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Abstract

III-Nitride quantum dots have emerged as a new chip-scale system for quantum information

science, which combines electrical and optical interfaces on a semiconductor chip that is com-

patible with non-cryogenic operating temperatures. Yet most work has been limited to optical

excitations. To enable single-spin based quantum optical and quantum information research, we

demonstrate here quantized charging in optically active, site-controlled III-Nitride quantum dots.

Single-electron charging was confirmed by the voltage dependence of the energy, dipole moment,

fine structures and polarization properties of the exciton states in the quantum dots. The fun-

damental energy structures of the quantum dots were identified, including neutral and charged

excitons, fine structures of excitons, and A and B excitons. The results lay the ground for coherent

control of single charges in III-Nitride QDs, opening a door to III-Nitride based spintronics and

spin-qubit quantum information processing.
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Charge-tunable semiconductor quantum dots have been an important systems in quan-

tum information science and technology1,2. This is because they uniquely provide a chip-

scale platform of long-lived single spins3 with an ultrafast optical interface via the exciton

transitions4–9. However, most work has been performed on self-assembled III-Arsenide QDs,

which are intrinsically limited to cryogenic operating temperatures. The random positioning

of these QDs also limits their scalability.

Recently, wide-bandgap III-Nitride QDs have emerged as an alternative semiconductor

system with the potential for higher operating temperatures, better scalability and longer

spin relaxation times. Single photon emission has been reported at high temperatures10,11,

from site controlled structures11–13, and with pre-defined polarizations14,15. Exciton Rabi

oscillation at low temperatures was demonstrated recently with potential applications as

an exciton qubit16. Coulomb blockade was also observed in electrical devices via transport

measurements17. However, no work has been reported to date on their potential to host

optically-coupled spin-qubits for quantum information processing, a prerequisite of which is

charge-tuning of optically active QDs.

In this work, we demonstrate quantized charge-tuning of an optically stable site-controlled

InGaN/GaN QDs, confirmed via discrete changes in the emission energy, permanent dipole

moment, and spin-orbit interactions in the excitonic excitations. Furthermore, the charge-

control of the QDs, together with the high optical quality, allowed us to unambiguously

identify the basic energy structures of the QDs, including simultaneous identification of the

exciton fine-structures, the exciton and trion splitting, and the A- and B-exciton splitting.

Quantitative knowledge of the exciton fine-structures, in particular, is crucial for entangle-

ment generation using QDs. These results are enabling steps toward coherent control of

single charges in III-Nitride QDs and III-Nitride based spintronics and spin-qubit quantum

information processing.

To enable both electrical and optical controls efficiently and reproducibly, we used In-

GaN QDs created by a top-down approach13,18 in a compact nano-wire structure without a

wetting layer, as shown in Fig. 1. For electrical control, these QDs allow a similar planar

junction as widely used III-N light-emitting diodes with low serial resistance and no wetting-

layer induced leakage current. For optical control, fast single photon emission has been

demonstrated free from background luminescence typically associated with wetting-layers13.

Moreover, with the position and size of the QDs controlled to within a few nano-meters13,18,
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each individual QD can be identified, isolated and repeatedly accessed.

Single electron charging was achieved based on Coulomb blockade when the electron

quasi-Fermi level EFn was tuned across quantized conduction-band states in a QD. To illus-

trate this process, we simulated the voltage-controlled carrier concentrations and the Fermi

energies of the conduction band (CB) and valence band (VB), EFn and EFp (Appendix B).

We solve first the three-dimensional (3D) strain distribution and then self-consistently the

band structure and drift-diffusion equations19. As shown in Fig. 1(c) and 1(d), at a negative

or very small positive bias voltages Vbias, EFn lies below the single-electron charging energy

E− and the QD is neutral. When Vbias is increased such that EFn > E−, an electron can tun-

nel from n-GaN into the QD. The presence of an electron inside the QD prevents additional

electrons from entering the QD due to Coulomb blockade. Hence the QD will stay singly

charged until Vbias increases further to overcome the Coulomb blockade, reaching above

the two-electron charging energy E2−. Corresponding to the different charge occupations

of the QDs, neutral or charged excitons are created under optical excitations (lower-right

panels in Fig. 1(c), 1(d)). They feature different energies, permanent dipole moments and

degeneracies, providing experimental signatures for the charge occupation in the QD.

