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Employing a recently developed many-body technique that allows for the incorporation of thermal
effects, the rich phase diagram of a two dimensional two orbital (degenerate dxz and dyz) Hubbard
model is presented varying temperature and the repulsion U . Our main result is the finding at
intermediate U of a novel antiferromagnetic orbital selective state where an effective dimensional
reduction renders one direction insulating and the other metallic. Possible realizations of this state
are discussed. In addition we also study nematicity above the Néel temperature. After a careful
finite-size scaling analysis the nematicity temperature window appears to survive in the bulk limit
although it is very narrow.

I. INTRODUCTION

Several important materials, such as iron-based
high critical temperature superconductors (FeSC),1–4

nickelates,5 cobaltites,6 manganites,7,8 and many others,
have several active orbitals. If electronic correlation ef-
fects are important, then multiorbital Hubbard models
must be employed for their analysis. However, these
models are difficult to study in two (2D) or three (3D)
dimensions due to their complexity. While at particular
electronic densities, such as integer fillings, zero temper-
ature mean field (MF) approximations are often reliable,
the phase diagrams of multiorbital Hubbard models vary-
ing temperature T are basically unknown. This is because
thermal mean-field approximations provide qualitatively
incorrect results at robust Hubbard repulsion U and in-
termediate temperature since they cannot generate lo-
cal moments with short-range magnetic order because
of the absence of spatial fluctuations. Moreover, “sign
problems” complicate the application of quantum Monte
Carlo (MC) when several orbitals are active.9 Since not
only U but also the Hund coupling J are important, it
is imperative to apply alternative computational tools,
even if crude, to study multiorbital models at intermedi-
ate temperatures because the potential for new states in
these systems is considerable.

Recently,10 the “Monte Carlo-Mean Field” (MC-MF)
technique that mixes the MC and MF approximations
was tested using the half-filled one-orbital Hubbard
model. The method captured all qualitative features of
this model known from quantum Monte Carlo, includ-
ing the non-monotonic behavior of the Néel tempera-
ture TN with increasing U , and it was even quantita-
tively accurate with errors of only ∼20% in TN .10 This
method was applied before to the BEC-BCS crossover in
the cold atom context and to other problems.11 Early
studies within the spin-fermion model context showed
that this type of techniques are also reliable in studies
of superconductors.12–14

The new method relies on the Hubbard-Stratonovich
decomposition of the interacting problem via auxiliary
fields (AuxF)11–14 (in the Hartree channel in our study,

but could be in other channels as well). Neglecting the
AuxF’s imaginary-time dependence but retaining their
spatial fluctuations leads to a Hamiltonian with quantum
fermions coupled to classical degrees of freedom, similarly
as in double-exchange models for manganites.7 Classical
Monte Carlo is used for the AuxF at any temperature,
while the fermionic sector is treated via the traveling
cluster approximation (TCA) that allows access to large
lattices.15,16

In this publication, the MC-MF technique is applied
for the first time to a 2D two-orbital Hubbard model,
varying temperature T and repulsion U . The unveiled
phase diagram is rich, including a narrow nematic phase
above TN .17,18 Even more importantly, here we re-
port an unexpected novel regime, dubbed Orbital Selec-
tive Directional Conductor (OSDC), where a remarkable
anisotropy in transport is observed, with one direction
insulating and the other conducting, leading to a dimen-
sional reduction from 2D to 1D. This dimensional reduc-
tion is different from that in Tl2Ru2O7 and BaCuSi2O6

because they are insulating in all directions,19,20 and
different from layered Sr3Ru2O7 because it requires a
high magnetic field.21 Our results are also different from
layered oxides that are metallic in-plane but insulating
out-of-plane,22 because their crystal structure already
establishes an asymmetry. On the contrary, our two-
dimensional model is fully symmetric between the x and
y directions but spontaneously becomes insulating in one
direction and metallic in the other, without the help of
the lattice, magnetic fields, or impurities.

II. MODEL AND METHOD

Although five orbitals are needed for a faithful elec-
tronic description of iron superconductors, below for sim-
plicity we will focus on the two most important orbitals
dxz and dyz.

