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The availability of quantitatively accurate total energies (𝐸!"!) of atoms, molecules, and solids, enabled 
by the development of density functional theory (DFT), has transformed solid state physics, quantum 
chemistry, and materials science by allowing direct calculations of measureable quantities such as 
enthalpies of formation (Δ𝐻!). Still, the ability to compute 𝐸!"! and Δ𝐻! values does not necessarily 
provide insights into the physical mechanisms behind their magnitudes or chemical trends. Here, we 
examine a large set of calculated 𝐸!"! and Δ𝐻! values obtained from the DFT+U-based FERE approach 
(Phys. Rev. B 85, 115104 (2012)) to probe relationships between the 𝐸!"!/Δ𝐻! of metal-nonmetal 
compounds in their ground-state crystal structures and properties describing the compound compositions 
and their elemental constituents. From a stepwise linear regression, we develop a linear model for 𝐸!"!, and 
consequently Δ𝐻!, that reproduces calculated FERE values with a mean absolute error of ~80 meV/atom. 
The most significant contributions to the model include calculated total energies of the constituent elements 
in their reference phases (e.g. metallic iron or gas phase O2), atomic ionization energies and electron 
affinities, Pauling electronegativity differences, and atomic electric polarizabilities. These contributions are 
discussed in the context of their connection to the underlying physics. We also demonstrate that our 
𝐸!"!/Δ𝐻! model can be directly extended to predict the 𝐸!"! and Δ𝐻! of compounds outside the set used to 
develop the model. 

 

I. INTRODUCTION 
The development and implementation of density 

functional theory (DFT)1,2 enabled direct and quantitatively 
accurate calculations of the total energies and electronic 
structures of many electron systems such as atoms, 
molecules, and solids. As a result, directly measurable 
quantities derived from total energies and/or electronic 
structures have also become directly accessible to 
calculations. These quantities include atomic and crystal 
structures, bulk moduli, enthalpies of formation, optical 
properties, phonon dispersions, and others.3 Consequently, 
first principles, or ab initio, calculations are now widely 
used to predict and understand material properties. 
Furthermore, due to rapid increases in computer power, 
high-throughput DFT calculations have emerged as means 
to address the limited availability of measured physical 
properties across large chemical spaces of both known and 
hypothetical materials.4–9 The increased availability of data, 
combined with modern data mining and machine learning 
techniques, has enabled the construction of predictive 
models that not only provide insights into the composition 
dependence of materials properties but that can also replace 
DFT calculations and further accelerate data generation.10–

14  
For both fundamental and practical value, the enthalpies 

of formation (Δ𝐻!) of compounds are of significant interest 
for first principle high-throughput calculations. Δ𝐻! 

measure the change in enthalpy upon forming a compound 
from its constituent elements in their standard states; 
therefore, it can be directly derived from the calculated total 
energies of a compound and its constituent elements. The 
fundamental value of Δ𝐻! lies in providing an energy scale 
that measures the strength of chemical bonding in a 
compound relative to the strength of bonding in its 
constituent elements. The practical value of Δ𝐻! is in 
providing enthalpies of chemical reactions that can be used 
in predicting: the stability of materials with respect to 
decomposition into competing phases,15,13 the existence of 
new (previously unreported) materials,5,16,10 material 
growth conditions,5,15 Li-ion battery voltages,17,18 etc. 
Furthermore, Δ𝐻! has recently been shown to be a key 
descriptor in modeling the formation energies of oxygen 
vacancies in metal oxides.19,20 Nevertheless, experimental 
Δ𝐻! are available for only a fraction of known metal-
nonmetal compounds, most of which are binary compounds 
(one metal) along with a small number of ternary (two 
metals) and higher order compounds.21,22 

Toward the aim of achieving accurate and high-
throughput calculations of Δ𝐻!, approaches have been 
developed over the last decade or so to correct the apparent 
inability of the standard approximation to DFT (more 
precisely DFT+U) to provide quantitatively accurate Δ𝐻! 
values.15,23–26 As a result of these efforts, a large number of 
calculated Δ𝐻! are now available in a several open online 
databases.8,7,9,27,28 Calculations of Δ𝐻! do, however, pose 
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two primary limitations: (1) computational approaches rely 
critically on the availability of structural information, and 
(2) calculated Δ𝐻! values themselves do not provide 
insights into the dependence of Δ𝐻! on other materials 
properties, e.g. composition and/or structure. These 
limitations continue to motivate the development of 
alternative methods to predict Δ𝐻! and expand 
understanding of its chemical trends.  

