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Nematic order resulting from the partial melting of density-waves has been proposed as the
mechanism to explain nematicity in iron-based superconductors. An outstanding question, however,
is whether the microscopic electronic model for these systems – the multi-orbital Hubbard model –
displays such an ordered state as its leading instability. In contrast to usual electronic instabilities,
such as magnetic and charge order, this fluctuation-driven phenomenon cannot be captured by the
standard RPA method. Here, by including fluctuations beyond RPA in the multi-orbital Hubbard
model, we derive its nematic susceptibility and contrast it with its ferro-orbital order susceptibility,
showing that its leading instability is the spin-driven nematic phase. Our results also demonstrate
the primary role played by the dxy orbital in driving the nematic transition, and reveal that high-
energy magnetic fluctuations are essential to stabilize nematic order in the absence of magnetic
order.

The elucidation of electronic Ising-nematic order [1] –
the state in which electronic degrees of freedom sponta-
neously lower the point-group symmetry of the system –
has become an important problem in unconventional su-
perconductors [2, 3]. In both pnictides [4–9] and cuprates
[10–12], the experimentally observed nematic order has
been proposed to arise from the partial melting of an
underlying spin density-wave (SDW) [13–16] or charge
density-wave (CDW) [17–19] stripe-order. This mecha-
nism is based on robust symmetry considerations. Con-
sider for concreteness the stripe SDW case: the ground
state has an O (3) × Z2 degeneracy, with O(3) denot-
ing the direction of the magnetic order parameter in spin
space, and Z2 denoting the selection of the SDW ordering
vector QX = (π, 0) or QY = (0, π) (in the CDW case, the
system has an O (2) × Z2 degeneracy). Fluctuations in
layered systems suppress the continuous (O(3) or O(2))
and the discrete (Z2) symmetries differently, favoring an
intermediate regime in which only the Z2 symmetry is
broken [13]. Because the Z2 symmetry distinguishes be-
tween two ordering vectors related by a 90◦ rotation, its
breaking implies a tetragonal-to-orthorhombic transition,
and therefore nematic order.

Although this mechanism for spin-driven (or charge-
driven) nematic order has been established in simpli-
fied low-energy models for pnictides [13–15, 20, 21] and
cuprates [18, 19], it remains hotly debated whether more
realistic microscopic models display nematic order as the
leading electronic instability. the cuprates, a sensible
microscopic model is the single-band Hubbard model,
whose phase diagram has been reported to display ne-
matic correlations in the strong-coupling regime [22, 23].
For the pnictides, due to the 3d6 configuration of Fe and
to the small crystal field splittings, a five-orbital Hub-
bard model, including Hund’s rule interactions, is a more
appropriate starting point [24, 25]. Furthermore, be-
cause many pnictides display metallic behavior, a weak-
coupling analysis of this intricate model can reveal impor-
tant information about the underlying physics of these
materials. Indeed, conventional RPA approaches have

been employed to study the onset of SDW, CDW, and
ferromagnetism. However, in contrast to these usual elec-
tronic instabilities, the standard RPA approach does not
capture the nematic instability even qualitatively, as we
show below, making it difficult to assess whether the re-
alistic multi-orbital Hubbard model has a tendency to-
wards nematic order.

In this Letter, we extend the standard RPA ap-
proach and derive the nematic susceptibility of an ar-
bitrary multi-orbital Hubbard model. The fluctuations
included in this formalism arise solely from the non-
interacting part of the Hamiltonian, such that interac-
tions are treated at the same order as in the typical RPA
method. We apply this formalism to the case of SDW-
driven nematicity in iron pnictides, and establish that the
leading instability of the five-orbital interacting model is
a spin-driven nematic phase for a wide range of param-
eters. In general, we find that nematic order exists in
a narrow T range above the magnetic transition line, in
agreement with experiments in the pnictides [26]. How-
ever, magnetic fluctuations at higher energies can induce
a sizable splitting between the two transitions, partic-
ularly in the regime where the SDW transition is sup-
pressed to zero. We propose that this effect may be rele-
vant to understanding the unusual nematic phase of FeSe
[27–31]. Previously, the investigation of the multi-orbital
Hubbard model in Ref. [21] revealed the importance of
the orbital content of the Fermi surface in the low-energy
spin-nematic model of the pnictides. Here, we find from
the orbitally-resolved nematic susceptibility that whereas
the dxz, dyz, and dxy orbitals contribute almost equally to
the SDW instability, the dxy orbital plays a stronger role
in driving the nematic instability. Finally, we compare
the nematic susceptibility with the RPA-derived ferro-
orbital order susceptibility. work provides a promising
route to search for nematicity in different compounds, as
it is compatible with ab initio approaches and also with
methods that include the effects of moderate interactions,
such as LDA+DMFT [32, 33].