To create the electrically-controlled InGaN QDs, single InGaN/GaN quantum well was

patterned via electron-beam lithography followed by reactive-ion etching18 and selective wet-

etch in buffered KOH solution20. To create the electrical contacts, the nanowires were first

planerized by a 580 nm thick spin-on-glass, which was then etched back using CF4-CHF3

plasma to expose 30 nm of p-GaN layer. A semi-transparent indium-tin-oxide p-contact was

then deposited by DC sputtering, patterned using HCl and annealed at 400 ◦C for 5 minutes

in forming gas. Both n- and p-contacts were metalized using Ti/Au (25 nm/500 nm) pads.

In this structure, the positions and sizes of the QDs are precisely controlled to within a few

nanometers13,18. Hence each individual QD can be identified, isolated and repeatedly ac-

cessed. There was no wetting layer, and thus no leakage current or background luminescence

was measured.

To characterize the optical properties of the QDs, we used a confocal micro-photoluminesence

(µ-PL) setup to isolate PL from single QDs with 0.8 µm spatial resolution and 170 µeV

spectral resolution at 3 eV13. Polarization-dependent PL measurements were performed

using a rotating half-wave plate and a fixed polarizer. The sample was kept at 10 K in a

He-flow cryostat with voltage feed-through ports and was excited by a 370 nm femtosecond

3



pulsed laser. To allow µ-PL study of single QDs, an array with a QD-QD spacing of 20-µm

was used.

Figure 2 shows the photoluminescence (PL) spectra of A-excitons from two QDs, QD1 and

QD2, versus the bias voltage Vbias. The voltages are corrected from the laser induced photo-

voltage21 as described in Appendix A. Discrete emission bands were observed, corresponding

to different charging states of the QD. No emission was observed at large negative bias. With

Vbias increased to above −0.6 V, emission from neutral exciton X0
A was observed from QDs

that were initially empty. With Vbias increased to V1 ∼ 0.25 V, the emission peak red-shifted

suddenly, showing that one electron tunneled into the QD. The energy E1−
A of the singly

charged-exciton X1−
A was lower compared to X0

A, suggesting that the attractive Coulomb

interactions between two electrons and one hole in the QD exceeded the repulsive Coulomb

interaction between the two electrons. With Vbias > V2 ∼ 0.8 V, an additional peak X2−
A

appeared at an energy higher than E1−
A , corresponding to the tunneling of an additional

electron into the QD, which introduced strong repulsive Coulomb interaction among the

electrons. The co-existence of multiple emission peaks at Vbias ∼ V1 and V2 was due to

charges co-tunneling between the GaN barrier and the QDs22.

Due to the tight confinement in a QD, even single charge occupation can change signifi-

cantly the internal electric field and thus the exciton static dipole moment and the exciton

energy, which we can obtain from the voltage dependence of the exciton energy. As shown

in Fig. 2(b) and 2(e), the exciton resonances red-shifted super-linearly with an increasing

Vbias, suggesting enhanced quantum confined Stark effect with changing internal electric

field. The total electric field Ftot in the QD consists of two components: a fixed internal po-

larization field Fpol and a voltage-dependent external field Fpin across the p-i-n junction. Fpol

originates from the piezoelectric and spontaneous polarization charges at the InGaN/GaN

interfaces; it is determined by the composition and structure of the QD and is independent

from Vbias. Fpin is due to the separation of the electrons and holes across the p-i-n junction;

it varies linearly with Vbias as Fpin = Fpin0 − ηVbias. From numerical simulations, we found

Fpol = −1.6 MV/cm at the center of the QD, pointing from p-GaN to n-GaN as denoted by

the negative sign, Fpin0 = 0.55 MV/cm, and η = 0.16 × 106/cm (Appendix B). Within the

range of Vbias measured (Fig. 2), |Fpol| ≫ |Fpin|. Hence the exciton’s static dipole moment
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µz points opposite to Fpin and increases linearly with increasing Vbias according to23:

µz(Vbias)− µz0 = αz(Fpin − Fpin0) = −αzηVbias. (1)

Here αz is the polarizability in the z-direction, and µz0 = µz(0) is the permanent dipole

moment at zero bias. Correspondingly, the exciton energy shifts by

∆E(Vbias) = −µzFpin + µz0Fpin0

= (µz0 + αzFpin0)ηVbias − αzη
2V 2

bias. (2)

Fitting the measured exciton energy E vs. Vbias from Fig. 2(b) and 2(e) with equation (2),

we obtained µz0 and αz for each excitonic state as labeled by the two numbers (µz0, αz) in

the parentheses in Fig. 2(c) and 2(f). µz0 were negative, suggesting that the electrons and

holes were concentrated at the top and bottom of the InGaN/GaN interfaces, respectively,

consistent with the numerically calculated ground state electron and hole envelope functions

(Appendix B). The magnitudes of µz0 were around 30 eÅ, consistent with the thickness of

the InGaN layer of 30 Å. The polarizability αz have values of ∼ 300 meV/(MV/cm)2, or

4× 104 Å
3
in cgs units, comparable to values reported from other semiconductor QDs24,25.