23–26 The two-orbital Hubbard model studied
here is defined as:
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H =
∑

〈i,j〉,α,β,σ

T i,jα,βd
†
i,α,σdj,β,σ + U

∑
i,α

ni,α,↑ni,α,↓

+(U ′ − J/2)
∑
i

ni,xzni,yz − 2J
∑
i

Szi,xzS
z
i,yz

+J ′
∑
i

(d†i,xz,↑d
†
i,xz,↓di,yz,↓di,yz,↑ +H.c.),

(1)

where d†i,α,σ creates an electron at site i, orbital α (either

xz or yz), and with spin projection σ. The number oper-
ator is ni,α,σ, ni,α=

∑
σ ni,α,σ, and Szi,α = (1/2)(ni,α,↑ −

ni,α,↓). U , U ′, J , and J ′ are the Kanamori parame-
ters. The usual constraints U ′ = U − 2J and J = J ′

are assumed. In the Hund term only the Ising portion
is used because the expected magnetic order is collinear,
most materials have an easy-axis, and it is technically
simpler for this first study. The hopping parameters re-
produce the Fermi surface of the undoped FeSC,23 but
our conclusions could be realized as well in other ma-
terials with local tetragonal symmetry. The crystal lo-
cation of the Se, As, or P atoms, used by electrons to
tunnel from Fe to Fe, justify that both nearest- (NN)
and next-nearest-neighbor (NNN) hoppings are needed.
The explicit hopping amplitudes are in previous publi-
cations.23,24 The NN sites hoppings t1 and t2 are only
intraorbital. Along the plaquette diagonals, the intraor-
bital (interorbital) hopping is t3 (t4). Their values are
t1=1, t2=−1.33, and t3=t4=−0.85 and the bandwidth
of this tight binding model is W=12t1.23 Hereafter, t1
will be denoted by t, and it will be the energy unit. To
convert to eV, the ab-initio derived bandwidth for the
dxz-dyz bands is W ∼ 1.8 eV.27,28 The density is fixed to
two electrons per site (n = 2).

Mean-field approximations have already been applied
to two-orbital Hubbard models at T=0,25,26 showing sev-
eral phases with increasing U/W : a paramagnetic metal,
a metal with (π, 0) spin order, and an insulator also with
(π, 0) spin order. These previous T=0 studies and oth-
ers1–4 showed that J/U ∼ 0.15−0.30 is relevant for FeSC,
and we will fix J/U = 0.25 in all the results below. Since
FeSC materials vary substantially in their degree of elec-
tronic correlation, results will be presented varying the
ratio U/W . Our main focus are the temperature effects
since their influence on model Eq. (1) are unknown. Our
study is performed in two dimensions, mainly on 322 lat-
tices. The TCA traveling cluster16 is 62. Via the par-
allelized version of TCA,16 lattices as large as 482 were
reached. The mean-field approach was chosen to be the
Hartree approximation that works well for the half-filled
one-orbital model.29

III. RESULTS

Our main results are in the phase diagram of model
Eq.(1) at n = 2 (Fig. 1). It was constructed based
on data for the two spin structure factors of relevance,

FIG. 1: (color online) Phase diagram of the two-orbital Hub-
bard model Eq.(1) in the MC-MF approximation and with
hoppings from previous literature,23 at J/U = 0.25 and n = 2.
Shown are results for a 322 lattice. Besides the weak cou-
pling paramagnetic metal (PM-M) and the intermediate/large
U/W region with “preformed local moments” (grey), other
states were identified: (1) A (π, 0)-spin-ordered metal, AF-
M, where transport is anisotropic but metallic in both di-
rections. (2) A novel (π, 0)-spin-ordered regime, the OSDC,
with metallic (insulating) behavior along the x (y) axis. (3)
A (π, 0)-spin-ordered insulator, AF-I, with a full gap. (4) A
very narrow spin nematic regime above TN . The AF-M and
OSCD states break the same symmetries and, thus, no sharp
distinction between them is expected but a rapid crossover.
TN has a non-monotonic behavior, maximizing close to the
OSDC/AF-I boundary.