Historically, numerous efforts have aimed to develop 
empirical methods for estimating Δ𝐻!. For example, the 
semi-empirical Miedema model, which was developed to 
predict the Δ𝐻! of metal alloys from intrinsic properties of 
their constituent elements,29,30 has been shown to perform 
well for metal alloys as well as metallic hydrides.31,32 
Similarly, the CALPHAD approach has been quite 
successful in calculating the Δ𝐻! of complex metal alloy 
systems from thermodynamic properties of their binary 
constituents.33,34 With regard to metal-nonmetal 
compounds, the Δ𝐻! of binary transition metal-nonmetal 
compounds have been shown to exhibit a quadratic 
dependence on composition (Δ𝐻!(𝑀𝑋!) = 𝑎𝑧 + 𝑏𝑧!)35 
while the Δ𝐻! of metal-oxyhalides exhibit a linear 
correlation with the Δ𝐻! of their constituent oxides and 
halides.36 Main group metal-nonmetal compounds have also 
been shown to exhibit a linear correlation between the Δ𝐻! 
of compounds with different nonmetals (e.g. MCl and MBr) 
when referenced to the Δ𝐻! of a third series of compounds 
(e.g. M2O).37  

More recently, Meredig et al. successfully employed  
machine learning techniques to predict Δ𝐻! across large 
compositional spaces with a mean absolute error (MAE) 
~160 meV/atom.13 Additionally, a simple heuristic 
approach that estimates the formation energy of a ternary 
system from the formation energies of its binary 
constituents has been demonstrated to achieve predictive 
accuracy across an extremely wide range of ternary 
chemistries including metal alloys and metal-nonmetal 
compounds.13  

Motivated to develop further insight into the physical 
mechanisms that influence the magnitude and chemical 
trends in Δ𝐻!, we employ an alternative approach to predict 
the Δ𝐻! of metal-nonmetal compounds. In this paper, 
instead of modeling Δ𝐻! directly, we use stepwise linear 
regression to probe the relationships between the 𝐸!"! of 
metal-nonmetal compounds and the physical and chemical 
properties describing compound compositions and their 
elemental constituents. Predicted Δ𝐻! values are 
subsequently derived from the predicted 𝐸!"! according to 

Δ𝐻! = 𝐸!"! − 𝑐!   𝜇!!"#"!  (1) 

where 𝑐! and 𝜇!!"#" are the stoichiometric coefficients of 
the constituent elements and the Fitted Elemental-phase 
Reference Energies15 (FERE) of the elements in their 
standard state reference phases, respectively. The FERE 
method significantly improves the accuracy of Δ𝐻! derived 
from DFT+U compared to experiment.15 Directly modeling 
the 𝐸!"! of compounds instead of their Δ𝐻! avoids the 
DFT+U problem of properly comparing the energies of 
compounds and elements in order to obtain accurate  Δ𝐻!. 
As a result, this approach also allows treatment of 
compounds composed of elements for which FERE values 
are not available. 

The chosen stepwise regression approach has the 
advantage of allowing consideration of numerous candidate 
descriptors while the relative simplicity of linear 
functionals has the potential to facilitate model 
interpretation, particularly in comparison to traditional 
machine learning approaches such as ensemble decision 
trees, artificial neural networks, and Bayesian networks. 
Our approach parallels a recent methodology proposed for 
the systematic selection of physically meaningful 
descriptors to model material properties.38 

From the calculated 𝐸!!" of metal-nonmetal compounds 
in their ground-state crystal structures, we develop a model 
of 𝐸!"! (and, therefore, Δ𝐻!) with a MAE~80 meV/atom 
(Fig. 1). The model inputs are solely composition 
dependent and include terms describing the compound 
composition and the physical and chemical properties of its 
elemental constituents. Within the considered approach and 
set of descriptors, contributions from up to 82 terms are 
required to accurately predict 𝐸!"! indicating that no simple 
combination of the considered descriptors describes the 
underlying physics influencing 𝐸!"! sufficiently well within 
a linear functional. The most significant contributions 
include terms describing calculated total energies of the 
constituent elements in their reference phases, atomic 
ionization energies and electron affinities of the metal and 
nonmetal species respectively, Pauling electronegativity 
differences between metal and nonmetal species, and 
atomic electric polarizabilities.  

