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We formulate a spin-polarized van Leeuwen and Baerends (vLB) correction to the local den-
sity approximation (LDA) exchange potential [Phys. Rev. A 49, 2421 (1994)] that enforces the ion-
ization potential (IP) theorem following Stein et al. [Phys. Rev. Lett. 105, 266802 (2010)]. For
electronic-structure problems, the vLB-correction replicates the behavior of exact-exchange poten-
tials, with improved scaling and well-behaved asymptotics, but with the computational cost of
semi-local functionals. The vLB+IP corrections produces large improvement in the eigenvalues
over that from LDA due to correct asymptotic behavior and atomic shell structures, as shown on
rare-gas, alkaline-earth, zinc-based oxides, alkali-halides, sulphides, and nitrides. In half-Heusler al-
loys, this asymptotically-corrected LDA reproduces the spin-polarized properties correctly, including
magnetism and half-metallicity. We also considered finite-sized systems [e.g., ringed boron-nitirde
(B12N12) and graphene (C24)] to emphasize the wide applicability of the method.

PACS numbers: 71.20.Mq,71.20.Nr,73.20.At,71.20.-b

I. INTRODUCTION

Density functional theory (DFT)1–4 is the most widely
used methods to explore electronic binding in mate-
rials, and uses approximate functionals for exchange-
correlation (XC) energy calculation. Foremost among
them is the local density approximation (LDA),5 which,
over the years, has been improved substantially by de-
veloping generalized gradient-corrected approximation
(GGA) functionals.6,7 While these functionals have been
quite successful in predicting a large number of properties
and are used widely for large systems (due to their com-
putational efficiency and reasonable accuracy), almost all
semi-local functionals fail measurably in predicting the
correct band gaps. Attempts have been made to improve
band-gap prediction using semi-local approaches, such as
Self-Interaction Correction (SIC) method,8–10 and DFT
plus Hubbard corrections (DFT+U).11 Other commonly
used approaches are GW approximation,12–17 and hybrid
functionals.18,19 However, they are often limited to small
system sizes due to their large computational demand.
One significant reason for the partial failure of semi-local
XC potentials is their inability to describe the correct
asymptotic behavior,10 leading to qualitatively incorrect
results for properties sensitive to the asymptote, e.g., the
fundamental gap20–23 and ionization potential.24

The poor band-gap predictions in solids using semi-
local functionals is understood to arise from the failure
to describe correctly the discontinuous jump ∆xc (a con-
stant) in Kohn-Sham (KS) potential as the electron num-
ber crosses an integer value.20–23,25 From the continuity
of KS orbitals across this jump,20–23,25 it directly fol-
lows that ∆xc = Eg − EKSg , where the fundamental gap
(Eg ≡ I −A) is the difference between the ionization po-

tential, I, and the electron affinity, A, while the KS gap
(EKSg ≡ εLU − εHO) is the difference between the lowest-
unoccupied (LU) and highest-occupied (HO) eigenvalues.
Any error in ∆xc (including asymptotic behavior) leads
to large deviation from the ionization potential (IP) the-
orem and underestimation of Eg.

20–23,25 Exact-exchange
(EXX) functionals possess ∆xc by construction.1,26,27

Kotani implemented EXX in the KS framework for solids
and showed substantial improvement in Eg and asymp-
totic behavior of the potential.28 Following this, many
attempts were made to mimic EXX behavior with semi-
local functionals.29–33 The van Leeuwen–Baerends (vLB)
correction to LDA-exchange used for atoms is one such
approach; orbital eigenenergy differences calculated using
this approach are close to atomic excitation energies.34–36

Recently, Kraisler and Kronik25 showed that all XC
functionals (local, semi-local, and non-local) generally
possess a non-zero ∆xc, and addressed the estimation of
Eg within approximate density functionals from ensemble
considerations. For finite systems (including small peri-
odic cells) they showed that ∆xc from semi-local func-
tionals dramatically improves the predicted Eg, even for
LDA; however, as the system is extended (i.e., large su-
percells), the ensemble correction for LDA vanishes. The
main difficulty arises because the HO and LU orbitals
are delocalized whereas the XC kernel is very localized
in semi-local cases. To avoid addressing the highly non-
local kernels, an alternative is to localize the HO and LU
orbitals, such as by dielectric screening,37 SIC, or use
of small cells (an uncontrolled localization). An alter-
native is to impose the asymptotic behavior in a solid
locally as part of the electronic-structure method, as eas-
ily implemented in site-centered basis-set methods using
vLB-correction for solids.
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Using the Harbola-Sahni (HS) exchange-potential38