S(π, 0) and S(0, π), the spin nematic order parameter
ΨNem,18 their temperature derivatives, and the resistiv-
ity and density of states (DOS). We also monitored lo-
cal moment formation at intermediate temperature and
large U/W .10 This phase diagram is surprisingly rich
because it contains three regimes with (π, 0) long-range
magnetic order [degenerate with (0, π)]. The insulator
at large U/W is induced by the robust J that produces
S=1 local spins interacting via a frustrated Heisenberg
model known to have (π, 0)-(0, π) magnetic order. The
other two states at intermediate couplings are more sub-
tle. Intuitively, their magnetic order can be considered as
arising from Fermi surface nesting effects. However, the
presence of two, instead of one, regions is unexpected.
The first one, dubbed AF-M (antiferromagnetic metal-
lic), is metallic in both directions, albeit anisotropic, as
observed in FeSC experiments.17 But the second region,
the OSDC, is metallic along the spin staggered direc-
tion but insulating along the spin uniform direction, lead-
ing to a surprising dimensional reduction at intermediate
couplings.
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A. Magnetic phases

A typical magnetic order parameter (OP ) displays a
negative curvature increasing temperature(Fig. 2a), with
a diverging slope at the critical temperature Tc in the
bulk limit. Thus, for a finite system the temperature
where the first derivative dOP/dT is maximized, or
where the associated susceptibility maximizes, provides
an estimation of Tc (here TN and TNem)(Fig. 2b). In
addition, upon cooling TNem can also be estimated from
the temperature Tsplit where S(π, 0) and S(0, π) split.
While for a finite system TNem and Tsplit may be differ-
ent, they should merge in the bulk limit. Typical results
are in Fig. 2 for a 322 lattice, at a fixed ratio U/W . Our
MC statistics and lattice sizes are sufficient to observe a
robust order parameter behavior for S(π, 0) and ΨNem:
nonzero at T = 0 and decreasing with increasing tem-
perature with a negative curvature, with the exception
of a small temperature window where the curvature is
positive due to size effects. Although very close in tem-
perature, systematically for all the couplings U/W with
long range spin order at T = 0 and for all lattices, we
find TNem slightly larger than TN suggesting a small re-
gion of nematicity. In general, we also found that Tsplit
tends to be larger than TNem. The observed narrow win-
dow of nematicity in fact appears to survive a finite-size
scaling analysis (Fig. 3(a)), at least for the investigated
coupling U/W = 1.16 where information for lattices as
large as 482 were gathered (since these simulations are
very time consuming the scaling analysis could be done
only for one coupling). Remarkably, within the error
bars the bulk limit extrapolated TNem and Tsplit seem
to lead to the same nematic critical temperature. More
specifically, our results unveil a small nematic window of
∼ 0.002t at U/W = 1.16. The narrowness of this ne-
matic regime is likely exaggerated by the Z(2) nature of
the Ising approximation used here for the Hund term.
Such a fragile nematic phase, reported here for the first
time in a Hubbard model, is compatible with previous
studies using spin models,30 spin-fermion models,31 and
with experiments,17,32 that have also reported very nar-
row nematic temperature windows.

B. New State at Intermediate Coupling

As explained before it is surprising that there are
three distinct regions below TN : two metals (AF-M and
OSDC) and one insulator (AF-I). The distinction be-
tween the two metals and the insulator can be under-
stood via the density-of-states in Figs. 3(b,c). Panel (c)
displays a canonical insulating behavior: in the tempera-
ture range shown, a pseudogap (PG) is observed in the lo-
cal moments regime,34 transforming into a full gap when
the magnetic order develops at TN . This is the AF-I
state (Fig. 1). In panel (b), upon cooling toward TN a
pseudogap opens probably because of Fermi surface nest-
ing effects. But even at low temperatures, and indepen-
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FIG. 2: (color online) (a) Spin structure factors and nematic
order parameter at U/W = 1.16 and using a 322 lattice (sta-
tistical errors bars are the size of the points; error bars due
to trapping in metastable states are better represented by the
fluctuations of the results with varying temperatures). (b)
Same as (a) but for the magnetic(for S(π, 0) case) and nematic
susceptibilities. Lorentzian fits of the data are shown. Verti-
cal dashed lines (left to right) indicate the magnetic and ne-
matic transition temperatures, from susceptibility maximiza-
tion.

dently analyzing the zero-temperature Hartree equations,
in both metallic regions the total DOS has a finite weight
at the Fermi energy EF .