With the values of µz0 and αz measured above, we obtained µz vs. Vbias as plotted in

Fig. 2(c),2(f). At Vbias = V1, accompanying the jump of the exciton emission energies from

X0
A to X1−

A , the magnitude |µz| dropped suddenly by about 10 eÅ. This was also manifested

in Fig. 2(a), 2(b), 2(d), 2(e), where the slope of the exciton energy vs. the voltages changed

suddenly from the X0
A band to X1−

A band. The change in µz0 suggests that, when an electron

tunnels into the QD, it effectively screens the internal electric field of the QD and brings the

electron and hole envelope functions of an charged exciton closer to the center of the QD

through Coulomb interactions.

To further confirm single electron charging of the QD, we measured the energy degen-

eracies of the exciton states by polarization-resolved PL. As shown in Fig 3, the PL of X0
A

consisted of two orthogonally polarized peaks with slightly different energies, while no en-

ergy difference could be measured between the two polarizations of X−1
A emission. These

features were measured more accurately by the integrated PL intensity I and the shift of

the exciton energy ∆E vs. the polarization angle θ. Both X0
A and X−1

A exhibited a high

degree of linear polarization as shown by the sinusoidal oscillation of I vs. θ (Fig. 3(c),

3(e)). For X0
A, the same oscillation was also measured for ∆E vs. θ, clearly revealing an
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energy shift between the two polarizations (Fig. 3(d)). Fitting the data with a sinusoidal

function yields the energy shift to be 370± 120 µeV, in agreeement with previous reported

values for confined InGaN/GaN nanostructures26. In contrast, no significant energy shift

was observed for the charged exciton at different polarization angles (Fig. 3(f)).

To understand the polarization resolved measurement above, the energy levels and po-

larization states of neutral and charged QDs are illustrated in Fig. 4. The lowest optical

excitations in III-Nitride QDs correspond to the pairing of an s-orbital electron from the

conduction band and a p-orbital hole from the A or B valence band, each with a two-fold

degeneracy. The splitting between the A and B valence bands is mainly due to the spin-

orbital interaction27. Due to fabrication uncertainties, the QDs have slightly elliptical shapes

and thus anisotropic strain distributions. Hence the two-fold degenerate A- and B- excitons

have nearly linear polarizations, parallel and perpendicular to the elongated direction (x) of

the QD, respectively28,29. In a neutral QD, the two-fold degeneracy is further lifted by the

electron-hole Coulomb exchange interactions, resulting in the fine structure splitting (FSS)

of the neutral excitons30as was observed for X0
A in Fig. 3(d). In contrast, in a singly nega-

tively charged QD, trions created by optical excitations have two conduction-band electrons

forming a singlet with a total spin of zero. As a result, the electron-hole Coulomb exchange

interaction vanishes and FSS becomes absent. This explains the suppressed energy shift

observed for X−1
A in Fig. 3(f).

By changing the QD’s charge occupation, we were also able to distinguish the FSS from

the A- and B-excition splitting. It has been difficult to distinguish them using neutral QDs

because, similar to the fine structures, the A- and B-excitons have different intensities and

orthogonal nearly-linear polarizations28–30. This was illustrated in Fig. 4 and observed in the

A- and B-exciton PL spectra (Fig. 5(a)). Moreover, the values of FSS and A- and B-exciton

splitting could both be about 10 meV31. Hence unambiguous identification of FSS has been

challenging. Here, when we change the QD from neutral to singly-charged, however, the

FSS became suppressed while the A- and B-exciton splitting remained at about 20 meV

(Fig. 5(b)). Hence the FSS from the A- and B-exciton splitting were clearly separated.

Finally, we distinguish the FSS or the A-B exciton splitting from the exciton-biexciton

splitting. Orthogonal polarizations were measured between the fine structures and between

the A- and B-excitons, while the same polarizations is expected for exciton and biexciton

of the same branch26. In addition, as shown in Fig. 5(c), the integrated intensities of both
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the X0
A and X0

B were approximately linearly dependent on the excitation density P for

P < 150 W/cm2, as expected of excitons and distinct from the P 2 dependence expected of

bi-excitons.