and vLB correction,34 we have previously established
that correcting asymptotic limits of exchange-potential
leads to significant improvement in semiconductor band
gaps.39,40 Here, the vLB-corrected LDA34 is much easier
to apply because it can be written in terms of the sys-
tem density. The vLB-correction34 is constructed along
the lines of the Becke-functional,41 and makes the XC-
potential go asymptotically as −1/r “far” from the atom-
center but still inside the crystal, which must be the lo-
cal interstitial region surrounding each atom in the solid,
and which also defines the local crystal potential zero (to
solve accurately the microscopic electrostatics). This ap-
proach may be connected (Section II) to range-separated
functionals that invoke the asymptotic condition −1/(εr)
involving the dielectric function (ε) of the solid.43–45

In this paper, we implement a spin-polarized version
of vLB-correction to the short-range part of LDA ex-
change, which is similar to the modified-LDA,31 rather
than the full range addressed in range-separated hy-
brid functionals.43–45 We apply it to a wide range of
materials with varying crystal structures, e.g., rare-gas
solids, nitrides, oxides, sulphides, ternary half-Heusler
alloys and some finite size systems. In particular, we
address wurtzite-ZnO, spin-polarized, half-Heusler (C1b)
FeMnSb, and two-dimensional boron-nitride (B12N12).
Our spin-polarized vLB-corrected LDA corrects both ex-
treme limits of the potential, i.e., r → 0 and r →∞, and
uses the optimized vLB parameter to obey the ionization-
potential (IP) theorem20,21,42 for isolated atoms and di-
atoms; these combined corrections given substantial im-
provement of semiconductor band gaps over LDA, and
are similar to EXX results.

II. BACKGROUND

Ionization Potential Theorem

Perdew et al.20 has shown that for the case of exact
KS theory in DFT, the highest-occupied KS eigenvalue
is equal and opposite to the ionization potential. Stein et
al.46 has followed the queue from the IP-theorem20,21,42

to determine the optimal value of system independent
parameter γ47 used to evaluate XC-part in their calcula-
tion and successfully extended the quantitative usage of
DFT for calculating fundamental gaps in finite and bulk
systems, a largely unsubscribed area.44–46

Hemandhan et al.48 has combined the idea of Stein
et al.46 with IP-theorem20,21,42 to determine the opti-
mize value of β used in vLB correction-term.34 The vLB-
correction to LDA exchange implemented with Vosko-
Wilk-Nusair parametrized correlation49 to calculate ex-
citation energies of atoms and diatoms following IP-
theorem. To make the optimal choice of β and deter-
mining the highest-occupied molecular orbital (HOMO)
energies, we enforce Koopmans theorem, i.e., β varied

until the HOMO eigenvalue εmax and ionization energy
matches,48 i.e.,

εβmax = E(N, β)− E(N − 1, β) = −Iβ(N). (1)

here, N is the number of electrons in system, Iβ(N) is
the energy difference between the ground state energies,
of the N and the (N − 1) electron system per β, i.e.,
ionization potential.

van Leeuwen–Baerends correction

To apply KS-DFT to a system of interest, we need
to approximate XC-potential in evaluating the effective
potential as accurately as possible. This potential is
largely evaluated by taking derivative of XC-energy func-
tional but system density can also be used to model
them directly. Recent reports,32,50–52 indicate that di-
rect approximation approach to the KS-potentials can
be a promising route for accurate prediction of static
electric polarizabilities, band gaps, and other proper-
ties. One such example is the correction introduced by
van Leeuwen and Baerends,34 model potential to the ex-
change part of XC-potential. We employ vLB-correction
to LDA exchange as

V modelxc,σ (r) =
[
Vx,σ(r) + V vLBx,σ (r)

]
+ Vc,σ(r) (2)

where Vx,σ(r)[Vc,σ(r)] is the standard LDA ex-
change[correlation] potential5 and V vLBx,σ (r) is correction

to LDA exchange.34 The suffix σ represents the spin de-
gree of freedom. Here, V vLBx,σ (r) is

V vLBx,σ (r) = −βρ1/3
σ

x2
σ

1 + 3βxσsinh−1(xσ)
, (3)

where β = 0.05 was used in the original formulation.34

The variable x = |∇ρ(r)|/ρ4/3(r) signifies the change
in mean electronic distance provided density is a slowly
varying function in given region with strong dependence
on gradient of local radius of the atomic sphere RASA.