What is then the difference between AF-M and OSDC?
Their physical distinction is illustrated in Fig. 4 (a) where
the resistivity ρ vs. T is presented at three values of
U/W , corresponding to the three low-temperature re-
gions of Fig. 1. ρ is calculated from the optical conduc-
tivity σ(ω), integrating in a narrow range near ω = 0
and then inverting.35 At U/W = 0.417, ρ in the y
spin uniform direction is larger than in the x spin stag-
gered direction, as in previous calculations31,36,37 and
experiments.17 This is understood from the orbital re-
solved DOS of Fig. 3(d): in the magnetic (π, 0) state
that breaks rotational invariance, near EF the orbital
dyz, related to conduction in the spin uniform direction,
is more suppressed than dxz, related to conduction in the
spin staggered direction. But since both orbitals have a
sizable DOS weight at the EF , both directions are metal-
lic. At large U/W = 1.0, the DOS Fig. 3(c) displays a
sharp gap at low temperature, and both directions must
be insulating.

Note that experiments affected primarily by the vicin-
ity of EF may suggest strong orbital order, but the
ω-integral of the orbital-resolved DOS, i.e. the or-
bital population nxz and nyz, is only different by 0.5%
(Fig. 3 (f)).33 For completeness, we also monitored
∆orb = nxz − nyz vs. temperature. The results (not
shown) indicate that upon cooling from high T , ∆orb re-
mains smaller than 0.001 at U/W=1.16 until TNem is
reached, eventually converging, as T is further reduced,
to the results derived from Fig. 3 (f). Within our MC
accuracy we conclude that in our model there is no ad-
ditional orbital-order critical temperature above TNem.
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FIG. 3: (color online) (a) Finite-size scaling analysis for TN ,
TNem, and Tsplit at U/W = 1.16, using L = 12, ..., 48 (L×L)
lattices plotted vs. 1/L (values at top). Data is fit with a

scaling function Tord(L) = T bulkord + b(1/L)(1/ν), where T bulkord ,
b, and ν are independent fitting parameters for the three data
sets. From the fit we obtain a nematic temperature window
of width approximately 0.002t. (b) Density of states N(ω) at
U/W=0.5 (µ denotes EF ). A pseudogap develops below TNem
that deepens with reducing temperature but never becomes a
full gap. On the other hand, in panel (c) at U/W=1.16 a clear
gap develops upon cooling. (d) contains the orbital-resolved
DOS at T=0.005t and U/W=0.5. The C4 spontaneous sym-
metry breaking makes the (nonzero) population of the two or-
bitals different at EF .33 (e) Same as (d), but at U/W=0.533
in the OSDC regime where Nyz(ω = µ) << Nxz(ω = µ). (f)
The orbital-resolved total occupation nxz and nyz shown at
low T vs. U/W . Dashed lines indicate the OSDC regime.
Panels (b-f) were obtained using 322 lattices.

The interpolation between small and large U/W un-
veils a surprise: at intermediate couplings such as
U/W = 0.533 the spin staggered direction remains metal-
lic, but the spin uniform direction becomes insulating
(Fig. 4 (a)). Intuitively, this is because the interpolation
between the density-of-states of Fig. 3(d), where both or-
bitals have nonzero weight at EF , and (c), where both
orbitals have negligible weight at EF , is not smooth. In-
stead, there is an intermediate coupling range where the
dyz weight at EF is almost negligible while that of dxz
is still finite (Fig. 3(e)). The dyz weight is very small

FIG. 4: (color online) (a) Resistivity along the x spin stag-
gered (solid symbols) and y spin uniform (open symbols) di-
rections at several U/W ’s, illustrating the transport proper-
ties of the AF-M, OSDC, and AF-I regions of Fig. 1. Arrows
indicate TN for each case. (b) Optical conductivity in the
OSDC with electric fields along the y and x directions. In
both panels a 162 lattice is used.