In conclusion, we have demonstrated quantized charge tuning in site-controlled single

InGaN/GaN QDs. Tunneling of an electron into an initially empty QD was controlled by an

applied bias voltage and was manifested in discrete changes in the transition energy, static

dipole moment and degeneracy of the corresponding excitonic state. The ability to control-

lably charge an optically active QD with a single spin will allow the creation of Lambda-level

system in the QD and thus coherent manipulation of the spin qubit, storage of quantum in-

formation in the spin-qubit and further quantum information processing. The charge-tuning

capability also allowed us to unambiguously identify and measure the fine structure splitting

of the neutral exciton, simultaneously with the A- and B-exciton splitting and exciton-trion

splitting. Such knowledge of the basic energy structure of the QDs provides experimen-

tal tests to previous theories regarding exciton charging and fine structures in III-Nitride

QDs28–30, and is crucial for spintronics and spin-qubit quantum information processing, such

as entanglement generation.

Appendix A: Photovoltage correction

Optical excitation generates free electrons and holes in the p-i-n junction region. Electrons

and holes drift towards n-GaN and p-GaN, respectively, due to the built-in potential in the

p-i-n junction. This photo-current results in a positive photo-voltage, i.e., p-contact has

higher voltage than n-contact. As a result, the voltage-dependent PL energy (E-V ) traces

are shifted towards lower bias as the optical excitation power increases. This is shown in

Fig. 6(a) in which the E-V traces from the same QD are taken at different excitation power

densities P . The same phenomenon has been observed in III-As based charged-tunneling

diodes21. The external voltage V1 required for the X0
A → X1−

A transition in QD1 at different

P ’s are extracted in Fig. 6(b). The extrapolated V1 at P = 0 is the intrinsic bias voltage

needed for X0
A → X1−

A transition. Different QDs have different V1-P relation, so all Vbias

values presented in the main text have been corrected according to their own V1-P data.
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Appendix B: Strain and band profile simulation

The strain, band profiles and charge distribution of the device is calculated using a soft-

ware package TiberCAD. The nanowire used in the simulation has a hexagonal cross section

as shown in Fig. 7(a). The acceptor and donor densities in p- and n-GaN are 1× 1019 cm−3

and 6 × 1018 cm−3, respectively. They are obtained from the room temperature carrier

concentrations p = 5 × 1017 cm−3 and n = 1.5× 1018 cm−3 according to Hall measurement

and assuming acceptor and donor levels being 150 meV32 and 15 meV33, respectively. The

hexagonal cross section is due to the selective wet-etching. We first calculate the strain

distribution in the nanowire as shown in Fig. 7(b). The results suggest a strong strain relax-

ation at the edge of the InGaN nanodisk. The strain distribution is then used to calculate

the bandgaps and polarization charges which are used in the subsequent calculation of band

profiles by solving the Poisson and drift-diffusion equations. The conduction and valence

band profiles along the central axis of the nanowire are shown in Fig. 1. The internal polar-

ization field Fpol at the center of the QD is obtained from the polarization charge density to

be 1.6 MV/cm pointing downward. Due to the non-uniform strain distribution in Fig. 7(b),

the band profiles and electrical field close to the nanowire sidewalls are different from those

at the center of the nanowire. However, since electron and hole wavefunctions are concen-

trated at the center of the InGaN nanodisk (Fig. 7(c)), the behavior of the carriers in the

QD can be well understood using the results obtained at the center of the nanowire.

As mentioned in the main text, the p-i-n junction has a built-in electric field Fpin due to

majority carrier diffusion. The electron (n), hole (p), ionized donor (N+
d
), and ionized accep-

tor (N−

a
) concentration at zero bias are shown in Fig. 7(d). The shadowed area represents

the net positive charge concentration below the InGaN nanodisk, the gray area represents

net negative charge concentration above the InGaN nanodisk. The Fpin can be calculated

as following,

Fpin =
1

2ǫ
(σ+ + σ−)

=
1

2ǫ

(
∫

N+
d
− ndz +

∫

N−

a
− pdz

)

, (B1)

where ǫ is the permittivity of GaN. The calculated Fpin at various bias voltages Vbias is

shown in Fig. 7(e). It fits very well with a linear function Fpin = Fpin0 − ηVbias, where