The effective Kohn-Sham potential using Eq. 3 is

Veff(r) = Vext(r) + VH(r)

+ [Vx,σ(r) + V vLBx,σ (r) + Vc,σ(r)] ,(4)

where the potential contributions are external Vext(r),
electronic Hartree VH(r), LDA exchange Vx,σ(r), LDA
correlation Vc,σ(r), and is the spin-polarized vLB-
exchange VvLB

x,σ (r). The optimized β, calculated from
IP theorem for atoms and diatoms, helps in calculat-
ing accurate densities in solids. This provides us a gen-
eral procedure to construct the KS XC-potential from a
given electron density and produces fairly good asymp-
totic behavior along with fulfilling the requirements of
EXX-potential.34
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The iterative Kohn-Sham scheme now has the effective
potential constructed using new electronic density term{

−1

2
∇2 + (Veff(r)− Vo)

}
φi,σ(r)

= (εi,σ − Vo)φi,σ(r). (5)

In Eq. 5, we call-out the potential zero Vo directly, which
is arbitrary in “exact” full-potential linear augmented
plane wave (FLAPW), but not so in approximate meth-
ods. We employ Eq. 5 in tight-binding, linear muffin-tin
orbital method (TB-LMTO) within the atomic sphere
approximation (ASA)53 and obtain the self-consistent so-
lution of the single-particle Schrödinger equation for the
vLB-corrected effective potential.

Many site-centered electronic-structure methods, such
as LMTO, KKR, and FLAPW utilize a spherical-
harmonic basis within a specified radius and then han-
dle interstitial regions between atoms in varying levels
of accuracy – FLAPW is considered “exact” by using
thousands of plane waves to represent unit cell and in-
terstitial. Within the ASA, the atomic spheres are sim-
ply increased to conserve cell volume while large inter-
stitial voids are represented by non-overlapping empty
spheres (ESs). The ES contain no ion cores but associ-
ated charge reflects interstitial potential. Then, all po-
tentials and eigen-energies are chosen relative to a suit-
able Vo, which can be set variationally so that the ASA
dispersion approach that of FLAPW,54 and establishes
the “free-electron” like behavior inside the crystal (and
defines the crystal momentum).

Importantly, LMTO methods, via the tail-cancellation
theorem,55 or, equivalently, KKR methods, through the
calculation of the single-site scatterers, permit the vLB-
correction to be imposed locally for all sites in a multi-
site (finite or infinite) structure to solve for the collective
behavior. That is, the interstitial region within the crys-
tal is effectively the asymptotic region for site-centered
methods, where the vLB-correction is set at the ASA
boundary. Hence, as is typical, we solve the microscopic
electrostatic potential inside the crystal, without direct
reference to the atomic zero far outside the crystal.

To connect our results to those of methods that
use screened, range-separated hybrid functionals imple-
mented in plane-wave methods, we note that the global
reference is set to atomic zero (far from the atom or far
outside the crystal), which requires a dielectric function
to solve the macroscopic (long-ranged) electrostatics, as
done, for example, by Kronik et al.43–45 In this approach,
to set the proper boundary conditions, two of the range-
partition variables must obey the sum rule α+ β = 1/ε,
where ε is the static dielectric function (ε = 1 for an
atom in vacuum and 1 ≤ ε ≤ ∞ for a crystal). Within
our site-centered basis method with potential reference
Vo, there is a difference to the atomic zero due to the
work function, i.e., W = −EF − eφ, where φ ∝ ε for
systems with a gap. Hence, the present theory should
(and does) reproduce the band gap results of Kronik et

al.,43–45 without the need to calculate the static dielec-
tric as input. Of course, we can also calculate the W
to establish our results relative to atomic zero, for which
the long-range Fock and semi-local exchange play a role.