but not zero, even at T = 0, because of the broaden-
ing used for density of states. Therefore, strictly speak-
ing it cannot be used as a sharp order parameter: AF-
M and OSDC are likely analytically connected because
they break the same symmetries. However, our study
shows that the orbital population difference at EF in
the OSDC is sufficiently large to induce one-dimensional
transport. Results for the full σ(ω) (see Fig. 4 (b) and
Appendix) show that at ω ∼ 0 only one orbital dom-
inates. Moreover, from nxz and nyz (Fig. 3 (f)) note
that at large U/W both orbital populations converge to
one since J is large, while in the PM-M regime they
are also one by symmetry. However, in the OSDC re-
gion both nxz and nyz are different from one (and differ-
ent among themselves because C4 is spontaneously bro-
ken): the OSDC regime is not the same as an Orbital
Selective Mott Phase38 where one orbital has popula-
tion exactly one. Another interesting observation is that
for both AF-M and OSDC there is an insulating region
dρ/dT < 0 in both directions immediately above TN due
to the opening of the pseudogap in the local moments
region and concomitant coexisting patches of (π,0) and
(0,π) order,37 in agreement with spin fermion studies37

and experiments.17
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FIG. 5: (color online) (a,b,c) The (π, 0) and (0, π) magnetic structure factors, and the nematic order parameter (ΨNem) vs.
temperature for different lattice sizes, at U/W = 1.16. (d,e,f) Magnetic and nematic susceptibilities at U/W = 1.16 for the
same lattice sizes as immediately above (i.e. (d) corresponds to (a), etc). The solid curves are Lorentzian fits. The dashed
lines indicate the positions of the maxima in the susceptibilities, therefore indicating the estimated critical temperatures.

C. Other results used to construct the magnetic
phase diagram

The analysis presented in Fig. 2 and Fig. 3(a) are just
examples of the vast computational study carried out at
various values of U/W and used to construct the phase
diagram of Fig. 1. For completeness, in Fig. 5 this sub-
stantial effort is illustrated further by providing data cor-
responding to other lattice sizes at U/W = 1.16. The
information gathered from these efforts for TN , TNem,
and Tsplit were used for the finite-size scaling analysis of
Fig. 3 (a).

IV. CONCLUSIONS

The phase diagram of a layered two-orbitals Hubbard
model was studied with emphasis on temperature effects.
We report a novel intermediate coupling U region, called

the OSDC, that is conducting in one direction via the dxz
orbitals, but insulating in the other because the associ-
ated dyz orbitals have nearly vanishing weight at EF . Al-
though our low temperature calculations do not include
quantum fluctuations, the OSDC starts at relatively high
temperatures ∼ TN and for this reason our approach em-
phasizing thermal effects should be sufficient. Moreover,
we tested that using other hoppings,39 the OSDC is also
found. Experimentally, materials of the family of iron su-
perconductors are the most likely to realize the OSDC (in
fact, indications of OSDC are already present in Ref. 17
for the case of doped materials), and a mixing in the
chemical formula of As, associated with weak coupling,
and Se, associated with strong coupling, may be needed.
But the OSDC could be realized in other layered materi-
als where a transition metal atom M is coordinated with
four ligand atoms X, establishing MX4 tetrahedral cages
with near degenerate dxz and dyz orbitals, and where a
magnetic state that breaks lattice rotational invariance
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is stabilized.
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VI. APPENDIX

A. Details of the Monte Carlo simulation and
observables measured

The lattices used all have periodic boundary condi-
tions. In our calculations, a total of 4000 MC system
sweeps were typically performed: 2000 to thermalize the
system, and the rest for calculating observables. A MC
system sweep consists of sequentially visiting every lat-
tice site and updating the local auxiliary fields followed
by the fermionic diagonalization or TCA procedure to
accept/reject via the Metropolis algorithm. We start the
simulation at high temperature with a random configu-
ration of auxiliary fields and then slowly cool down to
lower temperatures to avoid being trapped in metastable
states. The MC runs start at T = 1.0t, which corre-
sponds to about 1000 K and cool down to T = 0.005t,
where temperature steps as small as ∆T = 0.0002t were
used for the temperatures relevant to the magnetic and
nematic transitions. This slow process allows us to ob-
tain reliable results independent of the initial conditions
of the calculation.