We also explore the applicability of our model to 
elements not originally included in training the model and 
to experimentally unreported compounds which may be 
less stable than those included in the training set. We find 
that the 𝐸!"!, and consequently Δ𝐻!, of compounds with 
elements such as Mo and Pb that were not included in the 
original training set are accurately predicted via the 
addition of a simple, fitted correction for each element. The 
𝐸!"! and Δ𝐻! of 95 experimentally unreported metal-
chalcogenides of the form A2BX4 (X=O, S, Se, Te)5 are 
also accurately predicted with a MAE=72 meV/atom.  
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II. MODELING TOTAL ENERGIES OF 
COMPOUNDS BY LINEAR REGRESSION 
To probe the relationships between the 𝐸!"! of metal-

nonmetal compounds and the physical and chemical 
properties describing the compounds (mainly composition) 
and their elemental constituents, we use a stepwise linear 
regression approach implemented in JMP.39 We analyze the 
calculated 𝐸!"! of ~2,000 stoichiometric and fully ordered 
compounds in their ground-state crystal structures. This 
data set includes 12 % binary, 67 % ternary, 20 % 
quaternary, and <1 % higher order chemistries reported in 
the Inorganic Crystal Structure Database (ICSD)40 with 
constituent elements spanning a relatively large portion of 
the periodic table, as shown in Fig. 2. The percentage of 
compounds containing each element are also provided in 
Fig. 2. We employ a stepwise linear regression approach to 
model 𝐸!"! (1) in order to enable consideration of numerous 
candidate descriptors and (2) to take advantage of the 
relative simplicity of linear functionals which thereby offer 
the potential to facilitate model interpretation compared to 
traditional machine learning models.  

From the ICSD, we considered all stoichiometric and 
fully ordered ionic compounds with cations from groups 1-
14 of the periodic table and anions from groups 15-17 (Fig. 
2). In addition, we constrained our dataset to the ~4,200 

compounds with a single anion specie and with integer 
formal charges on each of the elements. Our 𝐸!"! analysis 
considers only the lowest energy magnetic configuration 
and the ground state crystal structure as determined by 
DFT+U for each unique metal-nonmetal composition 
resulting in a set of 2,227 compounds. Furthermore, charge 
dependent candidate descriptors are not available for all 
elements in all charge states (e.g. spin-orbit coupling 
constants were not available for Mn5+ and Mn6+), which 
resulted in a final data set of 2,046 compounds. It is 
relevant to note that in comparison to other metal-nonmetal 
compounds, metal oxides have been most extensively 
studied and represent a significant fraction of ICSD entries. 
Consequently, metal oxides constitute 45 % of the 
compounds included in our study. All nonmagnetic and 
magnetic compounds containing N, O, P, or S anions were 
included in our dataset. However, due to limited 
computational resources, only compounds containing main 
group metals and/or the transition metals shown in blue in 
Fig. 1 were included for compositions with F, Cl, As, Se, 
Sb, Te, or Bi anions. The omitted transition metal 
compounds constitute a small fraction of the total number 
of compounds in our dataset.  

Spin polarized DFT+U41 calculations of 𝐸!"! were 
performed following the procedure used to develop the 
FERE values as described in Ref. 15. A plane wave basis 
set, the PBE exchange-correlation functional,42 and the 

FIG. 1. Stepwise linear regression sequentially adds and removes terms from the total energy (𝐸!"!) model according to 
their effective significance probability. The resultant increase in the R2 of the validation set is shown for a) Model 1: All 
Compounds and c) Model 2: Chalcogenides. The best models (D) were selected based on diminishing increases in the R2 of 
the validation set. b,d) Intermediate models A-C and final models D represent specific steps during the build and show 
increasing accuracy with the number of terms in the model.   



  

4 
 

projector augmented wave (PAW) method43 were used as 
implemented in the VASP computer code.44 The 𝐸!"! of 
compounds and elements in VASP are referenced to the 
sum of the total energies of the isolated constituent 
“pseudo” atoms in the reference configurations used to 
generate their pseudopotentials (i.e. without spin 
polarization or nonzero U values). We use the same 𝐸!"! 
definition throughout this work.  