Fpin0 = 0.55 MV/cm and η = 0.16× 106 /cm.
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FIG. 1. The sample structure and operating principle. a, 45◦-angle SEM image of an array of

four nanowires before the fabrication of electrical contacts. Single QDs are located in the middle

of the nanowires. b, A schematic plot of a single QD diode. The 3-nm thick In0.15Ga0.85N QD

is sandwiched by a 50-nm thick Mg-doped GaN (p-GaN) and 80-nm thick i-GaN layer at the

top, and a 10-nm thick i-GaN and 90-nm thick Si-doped GaN (n-GaN) layer at the bottom. c,d,

Calculated conduction band (CB) and valence band (VB) profiles along the growth direction (z-

axis) at Vbias = −1 V and 1 V, respectively. The lower-left panels are zoomed-in view of the CB

near the InGaN region, illustrating single electron (e−) charging as the electron quasi-Fermi level

(EFn) moves above the first charging energy E−. The lower-right panels illustrate the ground and

excitonic states of the neutral (c) and charged (d) QDs.
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FIG. 2. Voltage-dependent PL spectra, peak energies and static dipole moments of the excitons

from two QDs, QD1 (a-c) and QD2 (d-f). a,d, The µ−PL spectra vs. the bias voltage Vbias,

showing discrete bands corresponding to neutral and charged A- and B- excitons. b,e, The emission

peaks extracted from a and d, respectively. The solid curves are parabolic fits using equation (2),

which yield the dipole moment µz0 at Vbias = 0 and polarizability αz. c,f, µz vs. Vbias obtained

using equation (1) and the fitted values of µz0 and αz). For each state, the µz0 in eÅ and αz in

meV/(MV/cm)2 are labeled in the figure in the parentheses as (µz0, αz).
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FIG. 3. Fine structures of the excitons by polarization-dependent PL of QD2. a, PL spectra of X0
A

(Vbias = 0 V) and X1−
A (Vbias = 0.5 V) with x-polarization (solid lines) and y-polarization (dashed

lines). The x direction was chosen as the direction of maximal X0
A intensity. b, The normalized

spectra of a for easier visualization of any spectral shift between the two polarizations. c,d, The

integrated intensities I and energy shifts ∆E of X0
A vs. the polarization angles θ. e,f, The I and

∆E of X1−
A vs. θ. The error bars in ∆E as shown in d and f are from Gaussian fits of the PL

peaks. The solid lines in c-e are independent fits using a cos2(θ− θ0)+ b sin2(θ− θ0), with a, b and

θ0 as the fitting parameters. The solid line in f marks the average value.
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FIG. 4. Illustration of spectral splitting and polarization due to spin-orbital interactions, QD

anisotropy and electron-hole exchange interactions in III-Nitride QDs30. The blue and red spectral

peaks denote neutral and charged exciton emissions, respectively. The solid, up-ward (dashed,

down-ward) peaks denote the x-polarized (y-polarized) exciton emission, and the height of the

peak indicates the relative oscillator strength or the emission intensity.
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FIG. 5. A-B exciton splitting in QD1. a, PL spectra of A- and B-excitons in neutral QD1 at

Vbias = −0.04 V for the x-polarization (solid line) and y-polarizations (dashed line). b, PL spectra

of A- and B-excitons in neutral (red) and charged (blue) QD1 at Vbias from -0.58 V (bottom) to

0.70 V (top). c, The integrated intensity of X0
A and X0

B at Vbias = −0.04 V vs. the excitation

densities.
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FIG. 6. The photo-voltage effect. (a) PL energy E vs. uncorrected voltage V at excitation power

densities P = 50, 85, and 125 W/cm2, respectively. (d) The X0
A → X1−

A transition voltage at the

three P ’s. Solid line is a linear fit.
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FIG. 7. Strain, wavefunction and charge distribution simulation. (a) The structure of the nanowire.

(b) ǫxx strain distribution near the InGaN nanodisk. (c) The cross section view of electron and

hole ground state wavefunctions at bias voltage Vbias = 0 V normalized by their own maximum.

For better comparison, electron (hole) wavefunction is not shown in the xz (yz) cross section.

(d) The n (thick solid), N+
d

(solid), p (thick dashed), and N−

a (dashed) distribution along the z

direction at the center of the nanowire. The top color bar shows the locations of different nanowire

sections. The shadowed and gray area represent net positive and negative charge concentrations,

respectively. (e) Calculated Fpin at different bias voltages Vbias (square) and the linear fitting line

(solid).
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