In our finite systems, there is no energy difference be-
tween the (π, 0) and (0, π) magnetic states. As a conse-
quence, MC simulations that start at high temperature
in a random state for the auxiliary fields may end up in
(π, 0) or (0, π) with equal chance upon cooling. In prac-
tice, we simply discarded all cooling down MC processes
that led to a (0, π) state at low temperatures.

The antiferromagnetic order is studied via the spin
structure factors,

S(q) =
1

L4

∑
i,j

eiq·(ri−rj)〈Szi Szj 〉. (2)

The two wavevectors of interest in FeSC are q = (π, 0)
and (0, π). The expectation value is generated by using
the eigenvectors of the MC equilibrated configurations.
For the study of the nematic regime above TN , we com-
pute the nematic order parameter

ΨNem =
1

2L2

∑
i,±

(Szi S
z
i±ŷ − Szi Szi±x̂), (3)

where x̂ and ŷ are unit vectors connecting site i with its
nearest neighbors. The ± summation is over all nearest
neighbors, and 〈ΨNem〉 > 0 in the (π, 0) magnetic phase.
To better locate critical temperatures, we also calculate
numerically the magnetic (χS) and nematic (χNem) sus-
ceptibilities using the standard variance calculation.

In this work, we have also evaluated the or-
bital resolved density of states (DOS), Nα(ω) =∑
m |〈ξm,α|ψ〉|2δ(ω − ωm), where ωm are the eigenvalues

of the fermionic sector and the summation runs up to
2L2, i.e. the total number of eigenvalues of a L2 system
with spin. |〈ξm,α|ψ〉|2 is the weight of the mth eigenstate
for orbital α in the state |ψ〉. Nα(ω) is calculated by
implementing the usual Lorentzian representation of the
δ function. The broadening needed to obtain N(ω) from
the Lorentzian is ∼ W/2L2, where W is the fermionic
bandwidth at U = 0. Finally, N(ω), the total DOS, is
the sum of the different orbital densities of states. Nu-
merically, e.g., for the 82 system the broadening is about
0.09t. Two hundred Nα(ω) samples are obtained from
the 2000 measurement system sweeps at every tempera-
ture. We discard 10 MC steps between measurements to
reduce self-correlations in the data. The 200 Nα(ω) sam-
ples are used to obtain the thermally averaged 〈Nα(ω)〉T
at a fixed temperature. These are further averaged over
data obtained from 10 independent runs with different
random number seeds. A very similar procedure is fol-
lowed to calculate the optical conductivity, that involves
matrix elements of the current operator.

To determine the crossover temperature between the
weak coupling paramagnetic state and the regime with
preformed local moments above the magnetic order, we

compute the specific heat, Cv(U, J, T ) = dE(U,J,T )
dT , by

numerically differentiating the average energy with re-
spect to temperature, as well as the orbital resolved dou-
ble occupation 〈nα,↑nα,↓〉. The details of the procedure
we followed is presented in our earlier work on the one-
orbital Hubbard model,10 but, briefly, Cv(U, J, T ) has a
high-temperature peak that corresponds to local moment
formation that can be tracked varying U . In addition,
the double occupation has to be below a cutoff for the
system to have local moments.10 This is of particular im-
portance at small U values because Cv(U, J, T ) can have
a considerable contribution from the electronic delocal-
ization and in this regime it cannot be used to track local
moment formation.