A constant U=3 eV value was used for all transition 
metals except Cu and Ag for which we use U=5 eV in 
accordance with the parameters used to develop the FERE 
method.15 For all nontransition metals, the Hubbard U 
parameter was set to zero. A Monkhorst-Pack k-point 
sampling45 was applied such that benchmarked total 
energies converged within 3 meV/atom with respect to the 
number of k points. A plane wave energy cutoff was set to 
340 eV corresponding to a value ~20% greater than the 
highest cutoff energy suggested by the pseudopotentials 
specified in Ref. 15 (282 eV for the soft oxygen 
pseudopotential). Full volume, cell shape, and atomic 
position relaxations were performed starting from structures 
reported in the ICSD.40 Spin degrees of freedom were 
treated explicitly, and a limited search for the lowest energy 
magnetic configuration was performed as described in Ref. 
15. The calculated results including structures, magnetic 
configurations, 𝐸!"!, and Δ𝐻! are available online at 
materials.nrel.gov.  

As candidate descriptors, we consider properties 
describing the compound composition and the physical and 
chemical properties of its elemental constituents as an 
approximate chemical description of the compound (Table 
1). For those elemental properties marked with an asterisk 
(*), candidate descriptors include the maximum, minimum, 
range, standard deviation, and stoichiometric weighted 
mean of the elemental property resulting in a total of 124 
main descriptors. The square root and inverse of each term 

(an additional 248 descriptors) as well as the products of 
the primary and stoichiometric weighted mean values 
(4,692 descriptors) are also included for a total of ~5,000 
candidate descriptors. It is pertinent to note that, similar to 
previous work by Meredig et al.,13 these model inputs are 
solely composition dependent (i.e. structure independent) 
which enables the prediction of 𝐸!"!, Δ𝐻!, and related 
properties such as thermodynamic stability, without a 
known ground state structure or costly structure search. In 
addition, the considered candidate descriptors are versatile 
and applicable to compounds with any number of elemental 
constituents thereby enabling prediction of 𝐸!"! for 
binaries, ternaries, quaternaries, and even higher order 
chemistries. 

Stepwise linear regression sequentially adds and removes 
terms (candidate descriptors) from a linear model according 
to their effective significance probabilities. To verify the 
true predictive power of our models, we randomly divide 
each dataset into three groups. We use 70 % of the dataset 
to train the model and 15 % for preliminary assessment 
(validation) of the model’s predictive ability and selection 
of the best model. We completely withhold the remaining 
15 % for an independent assessment (testing) of the 
model’s predictive ability. We also withhold all compounds 
containing Mo or Pb for later testing of the model’s ability 
to predict the 𝐸!"! and Δ𝐻! of compounds containing 
elements outside the set used to develop the model. Ten-
fold cross validation was also used within the training set. 
The iterative addition and removal of terms was restricted 
according to effective significance probabilities where the 
smaller the p-value, the larger the significance of the term. 
Only terms with a p-value (significance level) ≤ 0.25, those 
with at least moderate significance, were allowed to enter 
the model. Likewise, only terms with a p-value ≥ 0.25, 
those with a loss of significance due to the addition of other 
terms, were allowed to be removed.  

FIG. 2. We analyze the total energies of ~2,000 metal-nonmetal compounds which include binary, ternary, and higher 
order chemistries with constituent elements spanning the colored portion of the periodic table. Constituent elements include 
metals, or cations, with a single charge state (blue) and with multiple charge states (aqua) and nonmetals, or anions (red). The 
percent of compounds containing each element is provided below the chemical symbol. Be, Mo, and Pb (hashed) were used 
to demonstrate direct extension of the 𝐸!"!  and Δ𝐻! models to elements outside the set used to develop the models.   
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TABLE 1. Properties describing the compound composition and the physical and chemical properties of its elemental 
constituents were considered as candidate descriptors for modeling the total energies of the compounds. Candidate 
descriptors for properties marked with an asterisk (*) included the maximum, minimum, range, standard deviation, and 
stoichiometric weighted mean of the given elemental property. The square root and inverse of each term were also included 
along with the products of the primary (those without an asterisk) and stoichiometric weighted mean values. The reference 
phases of the elements are those corresponding to standard conditions (T=298 K and p=1 atm).  
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 Candidate descriptors Description 
 atoms/formula unit Number of atoms per stoichiometric formula unit 
 fraction of transition metals Fraction of transition metal elements with multiple charges states as shown in Fig. 2 

 atomic number* Atomic numbers of the constituent elements 
atomic mass* Atomic masses of the constituent elements 

 row number* Periods, or row numbers in the periodic table, of the constituent elements  

va
le

nc
e 

el
ec

tro
ns

 column number* Groups, or column numbers in the periodic table, of the constituent elements  
number of s, p, or d valence 
electrons 