Our starting point is the multi-orbital Hubbard model
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with onsite interactions [25, 34]. The non-interacting

part is given by H0 =
∑
µ,ν (εµν(k)− ε̃δµν) c†kµσckνσ,

where c†kµσ creates an electron with momentum k and
spin σ at orbital µ = 1, ..., Norb and the hopping pa-
rameters εµν(k) are determined from tight-binding fits
to ab initio calculations (sums over spin and momen-
tum indices are left implicit). The four onsite interac-
tion terms correspond to the intra-orbital Hubbard term,
HU = U

∑
µ nqµ↑n−qµ↓, the inter-orbital Hubbard term,

HU ′ = U ′
∑
µ<ν nqµσn−qνσ′ , the Hund’s rule coupling,

HJ = J
∑
µ<ν c

†
k+qµσckνσc

†
k′−qνσ′ck′µσ′ , and the pair-

hopping term HJ′ = J ′
∑
µ<ν c

†
k+qµσc

†
k′−qµσ̄ck′νσ̄ckνσ.

These coefficients are related by U ′ = U−2J and J ′ = J .
Previous approaches considered the nematic susceptibil-
ity of a spin-fermion model [35]; here, we will focus on the
Hubbard model within RPA. The mechanism in which
nematic order arises from the partial melting of an SDW
or a CDW requires fluctuations at two momenta related
by 90◦, in general Q1 =

(
π
n , 0
)

and Q2 =
(
0, πn

)
, with

integer n. Although our formalism can be extended in a
straightforward way to arbitrary n, hereafter we focus on
n = 1. to make contact with the pnictides, we consider
the SDW channel. Performing a Hartree-Fock decoupling
of H in both the q = 0 charge channel and the q = Qi

SDW channel:

HMF =
∑
k

(εµν(k)− ε̃νδµν) c†kµσckνσ

− 1

2

∑
kq

Mi
qµ · c

†
k−q+Qiµσ

σσσ′ckµσ′ , (1)

where ε̃ν incorporates the changes in the mean-field den-

sities and Mi
qµ = 1

2

∑
k U

ρ
µ〈c
†
k+q+Qiρσ

σσσ′ckρσ′〉 are the
SDW order parameters with i = X,Y . The interaction
matrix Uρµ is Uaa = U and Uab 6=a = J . We consider only
intra-orbital magnetism, since previous Hartree-Fock cal-
culations revealed that in the ground state the intra-
orbital SDW order parameters are the dominant ones
[34]. In the standard RPA approach for the SDW in-
stability, the electronic degrees of freedom are integrated
out, yielding the quadratic magnetic free energy:

F (2)
mag[Mi

µ] =
∑

q,i=X,Y

[χµνi (q)]
−1

Mi
q,µ ·Mi

−q,ν , (2)

with the magnetic propagator χµνi (q)

χµνi (q) =
[

(Uµν )
−1

+
∑
k

Gνµ(k)Gµνi (k + q)
]−1

, (3)

where Gµνi (k) ≡ Gµν(k + Qi) is the Green’s function in
orbital basis, q = (q,Ωn),

∑
q = T/Nq

∑
q

∑
Ωn

, and
Ωn = 2nπT is the Matsubara frequency. The RPA mag-
netic susceptibility

〈
Mi

q,µ ·Mi
−q,ν

〉
is proportional to and

diverges at the same temperature as the magnetic prop-
agator χµνi (q). Note that the tetragonal symmetry of the
system implies that a peak of χµνi (q) at QX = (π, 0) will

FIG. 1. (Color online) Normal-state Fermi surface based on
the parameters of Ikeda et al. [44]. The colors indicate the
dominant orbital contribution.

be accompanied by an equal peak at QY = (0, π). There-
fore, at this order in perturbation theory, the system does
not distinguish the case in which either QX or QY is se-
lected (single-Q order) from the case in which both are
selected (double-Q order), i.e. the standard RPA ap-
proach is blind to nematicity. To remedy this problem,
we go beyond the second-order expansion of the free en-
ergy and calculate the quartic-order terms:

F (4)
mag[MX

µ ,M
Y
µ ] =

1

2
uρνηµ

(
MX

ρ ·MX
ν + MY

ρ ·MY
ν

)
×
(
MX

η ·MX
µ + MY

η ·MY
µ

)
− 1

2
gρνηµ

(
MX

ρ ·MX
ν −MY

ρ ·MY
ν

)
×
(
MX

η ·MX
µ −MY

η ·MY
µ

)
+ 2wρνηµ

(
MX

ρ ·MY
ν

) (
MX

η ·MY
µ

)
, (4)

The quartic coefficients, whose expressions are shown
explicitly in Appendix A, depend only on the non-
interacting Green’s functions. Although interactions can
also contribute to them, as shown in Refs. [36, 37],
within the RPA approach these contributions are sub-
leading and can be neglected. The most relevant coef-
ficient for the nematic instability is gρνηµ, whose term
distinguishes between single-Q and double-Q order.
Specifically, a Hubbard-Stratonovich transformation of
this term reveals the nematic order parameter 〈φµν〉 ∝〈
MX

µ MX
ν

〉
−
〈
MY

µM
Y
ν

〉
, a rank-2 tensor in orbital space

that breaks the tetragonal symmetry of the system by
making X 6= Y . The term with coefficient uρνηµ is re-
lated to Gaussian magnetic fluctuations in both SDW
channels, while the term with coefficient wρνηµ mainly
distinguishes between the two types of double-Q order
[36]. Eq. (4) is the multi-orbital generalization of the
magnetic free energy previously obtained in effective low-
energy models in the band basis, where the coefficient g
becomes a scalar [13].

It is now possible to compute the static nematic sus-
ceptibility χρνηµnem ∝ 〈φρνφηµ〉 in the paramagnetic phase
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FIG. 2. (Color online) The largest eigenvalues λ of (a) the
bare nematic susceptibility χρνηµnem,0, the QX/Y magnetic prop-
agator χmag, and (b) the full nematic susceptibility χρνηµnem as
a function of T for the case n = 6. The inset in (a) shows the
upturn of the magnetic susceptibility as it diverges.

(see Appendix B for details of the derivation):

χρνηµnem = χηαµβnem,0

(
δρβδνα − gρνγδχγαδβnem,0

)−1

, (5)

χρνηµnem,0 ≡
1

2

∑
q,i=X,Y

χρνi (q)χηµi (−q) . (6)

The orbitally-resolved nematic susceptibility χρνηµnem is a
rank-4 tensor that generalizes the scalar nematic suscep-
tibility derived previously for effective low-energy models
[38–40, 43]. The impact of the magnetic fluctuations en-
coded in the coefficient gρνγδ is clear: if this term were
absent, then the (bare) nematic susceptibility would be
merely a higher-order convolution of the magnetic prop-
agator, χρνηµnem,0, and therefore diverge at the same T as
the SDW susceptibility. To establish whether the ne-
matic susceptibility diverges already in the paramagnetic
phase, one needs to compute its leading eigenvalue λ(n)

from χρνηµnem Φ
(n)
ρν = λ(n)Φ

(n)
ηµ , with n = 1, ..., N2

orb. The

structure of the corresponding eigen-matrix Φ
(n)
ηµ reveals

which orbitals promote the nematic instability, and which
orbitals favor a double-Q structure with no underlying
nematicity. We note that in principle the Gaussian fluc-
tuations associated with the term with coefficient uρνηµ

can also renormalize the magnetic propagator χρνi . How-
ever, because this effect merely renormalizes the SDW
transition temperature, we do not include it hereafter.

Equation (5) is the RPA-generalized nematic suscep-
tibility, which can be compared on equal-footing with
other RPA instabilities of a weakly-interacting system
described by a multi-orbital Hubbard model. We apply
this formalism to a five-orbital model for the iron-based
superconductors and contrast the nematic susceptibility
to the ferro-orbital RPA susceptibility. The hopping pa-
rameters are those from Ref. [44], whereas the interac-
tions are set to U = 0.95 eV and J = U/4 [34]. Small
changes in these parameters do not alter our main results.
The Fermi surface for the occupation number n = 6 is
presented in Fig. 1, consisting of three hole pockets at
the center and the corner of the Brillouin zone, and two
electron pockets at the borders of the Brillouin zone. that

FIG. 3. (Color online) Color plot of the normalized elements

of the eigen-matrix Φ
(n)
ηµ corresponding to the leading eigen-

value of the bare (left) and of the full (right) nematic suscep-
tibilities. The dominant contributions arise from the dxz, dyz,
and dxy orbital, with the dxy being the most important for
nematicity.

the dxy hole pocket at (π, π) is not present in all materi-
als, as it depends on the Fe-As distance [41, 42].