III. COMPUTATIONAL DETAILS

Core states are treated as atomic-like in a frozen-
core approximation and energetically higher-lying va-
lence states are addressed in the self-consistent calcu-
lations of the effective crystal potential, which is con-
structed by overlapping Wigner-Seitz spheres for each
atom in the unit cell. A two-fold criteria for generating
crystal potential, on the same footings of TB-LMTO-
ASA, has been used: (a) use of trial wave function, i.e.,
linear combinations of basis functions like plane waves in
the nearly free-electron method, and (b) use of matching
condition for partial waves at the sphere boundary.53,58,59

All spin-polarized vLB-correction calculations were
done self-consistently and non-relativistically for given
experimental geometry until the “averaged relative er-
ror” between successive iterations reaches 10−5 for charge
density and 10−4 for energy. To facilitate convergence,
we have used Anderson mixing. The k-space integra-
tion is done using the tetrahedron method with divisions
of 12×12×12 for cubic and 12×12×6 for non-cubic cells
along the three primitive reciprocal translation vectors.

Inside the atomic spheres, the Kohn-Sham potential is
obtained by using the LDA correlation parameterized by
van Barth and Hedin60 with the corrected EX potential
given by Eq. 4, matched at the ASA radii. Following
TB-LMTO-ASA requirements,53 the open-shell semicon-
ductors structures are filled with ESs for an improved ba-
sis. In empty spheres, given that absence of a core makes
the electron gas reasonably homogeneous and small, the
exchange contribution from empty spheres is very small
and the correction to exchange is even smaller; hence,
we use LDA-XC in empty spheres, and implement the
vLB-correction in atomic spheres only.

The dependence of dimensionless parameter x present
in Eq. 3 on RASA is very clear from the expression, so ap-
propriate choice of RASA is crucial. In all calculations, we
chose RASA by ±5-10% from default values to control
the overlapping of atomic spheres and empty spheres to
reduce the loss of electrons into the (unrepresented) in-
terstitial for open-shell structures, e.g. semiconductors.

In Section IV, we have shown that vLB-corrected LDA
provides an accurate band structure of semiconductor
and insulators, but, due to the absence of exchange func-
tional Ex such that VvLB

x,σ = δEx/δρσ, we recommend the
use of existing semi-local functionals (e.g., LDA or GGA)
for structural properties, and then the vLB-corrected
LDA to obtain the band structure.
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IV. RESULTS AND DISCUSSION

Recently, Hemanadhan et al.48 discussed extensively
that the optimal tuning of the parameter β is cru-
cial for achieving an accurate description of IP-theorem
for atoms. However, the tuning procedure is challeng-
ing in solids because ionization potential and electron
affinity need to be calculated from total energy differ-
ences, a problematic procedure for periodic systems.61

To achieve this goal, we set two step criteria, first, we
tuned the parameter β both for atom and diatoms to
an optimal value using IP-theorem, e.g., if we choose di-
atom LiF which has experimental ionization potential of
11.50 eV. Tuning β to 0.048 from atomic calculations
gives εβmax = −Iβ = 12.17eV just 5% from experimen-
tal observation. Secondly, we use the optimal value of
β = 0.048 in vLB-correction term to LDA-exchange in
Eq. 3. This way, the calculated band gap of LiF us-
ing our self-consistent optimized vLB-TB-LMTO-ASA
approach is 12.61 eV which compares well with the cal-
culated number 12.60 eV using range-separated hybrid
functional by Refaely-Abramsonet al.45 and experimen-
tal value of 13.60 eV.62

Clearly, adding vLB-correction to LDA exchange im-
proves the asymptotic behavior over LDA, and, if used
with the optimized-β approach, it satisfies the IP-
theorem for atom and diatoms due to its exact density
description. Although all quantities used in Eq. 3 are
semi-local, still they lead to a good approximation to the
EXX-type of potentials because of correct treatment at
shell limits, i.e., r→0 to r→RASA. This approach pro-
duces good band gaps of semiconductors and insulators
which compare well with experiments,63–73 see Table I
and Fig. 1.