Average number of s, p, or d valence electrons for the neutral atomic species 

fraction of s, p, or d valence 
electrons 

Fraction of s, p, or d valence electrons for the neutral atomic species 

 atomic radius*,46 Measured covalent radii of the constituent elements in their reference phases 
molar volume*,47 Molar volumes of the constituent elements in their reference phases 

ph
as

e 
ch

an
ge

   
  

&
 h

ea
t 

ca
pa

ci
ty

 latent heat of fusion*,47 Latent heats of fusion (heating from a solid to a liquid) of the constituent elements in 
their reference phases 

melting point*,47 Melting point temperatures of the constituent elements in their reference phases 
boiling point*,47 Boiling point temperatures of the constituent elements in their reference phases 
heat capacity*,47 Molar heat capacities of the constituent elements in their reference phases 

io
ni

za
tio

n 
en

er
gi

es
 &

 
el

ec
tro

n 
af

fin
ity

 

1st ionization energy*,47 1st atomic ionization energies of the constituent elements  
 

cumulative ionization 
energy*,47 

Cumulative sums of the 1st, 2nd,… atomic ionization energies of the constituent metals 
summed to the cation formal charge state  

electron affinity,47 1st atomic electron affinity of the nonmetal multiplied by the anion formal charge state  
 

el
ec

tro
-

ne
ga

tiv
iti

es
 Pauling electronegativity*,47 Pauling electronegativities of the constituent elements 

 
Pauling electronegativity 
difference*,47 

Pauling electronegativity differences between first nearest neighbors assuming all metals 
have equal coordination with the nonmetals 
 

 formal charge* Integer formal charges of the constituent cations and anions 

m
ag

ne
tic

 p
ro

pe
rti

es
 crystal field splitting*,48 Empirical constants for estimating the charge dependent cation contributions to the 

crystal field splitting energy for octahedral complexes of the constituent transition metals  
magnetic moment*,48 Charge dependent magnetic moments (spin only) of the constituent transition metal 

cations in high spin, octahedral complexes 
spin-orbit coupling*,48 Charge dependent spin-orbit coupling constants for single d-electrons in the constituent 

transition metal cations 
max total electron spin* Charge dependent maximum number of unpaired d-electrons for the constituent 

transition metal cations  
 electric polarizability*,47 Atomic electric dipole polarizabilities of the constituent elements  

el
em

en
ta

l-
ph

as
e 

re
fe

re
nc

e 
en

er
gi

es
 GGA+U elemental energy*,15 GGA+U total energies per atom of the constituent elements in their reference phases 

Fitted elemental-phase 
reference energy*,15 

Fitted total energies per atom of the constituent elements in their reference phases from 
the FERE approach 

FERE correction energy*,15 Differences between the GGA+U and FERE total energies per atom of the constituent 
elements in their reference phases 

 
The intermediate models A-C, shown in Fig. 1, 

correspond to individual “steps” during the model build and 
show that the model accuracy initially increases with the 
number of terms in the model. From these models, it is 
evident that within the chosen approach and set of 
descriptors a relatively large number of terms (30-60) are 
required to attain moderate and chemically useful 
accuracies (MAE<100 meV/atom). The final model D, 
shown in Fig. 1 and labeled Model 1, has a MAE~80 
meV/atom for the test set and was selected using the 
maximum R2 of the validation set. The linear function for 

the final model is provided in the Supplemental Material 
and online at https://github.com/ademl/predict_Etot_dHf. 
Terminating the model build at the maximum R2 from the 
validation set inhibits overfitting which occurs when the 
model describes random error in the training set instead of 
the underlying relationships. Additionally, since we aim to 
produce simple models with a minimal number of terms, 
the final model was selected prior to the maximum R2 of 
the validation set when the addition of 10 terms gave 
<0.1% increase in the R2 from the validation set, as shown 
by the point D in Fig. 1a,c. 
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The full dataset used for training, validation, and testing 
of Model 1 includes extensive compositional diversity. 
Alternatively, the dataset can be strategically partitioned 
into subsets of compounds with greater chemical similarity. 
For example, partitioning compounds by the anion column 
number results in Model 2 (Fig. 1), which corresponds to 
the subset of 1,696 chalcogenides, compounds with anions 
from column 16. Compared to Model 1, Model 2 includes 
28 (34%) fewer terms and a similar MAE~80 meV/atom for 
the test set. Again, the linear function for the final model is 

provided in the Supplemental Material. This partition, 
therefore, separates the dataset such that the provided 
descriptors more accurately describe variations in 𝐸!"!. The 
large number of metal oxides in the ICSD yields a 
sufficiently large dataset to apply this analysis to 
chalcogenides. On the other hand, pnictides and halides, 
compounds with anions from columns 15 and 17 
respectively, are significantly less prevalent, and 𝐸!"! 
models for these subsets exhibit fewer terms and reduced 
accuracy compared to chalcogenides due to overfitting 
constraints. Nevertheless, with sufficiently large datasets, 
the same approach could also be applied to pnictides and 
halides.  