We evaluate Eqs. (3) and (5) numerically as functions
of T for various values of the occupation number n. Con-
sider first n = 6: in Fig. 2(a), we plot the T dependence
of the largest eigenvalue of the static magnetic propaga-
tor χµνi (0) as well as the largest eigenvalue of the bare
nematic susceptibility χρνηµnem,0. Despite having different T
dependencies, both eigenvalues diverge at the same tem-
perature Tmag, confirming our assertion that the stan-
dard RPA is blind to the nematic instability. In Fig. 2(b),
we plot the largest eigenvalue of the full nematic suscep-
tibility χρνηµnem , as given by Eq. (5). Clearly, the eigen-
value diverges at T > Tmag: this is exactly the nematic
transition temperature Tnem.

Interestingly, our results reveal a relatively small split-
ting between Tnem and Tmag, with Tnem ≈ 1.14Tmag,
which resembles the small T -range in which a nematic-
paramagnetic phase is observed experimentally in the
iron pnictides [26]. We caution, however, that this value
should be understood as an upper boundary for the split-
ting between the nematic and the actual magnetic tran-

sition, since T̃mag calculated inside the nematic state is
generally larger than Tmag calculated in the tetragonal
state. Furthermore, the value for Tmag obtained via RPA
overestimates the actual transition temperature due to
the absence of Gaussian fluctuations, as discussed above.

While the largest eigenvalue λ(n) determines Tnem, the

structure of the corresponding 5×5 eigen-matrix Φ
(n)
ηµ re-

veals the orbital-resolved nematic order parameter driv-

ing the transition, since Φ
(n)
ηµ ∝

〈
MX

η MX
µ

〉
−
〈
MY

η M
Y
µ

〉
.

In Fig. 3 we plot the normalized elements of the leading

eigen-matrix Φ
(n)
ηµ for both the full and the bare nematic

susceptibility – which, as shown above, contains informa-
tion only about the magnetic instability. In both cases,
the dominant processes involve the dxz, dyz, and dxy or-
bitals.
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FIG. 4. (Color online) (a) Occupation number-temperature
(n, T ) phase diagram for the bare magnetic and nematic phase
transitions, evidencing the narrow region displaying nematic-
paramagnetic order. The solid Tnem line takes into account
only the contribution from low-energy (Ωn = 0) magnetic fluc-
tuations, whereas the dashed line includes contributions from
higher energies (Ω < Ωc = 1 eV). For n < 5.75, an incom-
mensurate magnetic order appears. (b) Ferro-orbital order
susceptibility χoo a function of T for various values of the oc-
cupation number n. In contrast to the nematic susceptibility
shown in Fig. 2, χoo is nearly featureless and T -independent
at low energies.

There is however one important difference: the rela-
tive weight of the dxy orbital is larger for χρνηµnem than for
χρνηµnem,0, i.e. while the three orbitals seem to contribute
equally to drive the magnetic instability, the dxy orbital
plays a more important role in driving the nematic insta-
bility. We interpret this in terms of the nesting properties
of the orbital content of the Fermi surface in Fig. 1: while
the dxy hole-pocket at (π, π) can form a single-Q SDW
by combining with either the X or Y electron-pockets,
since both have dxy spectral weight, the two dxz/dyz hole-
pockets at (0, 0) can form a double-Q SDW by combining
with both the X and Y pockets, since they have dyz and
dxz spectral weight, respectively.

Having analyzed the n = 6 case, we present in Fig. 4(a)
the complete (n, T ) phase diagram for the magnetic and
nematic transitions. We restrict our analysis to n > 5.75,
since below this value we find incommensurate mag-
netic order. Accounting for the nematic transition in
this regime requires changes in the formalism beyond the
scope of this work. Note that, in contrast to experiments,
Tmag is not peaked at n = 6. This is likely due to the
absence of disorder effects introduced by doping, which
are known to suppress Tmag [45, 46]. Most importantly,
across the entire phase diagram the nematic transition
line tracks closely the magnetic transition line, in agree-
ment with the phase diagrams of the iron pnictides.