TABLE I. Band gaps calculated with vLB-corrected poten-
tial of A1(fcc) and B1(Rocksalt) systems at values of β
satisfying the IP theorem. We compared to results from
experiments,62–73 HS-EX, LDA, QPC74 and MBJ-LDA.31

System Band Gap (eV)
β vLB Expt. HS-EX LDA QPC MBJ

Ne (A1) 0.082 23.64 20.75 22.07 11.39 16.55 22.72
0.05 23.02

Ar (A1) 0.058 12.76 14.32 11.29 8.09 11.95 13.91
0.05 12.46

Kr (A1) 0.044 10.91 11.40 9.10 6.76 9.98 10.83
0.05 10.61

Xe (A1) 0.040 8.61 9.15 6.63 5.56 8.23 8.52
0.05 8.35

MgO (B1) 0.070 6.94 7.78 6.23 4.94 — 7.17
0.05 5.94

CaO (B1) 0.070 7.15 7.09 7.29 3.36 — —
0.05 6.07

LiF (B1) 0.048 12.61 13.60 9.52 8.94 — 12.94
0.05 12.31

LiCl(B1) 0.048 7.84 9.40 6.50 6.06 — 8.64
0.05 7.85

Wurtzite-ZnO

A zinc oxide (ZnO) semiconductor remains a topic of
interest because of its optoelectronic applications ow-
ing to its direct wide band gap Eg ∼3.40 eV at room
temperature.79 The ZnO exists in wurtzite (B4), zinc
blende (B3), and rocksalt (B1) crystal structures but in
ambient conditions, the B4 is thermodynamically most
stable phase. After Rössler’s prediction of Zn-3d level
at 12 eV below valence band maxima in B4-ZnO,80 sev-
eral experiments81–84 were done and showed significant
difference to the calculated result. Langer et al.81 and
Powell et al.82,83 used X-ray-induced photoemission spec-
troscopy and UV photoemission measurements, respec-
tively, to determine the position of Zn-3d core level and
placed it at 7.5 ±0.2 eV from valence band maxima –
3 eV lower than that predicted by Rössler. X-ray pho-
toemission found similar values to UV, i.e., Vesely et al.85

at 8.5 eV and of Ley et al.84 at 8.81 eV.86 Despite good
agreement with qualitative valence-band dispersion from
LDA functionals,87–90 the debate on quantitative posi-
tion of Zn-3d level in B4-ZnO remains a good exercise
for most semi-local functionals. So, we provide, as one
test, results on B4-ZnO from the optimized LDA+vLB
potential within TB-LMTO-ASA.

For ZnO, core and valence orbitals of (Zn, O) were set
to (1s2s2p3s3p3d, 1s) and (4s4p3d, 2s2p), respectively.
In calculation of band-energies, we use valence states of
(Zn, O), i.e., (4s4p3d, 2s2p) as the basis set. We have
added two other lattices of empty spheres (ES1, ES2) at
[(0,0,0.34), (−0.29,0.5,0.249)] in the unit cell to obtain
a close-packed structure to fulfill the criteria needed for
the atomic-sphere approximation assumed in TB-LMTO-
ASA.53 Atomic sphere radii, RASA, of (Zn, O) has been
fixed to (2.095, 1.775)Å in LDA+vLB, HS-EX and LDA
calculations. The basis set used in calculation for [(Zn,
O), (E1, E2)] is [(4s4p3d, 2s2p), (1s2p3d, 1s2p)] are com-
plete under all symmetry operations and no additional
basis atom has been introduced.

For LDA, see Fig. 2, we found Zn-3d levels at ∼ 6.0 eV
from Fermi energy EF , meaning Zn-3d levels are now
incorrectly closer to O-2p states, giving a stronger inter-
action with O-2p levels. Increased interaction leads to
strongly hybridized Zn-3d and O-2p states, which pushes
O-2p level towards the conduction band minimum, re-
sulting into reduced band gaps. The typical error in
estimating ZnO (B4) band gaps using LDA originated
from strong Coulomb correlations between Zn-3d and
O-2p levels. Although exact calculation of correlation
is not possible, treating exact exchange is numerically
possible. For optimized LDA+vLB, this is achieved by
introducing vLB-correction to LDA exchange and tun-
ing β to optimal value through the IP-theorem using the
atomic constituents. For ZnO solid, LDA+vLB gives Zn-
3d peak-center at 7.40 eV, in agreement with measure-
ments 7.5 ± 0.2 eV. Clearly, eigen-energies of semi-core
Zn-3d levels (incorrect in LDA and underestimated with
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FIG. 1. (Color online). Band gaps for materials with four structures: (Left) A1 (FCC) with β = 0.04−0.082 and B1 (Rocksalt)
with β = 0.04 − 0.08,75–77 and (right) B3 (Zincblende) with β = 0.03 − 0.075 and B4 (Wurtzite) with β = 0.03 − 0.09.78

respect to experiment by ∼3 eV) are corrected by in-
troduction of the vLB asymptotic correction introduced
here. The band gap of wurtzite-ZnO calculated using
optimized LDA+vLB is ∼ 3.10 eV, which compares well
with observed band gap of 3.4 eV84 while LDA value is
∼ 1.0 eV (an underestimation of ∼71%). The band gaps
of wurtzite-ZnO calculated from optimized-vLB versus
other methods (MBJLDA,31 HSE06,91 G0W0,77 GW67)
are ∼ 3.10 eV and (2.68,31 2.49,91 2.51,77 3.8067) eV, re-
spectively. Only the optimized-vLB (10% too small) and
GW (10% too large) results are in reasonable agreement
with experimental values.