III. ANALYSIS OF PROPERTIES 
GOVERNING CHEMICAL TRENDS  

To gain insight into the underlying physics that 
influences the 𝐸!"! values and chemical trends of 
compounds, we examine the cumulative contributions of 
candidate descriptors to the final Models 1 and 2 (Fig. 3)  
using the absolute value of the descriptor t-statistic, a ratio 
of the parameter estimate to its standard error. The most 
significant contributions to the models include GGA+U 
total energies of the constituent elements in their reference 
phases. Other significant contributions include atomic 
ionization energies and electron affinities of the metal and 
nonmetal species respectively, Pauling electronegativity 
differences, and atomic electric polarizabilities. The latter 
set of descriptors reflects properties that somewhat directly, 
and also intuitively, relate to chemical bonding and the 𝐸!"! 
of metal-nonmetal compounds. For example, atomic 
ionization energies and electron affinities for the metal and 
nonmetal species, respectively, reflect the required energies 
to form (partially) ionic species in a metal-nonmetal 
compound. Similarly, electronegativity differences between 
the metal and nonmetal species relate to degree of charge 
transfer and covalency of bonding in the compound while 
atomic electric polarizabilities reflect the ease of electron 
density distortions due to the presence of neighboring ions.  

We find that, of the considered descriptors, the single 
term with the strongest correlation to 𝐸!"! is the 
stoichiometric weighted mean of the GGA+U total energies 
of the constituent elements in their reference phases 
(𝜇!!"!!), as shown in Fig. 4. As with compounds, the total 
energies of the elements are referenced to the sum of the 
total energies of the isolated constituent pseudo-atoms in 
vacuum. Similar trends are observed between the GGA+U 
cohesive energies of the compounds and the cohesive 
energies of their constituent elements (Fig. S1). The 
correlation between 𝐸!"! and 𝜇!!"!! arises mainly due to 
the large energy difference between isolated pseudo-atoms 
and bonded atoms in molecules and solids. In other words, 
the energies of solids and molecules are relatively similar to 
one another when compared to the very high energies of 

FIG. 3. The relative contributions of candidate 
descriptors to the final Model 1 for all metal-nonmetal 
compounds (blue) and Model 2 for chalcogenides, 
compounds with anions from column 16, (red) provide 
insight into the properties that most directly relate to the 
𝐸!"! of metal-nonmetal compounds. The areas of the 
bubbles represent the relative significance of each set of 
descriptors with the most significant cumulative 
contributions coming from descriptors of the atomic 
ionization energies and electron affinities of the metal and 
nonmetal species respectively, the Pauling electronegativity 
differences, the atomic electric polarizabilities, and the total 
energies of the constituent elements in their reference 
phases. Descriptors for properties marked with an asterisk 
(*) included the maximum, minimum, range, standard 
deviation, and stoichiometric weighted mean of the given 
elemental property. 
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isolated atoms. As a result, 𝜇!!"!! values contribute most 
significantly to the 𝐸!"! models.  

It is also apparent from Fig. 4 that the correlation 
between calculated 𝐸!"! and 𝜇!!"!! is strongest within 
groups of compounds with anions from the same column of 
the periodic table. This trend results from trends in the 
energies of the reference phase gas molecules. The 
extremely low energy of pnictogens (e.g. 𝜇!!

!!"!!=-8.3 
eV/atom) results in more negative 𝜇!!"!! values for 
pnictides compared to chalcogenides (𝜇!!

!!"!!=-5.0 
eV/atom) and halides (𝜇!!