An important issue in obtaining this phase diagram is
that, as shown in Eq. (6), the computation of the ne-
matic susceptibility requires summing the magnetic fluc-
tuations not only over the entire Brillouin zone, but also
over energy (i.e. over Matsubara frequencies). Although
the propagator χµνi (q,Ωn) is strongly peaked at Ωn = 0
(see Appendix C), within RPA it saturates to a finite
value for large energies [see Eq. (3)], requiring a fre-
quency cutoff Ωc. Near a finite-T magnetic transition,

due to the very sharp peak in χµνi
(
QX/Y ,Ωn

)
, it is rea-

sonable to take only the Ωn = 0 contribution – the low-
energy magnetic fluctuations – resulting in the solid line
of Fig. 4. However, near the region where Tmag → 0,
ignoring the high-energy magnetic fluctuations (Ωn 6= 0)
is not justified. To address this problem, we introduce a
cutoff Ωc = 1 eV, at which the propagator reaches values
close to its saturation value, as shown in Appendix C.
The corresponding nematic transition line is shown as a
dashed line in Fig. 4. Near the regime where the magnetic
transition takes place at finite T , the only effect of the
cutoff is to increase the nematic transition temperature,
as expected. However, near the regime where Tmag → 0,
the nematic transition is stabilized even in the absence
of long-range magnetic order. Although the precise value
of Tnem depends on the cutoff value, the main result is
that higher-energy magnetic fluctuations are essential to
promote nematic order without magnetic order. In this
regard, it is interesting to note that, in FeSe, the only
parent material in which nematic order is observed in
the absence of magnetic order, NMR measurements find
no evidence for low-energy magnetic fluctuations [47, 48],
whereas neutron scattering reports sizable fluctuations at
modest energy values [49, 50].

A remaining question is whether or not the spin-driven
nematic instability is the leading instability of the sys-
tem. In particular, an ongoing debate [2, 37, 51–54] con-
cerning iron-based materials is whether ferro-orbital or-
der, signaled by an unequal occupation of the dxz and dyz
orbitals, ∆n ≡ nxz − nyz 6= 0, could drive the nematic
transition, instead of the spin-driven mechanism explored
above. To investigate this issue, we calculate the q = 0
static component of the RPA orbital order susceptibility,
χoo(q) = 〈∆n(q)∆n(−q)〉 for the multi-orbital Hubbard
model [31], of which a brief derivation is included in Ap-
pendix D. As shown in Fig. 4(b), our results reveal a
nearly T -independent χoo for the doping range and in-
teractions investigated. This is not unexpected, since for
reasonable values of U and J , there is no attraction in
the RPA charge channel. Therefore, within RPA, ferro-
orbital order is unable to drive the nematic instability.
Of course, once the coupling to magnetic fluctuations is
included, which requires going beyond RPA, χoo will di-
verge at the same T as χnem [21, 31, 55]. In this regard,
by effectively decoupling these two channels, RPA pro-
vides an interesting route to investigate which instability
is the leading one – at least for weak or moderate inter-
actions.

In summary, we developed an appropriate extension
of the RPA approach to obtain the orbital-resolved spin-
driven nematic susceptibility of an arbitrary multi-orbital
Hubbard model. Application to the case of iron-based
superconductors reveals that the leading instability of
the system is an interaction-driven nematic phase. The
dxy orbital plays a leading role in promoting the ne-
matic instability, and higher-energy magnetic fluctua-
tions are essential to stabilize nematic order in the ab-
sence of long-range magnetic order. Comparison with
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other RPA susceptibilities reveals that the nematic and
magnetic transitions follow each other closely, and that
the ferro-orbital susceptibility does not diverge on its
own. More generally, our formalism can also be combined
with first-principle approaches to search for other materi-
als that may display electronic nematicity. Furthermore,
because interactions appear only in the determination of
the magnetic propagator, Eq. (3), this formalism can
be combined with other approaches that specifically in-
clude moderate electronic interactions, such as DFT+U
or LDA+DMFT [32, 33].
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Appendix A: Fourth order coefficients

To derive the form of the free energy given in Eqs.
(2) and (4) in the main text, we perform a Hubbard-
Stratonovich (HS) decoupling thereby obtaining the
electron-mediated interactions between the magnetic or-
der parameters. Formally the HS decoupling relies on
inserting unity in the partition function, where unity, in

the present case, is given by

1 =

∫
D[MX

µν ,M
Y
µν ]

exp

[
−
∫
q

(
MX

µν(q)
(
U−1

)µν
ρλ

MX
ρλ(−q)