Half-Heusler alloys

Non-spin-polarized compounds: In this section,
we revisit the work of Kieven et al.92 on I−II−V (eight
electron) half−Heusler systems that have prime impor-
tance in optoelectonics. The half−Heusler structure ba-
sically arises from three interpenetrating fcc lattices of
X, Y and Z atoms crystallized in ternary XYZ com-
pounds with F43m space group. The atoms X, Y and
Z are arranged at positions (1/2, 1/2, 1/2), (0, 0, 0) and
(1/4, 1/4, 1/4) in units of cubic lattice parameter and can
be viewed as a zinc−blende−like structure. The strongly
bound valence electrons in I−II−V half-Heusler com-
pounds separates the conduction and the valence bands
resulting in a semiconducting behaviour with varying
band gaps.93 We considered 18 XYZ (X=Li, Na, and
K, Y =Mg, Ca, and Zn, and Z=N and P; X, Y and Z
belong to the first (I−A), second (II−A and II−B) and

FIG. 2. (Color online). The LDA+vLB results for wurtzite-
ZnO gives Zn-3d peak at 7.50±0.2 eV (LDA is at ∼6.0 eV).
The X-ray photoelectron spectra of most stable polymorph,
i.e., wurtzute-ZnO is given in inset.84

fifth (V−A) main group (subgroup) of the periodic sys-
tem of elements) compounds with the half-Heusler struc-
ture and calculated band gap using TB-LMTO-ASA with
LDA+vLB potential, in most cases, we find a good agree-
ment with Kieven et al.92 and experiments.94–97

Spin-polarized FeMnSb: The spin-resolved band
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structure of the half-metallic compounds shows unusual
properties: FeMnSb is one example with half-Heusler
crystal structure discussed thoroughly by de Groot et
al.98 and Chioncel et al.99 To showcase spin-polarized
vLB-corrections, we consider FeMnSb. The standard
representation of FeMnSb with C1b crystal structure con-
tains three atoms: Fe(0, 0, 0), Mn(1/4, 1/4, 1/4), Sb(3/4,
3/4, 3/4) and a vacant site at (1/2, 1/2, 1/2) (replaced
by chargeless ES for ease in calculations), respectively.
In FeMnSb, Fe (−1 µB) and Mn (3 µB) moments sta-
bilizes the gap and the half-metallic electronic structure
with ferrimagnetic coupling with total moment of 2 µB .
The integer spin moment per unit cell criteria is one of
the requirements for half-metallicity.

In Fig. 3, electronic states for majority-spin projec-
tion have a metallic character with a nonzero density of
states at EF , the states with the minority-spin projection
demonstrate a band gap at EF .98,100 The gap originates
from strong hybridization between the 3d-states of the
transition metals Fe and Mn. This hybridization results
in fully bonding states in the valence band and empty
antibonding states in the conduction band, leading to an
finite gap at EF (marked by a dashed line at zero energy).
The deep lying sp-states of Sb do not have much effect
on density of states at EF , so it is not responsible for
the existence of the minority gap. As a result, half-metal
can, in principle, conduct a fully spin-polarized current,
and hence it attracts attention for potential spintronics
applications.100,101

TABLE II. Band gaps of I-II-V (B3) half-Heuslers:
LDA+vLB with β = 0.05 (ours), compared to experiment,
LDA (ours), as well as GGA, B3LYP, and GW.92,94–97 All
calculations use lattice constants from Kieven et al.92

System Band Gap (eV)
Expt. vLB LDA GGA B3LYP GW

LiMgN 3.20 3.37 2.85 2.29 4.37 —
LiMgP 2.43 2.07 1.93 1.55 2.90 —
LiCaN — 3.71 2.38 2.21 3.78 —
LiCaP — 2.91 2.23 1.95 — 2.93
LiZnN 1.91 1.67 0.78 0.52 2.34 —
LiZnP 2.04 1.17 1.32 1.35 2.66 —