!!"!!=-1.9 eV/atom). As a result, 
compounds with anions further to the right of the periodic 
table exhibit greater stabilization relative to their 
constituent elements. This correlation among compounds 
with anions from the same column is consistent with our 
Model 2 results for partitioning the compounds which uses 
fewer terms to obtain a similar accuracy for chalcogenides 
compared to the complete set of all anions. Lastly, Fig. 4 
shows that nearly all metal-nonmetal compounds exhibit 
𝐸!"! values that are more negative than their composition 
averaged 𝜇!!"!! values, indicating that the compounds are 
lower energy and, therefore, more stable than their 
elemental constituents. This calculated stability is 
consistent with the existence of these entries in the ICSD, 
which primarily contains experimental data.  

It is relevant to note that building a model of 𝐸!"! with 
fewer terms (and consequently, reduced accuracy) is best 

achieved by a sequential build rather than by a secondary 
down-selection of the most significant terms from a model 
with more terms. For example, a model including the 20 
most significant terms from Model 1 exhibits a significantly 
larger MAE=219 meV/atom for the test set (when the linear 
coefficients are re-optimized) than a model that was 
originally terminated with 20 terms resulting in a 
MAE=152 meV/atom for the test set. This effect arises 
from the fact that stepwise addition and removal of terms 
iteratively optimizes contributions and interdependencies 
from all provided candidate descriptors. In contrast, a 
secondary down-selection of terms is restricted to 
optimizing contributions from only those descriptors that 
were selected in the original model build. 

Ultimately, a relatively large number of terms (30-60) is 
required to attain chemically useful accuracies (MAE<100 
meV/atom) within this linear regression approach and set of 
descriptors. Additionally, numerous descriptors are 
interdependent (not necessarily linearly) and many 
properties are reflected in multiple terms. For example, the 
mean and minimum GGA+U elemental energies as well as 
several cross terms containing the mean GGA+U elemental 
energies are all included in Model 1. This reality inhibits 
the ability to further elucidate insights from the specific 
terms and functional forms of the models and also indicates 
that any truly causal (physically meaningful) connection38 
between the descriptors and 𝐸!"!/Δ𝐻! is complex.  

The relatively large number and complexity of terms in 
our 𝐸!"! models indicate that no simple combination of the 
considered descriptors describes the underlying physics 
influencing 𝐸!"! sufficiently well within a linear functional. 
Interestingly, however, our errors in the predicted 𝐸!"! of 
binary compounds are larger than those of ternary and 
higher order chemistries (MAE=110 meV/atom for binary 
compounds and 80 meV/atom for higher order chemistries 
from Model 1 training, validation, and test data) indicating 
that this linear combination of descriptors is most effective 
at describing the 𝐸!"!, and consequently Δ𝐻!, of complex 
chemistries. Therefore, our model appears to be particularly 
well suited for predicting the 𝐸!"! and Δ𝐻! of unreported 
compounds which most frequently exhibit ternary and 
higher order chemistries.  

 
 
 

IV. PREDICTING COMPOUND 
ENTHALPIES OF FORMATION  

FIG. 4. Of the considered descriptors, the 
stoichiometric weighted mean GGA+U total energies of 
the constituent elements in their reference phases 
(𝜇!!"!!) exhibit the strongest correlation with the total 
energies of the compounds (𝐸!"!). Correlations are 
strongest among compounds with anions from the same 
column of the periodic table. 
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The final models presented in Fig. 1 were developed by 
fitting the 𝐸!"! of compounds. As discussed, the Δ𝐻! of the 
compounds can subsequently be derived from Eq. 1 and the 
FERE 𝜇! values. For comparison, the predicted and 
calculated Δ𝐻! values from the final Models 1 and 2 are 
shown in Fig. 5. Model 1 includes 82 terms with MAE=68, 
83, and 77 meV/atom for the training, validation, and test 
sets, respectively. Model 2 includes 54 terms with 
MAE=66, 78, and 79 meV/atom for the training, validation, 
and test sets, respectively. Because the test sets are fully 
isolated from the model build, they provide the truest 
evaluation of the model performance. 

The achieved accuracy of MAE~80 meV/atom in 
predicting 𝐸!"! and Δ𝐻! relative to calculated 𝐸!"! and Δ𝐻!, 
respectively, provides reasonable accuracy and provides a 
route for predicting 𝐸!"! and Δ𝐻! values from inputs that 
are solely composition dependent. Therefore, we further 
explore the applicability of our 𝐸!"!/Δ𝐻! model to elements 
not included in training the model and to experimentally 
unreported compounds, which were also not including in 
developing the model. We consider two datasets: (1) 
compounds from the ICSD that contain Mo or Pb, elements 
that were not included in the original training set, and (2) 
experimentally unreported metal-chalcogenides of the form 
A2BX4 (X=O, S, Se, Te) predicted stable in Ref. 5.  

