-(f) E = 1.015 eV, (g)-(h) E = 1.022 eV,
(i)-(j) E = 1.057 eV and (k)-(l) E = 1.100 eV. As before,
|φc|

2 components are generally larger for these states, close
to the conduction band.

along each border, which are then hybridized near the
corners of the flake. We illustrate this behavior in Fig. 4,
where the squared modulus of the wave function for a
selection of states with energy close to the conduction
band (E ≈ 0.95 eV) is shown. We choose this range of
energies because we know that for α = 1.72 eVÅ2 and
β = −0.13 eVÅ2,33 the edge states are closer to the con-
duction band. By gradually increasing energy, we also get
to compare the clearly ‘bulk’ and edge states in the flake.
In Fig. 4(a)-(d) we can see that the first two states are
clearly edge states with wave functions localized near the

triangle border, with similar appearance to that shown
in Fig. 2 near each of the edges. The next two states
in energy, Fig. 4(e)-(h), also show wave functions mainly
near the edges, but noticeably more delocalized than the
previous two. This suggests that the edge states are par-
tially admixed with the bulk conduction band, due to
their energy proximity. Finally, Fig. 4(i)-(l) shows two
conduction states with wave functions completely delo-
calized over the entire triangular quantum dot. A rep-
resentation of the real and imaginary parts of the wave
functions (not shown) allows one to see the wave function
nodes more easily, and see that their number increases
with the energy of the states, an expected signature of
quantization.
We should emphasize that we have also found the same

pattern of edge states appearing for the curvature param-
eters as in the case of nanoribbons. As such, one can also
invoke the marginal topological character of the Hamilto-
nian as the origin of edge states in these zero-dimensional
nanostructures.

IV. CONCLUSIONS

The low-energy electronic structure of monolayer MoS2
nanoribbons and quantum dots has been investigated us-
ing an effective two-band k · p model. We have shown
that both systems present edge states with energies in
the gap. Nanoribbons exhibit only one state per edge
at a given value of the quantum number ky, while in
quantum dots, due to full confinement, the edge states
appear distinctly away from the states that would form
the subband continuum in a large triangular flake. As
the energy of the edge states increases, for both nanorib-
bons and quantum dots, the edge states hybridize with
the ‘bulk’ and cease to be so well-localized near the edges
of the structure.
We have also found that the curvature of the bands,

represented by parameters α and β, determine the pres-
ence (α > 0 and β < 0) or absence (α < 0 and β > 0)
of edge states as well as their energy. This behavior is
reminiscent of the marginal topological properties of ma-
terials such as MoS2, as the Chern number per valley
is indeed non-zero, reflecting a finite Berry curvature in
each valley. Similar results are of course expected for
other TMDC nanostructures, as long as the relative band
curvature parameter signs are similar to those presented
here.
We should emphasize that first principles calculations

are typically used to determine continuum model param-
eters. As the former may depend on functionals and
other details of the calculations, the latter may indeed
vary among different implementations and/or authors.
In fact, some fittings result in values of α and β that
are indeed substantially different, and for which the edge
states we discuss here are not apparent.33 It is also clear
that tight-binding parameterizations may similarly allow
for the presence of edge states, as explicitly seen in the
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literature.19 These edge states, however, are found to be
rather robust and to exist over a wide range of parame-
ters. Similar conclusions have been reached in a recent
preprint.48

We draw attention of the reader to the issue of atomic
reconstructions and bondings in real crystallites. Such
microscopic effects would surely modify the detailed edge
state dispersions and characteristics of the states we have
discussed here. Polarization and charge compensation
may even result in interesting charged edge states, un-
like those we have discussed.22,23 It would be interest-
ing to explore both theoretically and experimentally how
truly robust these edge states are in nanoribbons and
other natural structures with edges, and understand how

the different effects compete. Exploring what observ-
able consequences they have on the effective trapping of
photo-activated carriers and excitons, or how they mod-
ulate the interaction between adsorbed/embedded impu-
rity atoms, may provide further insights into the appear-
ance of edge states in these systems.

ACKNOWLEDGEMENTS

This work was supported by Spanish FPU Grant
(CS). Support from NSF grant DMR-1508325 (SEU),
UJI Project No. P1.1B2014-24 and MINECO Project No.
CTQ2014-60178-P (JP) is acknowledged.

1 K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang,
Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A.
Firsov, Science 306, 666 (2004).

2 K. S. Novoselov, D. Jiang, F. Schedin, T. J. Booth, V. V.
Khotkevich, S. V. Morozov, and A. K. Geim, Proc. Natl.
Acad. U.S.A. 102, 10451 (2005).
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33 A. Kormányos, V. Zólyomi, N. D. Drummond, P. Rakyta,
G. Burkard, and V. I. Fal’ko, Phys. Rev. B 88, 045416
(2013).

34 H. Rostami, A. G. Moghaddam, and R. Asgari, Phys. Rev.
B 88, 085440 (2013).
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