B. Test of the Technique in the Hartree
Approximation

The many-body technique used in this publication was
already introduced and tested in previous efforts.10 How-
ever, since an easy axis is present in most materials
and considering that empirically the Monte Carlo con-
vergence is improved under such circumstances (collo-
quially, Ising is easier than Heisenberg), in this project it
was decided to use the Ising approximation in the Hund
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FIG. 6: (color online) The Hubbard U/t vs. temperature
T/t phase diagram corresponding to the one-orbital Hubbard
model in three dimensions using the Hartree approximation
in the MC-MF technique. TN denotes the Néel critical tem-
perature where antiferromagnetism with (π, π, π) staggered
magnetic order develops (region denoted as AF-I) according
to measurements of the spin structure factor and the spin-
spin correlation functions. The MC-MF results (red filled
squares) are compared against data obtained using the De-
terminant Quantum Monte Carlo [white squares, reproduced
from R. Staudt et. al, Eur. Phys. J. B 17, 411 (2000)]. The
lattice size used in the MC-MF method is 43. The expected
4t2/U behavior at large U/t is indicated by the black dashed
line. The more crude mean-field Hartree Fock approximation
results are denoted by “H-F” (blue dashed line): it incorrectly
predicts the growth of the critical temperature with increasing
U/t. In the light blue region measurements of the spin square
operator and the double occupancy indicate the presence of
a local moment.10

term. In the language of the one-orbital Hubbard model
that corresponds to using the Hartree approximation in-
stead of the Hartree-Fock approximation employed be-
fore. This requires, then, a test of the Hartree assump-
tion for the three-dimensional one-orbital standard Hub-
bard model at half-filling. There is no need to provide
explicitly the Hamiltonian for such well known model,
thus we move immediately to discuss the results, which
are provided in Fig. 6.

The results shown in Fig. 6 are encouraging. The crit-
ical temperatures found with the MC-MF technique cap-
ture the “up and down” behavior of TN with increasing
U/t and they converge close to the expected scaling at
large U/t. Moreover, in the entire range of U/t investi-
gated the MC-MF results are close to those of quantum
Monte Carlo (with the largest discrepancy being about
20%). The successful test presented in Fig. 6 suggests
that the MC-MF technique captures the essence of the
one-orbital problem, not only qualitatively but also quan-

titatively. This gives us confidence that the results for
two orbitals in the main text, that have not been studied
before in the literature, are reliable.

C. Optical Conductivity

To illustrate the physics of the three different states re-
ported here, the optical conductivity was calculated. The
results are in Fig. 7. Panel (a) is in the AF-M regime:
while the (π, 0) magnetic order breaks the symmetry be-
tween the x and y directions, the difference is not dra-
matic and leads to both directions being metallic. Panel
(c) corresponds to the Mott insulating regime: here a
gap is present both when the electric field points along
the x and y directions. The first excitations occur at the
scale of the Hund coupling, along the x spin staggered
direction. The most novel result is shown in panel (b),
already presented in the main text and reproduced here
for the benefit of the readers, corresponding to the new
OSDC region: here at ω/t ∼ 0 there is a finite weight in
the x direction but negligible weight in the y direction,
compatible with the calculation of the resistivity shown
in the main text.

Some subtle technical details are worth discussing, par-
ticularly with regards to the window in ω, around zero,
used to define the resistivity. Consider a L2 lattice. Its
associated mean level spacing is roughly estimated as
s = W/(4L2) where W is the bandwidth. In practice
the individual δ-functions broadening used in the con-
ductivity calculation is s times a factor, which it has
been chosen to be 4 in our calculations. As example, for
a 202 system s = 12/(4× 202) = 0.0075, and the broad-
ening used is then 0.03. The integration range is decided
as follows: the smallest frequency (the starting ω) is cho-
sen to be at least one order of magnitude smaller than s.
The frequency increment is chosen to be s/10. The data
of these 10 frequency points is used for the integration
and the outcome is ascribed as the average conductivity
for the frequency value at the lower end of the interval.
In the example given above, then the frequency step is
0.003. The integration is performed over 10 frequency
steps. The calculation is started at an initial frequency
of 0.0001t.

D. Mean field formalism

For completeness, here details of the mean-field ap-
proximation are provided. In general, the multiorbital
Hubbard model shown in the main text can be written
as follows:
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FIG. 7: (color online) Optical conductivity of the 2D two-
orbital model used in this study at the temperatures and cou-
plings U/W indicated. Panel (a) is in the AF-M regime; panel
(b) in the OSDC regime; and panel (c) in the AF-I state. All
data are using a 162 system.