First, we examine the accuracy of Model 1 in predicting 
the calculated Δ𝐻! of 181 compounds from the ICSD that 
contain Mo or Pb, elements intentionally not included in 
training the model. As shown in Fig. 6a, the predicted Δ𝐻! 
of Mo compounds exhibit a systematic error (vertical 
offset) compared to calculated values. Adding a constant to 
Eq. 1 (-300 meV/atom, applied only to Mo compounds) 
provides a simple correction to the model resulting in a 
MAE=93 meV/atom. The predicted Δ𝐻! of Pb compounds, 
on the other hand, do not exhibit a systematic error (Fig. 
6b, MAE=154 meV/atom). Pb compounds, therefore, do 
not require a correction to the 𝐸!"!/Δ𝐻! model.  

We also consider 95 experimentally unreported A2BX4 
compounds from Ref 5 that are predicted to be stable but 
are likely less stable than most compounds included in the 
training set. This set includes 11 compounds containing Be, 
which was not included in the original training set. As with 
Mo and shown in Fig. 6c, adding a constant to Eq. 1 (450 
meV/atom, applied only to Be compounds) provides a 
simple correction to Model 1. Therefore, although the 
model was trained on reported compounds, the Δ𝐻! of 
experimentally unreported A2BX4 compounds are 
accurately predicted and, with the correction for Be 
compounds, exhibit a MAE=72 meV/atom.  

These results for Mo, Pb, and Be compounds indicate 
that our 𝐸!"!/Δ𝐻! model can be extended to elements not 
included in training the model simply by fitting a constant 

for any new element. In other words, it is not necessary to 
retrain the model. In addition, the fitting dataset can be 
relatively small and, therefore, requires only a small 
number of additional 𝐸!"! calculations. The observed 

systematic errors in predicting Δ𝐻! for certain elements 
arise when the element exhibits descriptor values outside of 
or near the boundaries of the previous range of values. For 
example, the atomic number, atomic mass, and heat 
capacity of Be are smaller than those of other elements that 
were included in training the model. In combination, these 
properties result in a systematic error in the predicted 𝐸!"! 
and Δ𝐻! of Be compounds since the model was not trained 
for this range of values. Similarly, the melting point of Mo 
is higher than that of most other elements included in 
training the model resulting in a systematic error in the 
predicted 𝐸!"! and Δ𝐻! of Mo compounds. The properties 
of Pb, on the other hand, fall within the same ranges of 
elements included in training the model and no systematic 
error is observed. Overall, our 𝐸!"!/Δ𝐻! model can be 
applied to accurately predict the Δ𝐻! of both elements not 
originally included in training the model and of 
experimentally unreported compounds. 

FIG. 5. Predicted enthalpies of formation (Δ𝐻!) from 
Model 1 and 2 are in good agreement with calculated Δ𝐻! 
for the full set of metal-nonmetal compounds and for 
chalcogenides, respectively. The training and validation 
data sets were used to build and select the best models; 
the test data sets were fully isolated from the model build.  
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V. CONCLUSIONS  
Motivated by our aim to provide insights into the 

underlying physics that dictates the chemical trends in 𝐸!"!, 
and therefore Δ𝐻!, we have developed a linear model for 
the 𝐸!"! of metal-nonmetal compounds. Our model 
reproduces 𝐸!"! and FERE Δ𝐻! values with a mean 
absolute error ~80 meV/atom and with inputs that are solely 
composition dependent. The most significant contributions 
to the model include calculated total energies of the 
constituent elements in their reference phases, atomic 
ionization energies and electron affinities, Pauling 
electronegativity differences, and atomic electric 
polarizabilities. These descriptors reflect properties that 
most directly relate to chemical bonding and the 𝐸!"! of 
metal-nonmetal compounds. Our model can also be applied 
to accurately predict the Δ𝐻! of both elements not 
originally included in training the model and of 
experimentally unreported compounds. Partitioning of 
compounds by one metric of chemical similarity, the anion 

column number in the periodic table, reduces the number of 
required terms while retaining similar accuracy. 
Nevertheless, within the chosen approach, a relatively large 
number of terms are required to attain chemically useful 
accuracies. Therefore, our findings demonstrate significant 
motive to identify more suitable descriptors of 𝐸!"! and to 
investigate other approaches for developing simple, linear 
or nonlinear models of 𝐸!"!.  
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