NaMgN — 2.72 1.06 0.77 2.08 —
NaMgP — 2.23 1.54 1.47 2.76 2.79
NaCaN — 1.82 1.47 1.15 3.03 —
NaCaP — 1.74 1.01 1.95 — 2.95
NaZnN — 0.06 0.00 0.00 — 1.83
NaZnP — 0.00 0.30 0.44 1.64 —
KMgN — 1.05 0.33 0.13 — —
KMgP — 1.25 0.97 0.96 — —
KCaN — 2.24 0.82 0.68 2.14 —
KCaP — 2.08 1.56 1.54 — 2.90
KZnN — 0.14 0.00 0.00 — 1.98
KZnP — 0.00 0.00 0.00 — —

FIG. 3. (Color online). Spin resolved band structure
of half-Heusler half-Metallic FeMnSb alloy calculated with
LDA+vLB potential at lattice constant of 5.703 Å.98,99

Quantum dots: boron-nitride and graphene

Two-dimensional materials, like of graphene and
hexagonal boron nitride (h-BN), have drawn tremendous
attention in terms of both fundamental physics and possi-
ble applications in energy-generation devices.102–104 Sin-
gle layers of graphene and h-BN have been fabricated
and found to be stable at room temperature.105–109 The
electrical conductivity in both cases vary largely because
graphene is a semimetal and a very good conductor, while
BN is an insulator (band gap∼6 eV).110,111

We modeled one (3-B, 3-N or 6-C atoms), three (6-B, 7-
N or 13-C atoms), and seven (12-B, 12-N or 24-C atoms)
ring size quantum dots of boron-nitride and graphene
within a cell of orthorhombic symmetry with cell param-
eters a = c = 40Å and b = 25Å. The experimental ge-
ometry is used to generate 2D quantum dots.112,113

We calculated the LDA and LDA+vLB gaps between
HO molecular orbitals (HOMO) and LU molecular or-
bitals (LUMO) of boron-nitride dots, where boron and
nitrogen have (3,3), (6,7) and (12,12) atoms each in the
basis sets. Because TB-LMTO uses the ASA, we fill the
rest of cell volume with ES and include them in basis set
along with the atoms. As shown in Table III, with in-
creasing dot size we approach the bulk optical band gap.
The LDA+vLB potential within TB-LMTO-ASA yields
a HOMO-LUMO gap of 5.70 eV for B12N12 (Table III)
that compares reasonably to the bulk band gaps observed
(3.6 eV116 and 5.9 eV117) and predicted (2.45 eV114 to
5.4 eV115), while LDA largely underestimates all values.



7

TABLE III. Band gaps of boron-nitride and graphene quan-
tum dots (1, 3 and 7 ring sizes) calculated using LDA+vLB
(β = 0.05) and LDA potentials.

Band Gap (eV)
ring-size B-N Expt vLB LDA C vLB LDA

1 B3N3 — 2.00 0.50 C6 2.90 1.50
3 B6N7 — 3.00 1.90 C13 3.46 1.85
7 B12N12 — 5.70 2.40 C24 5.20 2.50

Bulk h-BN 3.60-5.90116,117 4.60 3.90 — — —

V. CONCLUSION

Since KS-DFT was first proposed, a search has
remained unabated for a quality but numerically
fast exchange-correlateion functional to predict band
gaps correctly. Here, we presented results using a
spin-polarized vLB-corrected potential, which matched
asymptotic behavior of exchange at the atomic sphere
boundary (i.e., local interstitial in the solid) and which
also satisfied the ionization potential (IP) theorem for
atomic constituents. The combination approximately
enforces the ionization energy and HOMO-LUMO dif-
ference to agree in first-principle calculations. The

LDA+vLB-corrected exchange in combination with IP-
theorem may be a good candidate to fill the gap of
orbital-dependent functionals using semi-local quantities,
and it provides an approximate exact-exchange band
structure with no more computational cost that LDA or
GGA. Compared with experiments, our asymptotically-
corrected LDA obtains accurate band gaps for semicon-
ductors and insulators, where in some cases it yields
gaps comparable to or better than more sophisticated
XC methods, such as hybrid, exact-exchange, or GW.
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