H = Ho +Hint =
∑

〈i,j〉,α,β,σ

T i,jα,βd
†
i,α,σdj,β,σ+

∑
i,σ,σ′

∑
α,α′,β,β′

Uσ,σ′(α, α′, β, β′)d†i,α,σd
†
i,α′,σ′di,β′,σ′di,β,σ.

(4)

Ho (Hint) in the kinetic (interaction) term. d†i,β,σ creates

an electron at site ith, orbital β, and with spin projection
σ. The onsite interaction is:

Uσ,σ′(α, α′, β, β′) =
U

2
δ−σ,σ′δα,α′δαβδαβ′ (5)

+
U ′

2
(1− δαα′)δαβδα′β′

+
J

2
(1− δαα′)δαβ′δα′β

+
J ′

2
δαα′δββ′(1− δσσ′)(1− δαβ).

To derive the MF Hamiltonian we follow the treatment

in Quantum Theory of Finite Systems, by Blaizot, J.-P.
& Ripka, G., The MIT Press (1985). The advantage of
this approach is that one can derive a single general ex-
pression for the mean field parameters, for any number
of orbitals. This expression can be easily coded in, thus
avoiding the need to derive all possible mean field de-
couplings by hand. For this purpose we introduce the
following notation:

ρi,j,α,β = 〈α|ρi,j |β〉 = 〈d†j,βdi,α〉, (6)

where ρi,j,α,β are elements of the single particle density
matrix. We now make the Hartree-Fock approximation
assumption: the state of the system can be represented
by a single Slater determinant, |Ψ〉. By using the Wick’s
theorem, we can then write down the expectation value
of H in |Ψ〉, denoted by E[ρ], as:

E[ρ] =
∑

〈i,j〉,α,β,σ

T i,jα,β〈β, σ|ρi,j |α, σ〉+∑
i,σ,σ′

∑
α,α′,β,β′

Uσ,σ′(α, α′, β, β′)×

[〈β, σ|ρi,i|α, σ〉〈β′, σ′|ρi,i|α′, σ′〉
−〈β′, σ′|ρi,i|α, σ〉〈β, σ|ρi,i|α′, σ′〉].

(7)

We now take the derivative of E[ρ] with respect to a
generic density matrix element, 〈ᾱ, σ̄|ρi,i|β̄, σ̄′〉, to get an
explicit formula for Hartree-Fock mean field parameters,
〈β̄, σ̄′|h|ᾱ,σ̄〉. Running over all values of orbitals and spin
in 〈ᾱ, σ̄|ρi,i|β̄, σ̄′〉, for taking the derivatives, generates
all possible mean field decouplings in the Hartree-Fock
channel. Thus, the general formula is as follows:

〈β̄, σ̄′|h|ᾱ,σ̄〉 =
∑
α′,β′

(
∑
σ′

[Uσ̄σ′(β̄, α′, ᾱ,β′)δσ̄σ̄′ + Uσ′σ̄(α′, β̄, β′, ᾱ)δσ̄σ̄′ ]×
〈β′, σ′|ρi,i|α′, σ′〉

−[Uσ̄′σ̄(β̄, α′, β′, ᾱ) + Uσ̄σ̄′(α′, β̄, ᾱ,β′)]×
〈β′, σ̄′|ρi,i|α′, σ̄〉).

(8)

Finally, the full Hartree-Fock Hamiltonian is given by:

hMF =
∑

〈i,j〉,α,β,σ

T i,jα,βd
†
i,α,σdj,β,σ

+
∑
i,ᾱ,σ̄

∑
β̄σ̄′

〈β̄, σ̄′|h|ᾱ,σ̄〉d†i,ᾱ,σ̄di,β̄σ̄′

−
∑
i,σ,σ′

∑
α,α′,β,β′

Uσ,σ′(α, α′, β, β′)×

(〈β, σ|ρi,i|α, σ〉〈β′, σ′|ρi,i|α′, σ′〉
−〈β′, σ′|ρi,i|α, σ〉〈β, σ|ρi,i|α′, σ′〉).

(9)
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