+MY
µν(q)

(
U−1

)µν
ρλ

MY
ρλ(−q)

)]
, (A1)

and
∫
D[MX

µν ,M
Y
µν ] is chosen such that the path-integral

evaluates to unity and q = (q,Ωn) (Ωn being a bosonic
Matsubara frequency). The electrons are then integrated
out resulting in an effective action for the magnetic order

Seff[MX
µν ,M

Y
µν ] =

∑
i

∫
q

Mi
µν(q)

(
U−1

)µν
ρλ

Mi
ρλ(−q)

− Tr ln
[
G0
µν(k)−1 − Vµν(q)

]
, (A2)

where i = X,Y , µ and ν are orbital indices, k = (k, ωn),
ωn = (2n+ 1)πT is the fermionic Matsubara frequency,
and the trace is over all external indices (the spin indices
have been suppressed, the Green’s function is diagonal in
spin). G0

µν(k) is the matrix Green’s function, obtained
from the first term in Eq. (1) of the main text, and V
originates from the coupling between the magnetic order
parameters and the electrons, the second term. In the
basis

Ψ(k) =

 ψ(k)
ψ(k + QX)
ψ(k + QY )

ψ(k + QX + QY )

 (A3)

these are given by the matrices

G0
µν(k) =


G0
µν(k + q) 0 0 0

0 G0
µν(k + q + QX) 0 0

0 0 G0
µν(k + q + QY ) 0

0 0 0 G0
µν(k + q + QX + QY )

 (A4)

Vµν(q) =


0 − 1

2M
X
µν(q) · σαβ − 1

2M
Y
µν(q) · σαβ 0

− 1
2M

X
µν(q) · σαβ 0 0 − 1

2M
Y
µν(q) · σαβ

− 1
2M

Y
µν(q) · σαβ 0 0 − 1

2M
X
µν(q) · σαβ

0 − 1
2M

Y
µν(q) · σαβ − 1

2M
X
µν(q) · σαβ 0

 , (A5)

where each element of the matrices should be understood
as an Norb×Norb matrix in orbital space, with the Green
function being

G0
µν(k) =

∑
m

〈µ|m〉〈m|ν〉
iωn − ξm(k)

, (A6)

where m refers to band basis and µ, ν refer to orbital
basis. Expanding the trace-log to fourth order in the
magnetic order parameters and applying the Pauli matrix
identity

σiαβσ
j
βδσ

k
δγσ

l
γα = 2

(
δijδkl − δikδjl + δilδjk

)
(A7)

yields the magnetic free energy as written in Eqs. (2) and
(4) of the main text, with the fourth order coefficients
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uρνηµ =
1

16

∑
k

(
2GµρGρνX G

νηGηµX − G
µρGρηX G

ηνGνµX + GµρGρνX G
νηGηµY

+ GνρGρµX G
µη
X+Y G

ην
X − G

µρGρηX G
ην
X+Y G

νµ
Y

)
+ (X ↔ Y ) , (A8)

gρνηµ = − 1

16

∑
k

(
2GµρGρνX G

νηGηµX − G
µρGρηX G

ηνGνµX − G
µρGρνX G

νηGηµY

− GνρGρµX G
µη
X+Y G

ην
X + GµρGρηX G

ην
X+Y G

νµ
Y

)
+ (X ↔ Y ) , (A9)

wρνηµ =
1

16

∑
k

(
− 2GµρGρηX G

ηνGνµY + 2GνρGρηX G
ηµGµνY − 2GηρGρµX G

µν
X+Y G

νη
X + 2GηρGρνX G

νµ
X+Y G

µη
X

+ GρµGµηY G
ην
X+Y G

νρ
X + GρνGνηY G

ηµ
X+Y G

µρ
X + GµρGρνX G

νη
X+Y G

ηµ
Y + GνρGρµX G

µη
X+Y G

ην
Y

)
, (A10)

where repeated orbital indices are not summed. Here
all the Green functions are implicit functions of k and
Gµνj (k) = Gµν(k + Qj) and

∑
k = T/Nk

∑
k

∑
ωn

.

Appendix B: Nematic susceptibility

Preparing for an additional HS-decoupling we intro-
duce two bosonic fields ψρν and φρν with the partition
function

Z =

∫
DφDψ exp

[1

2
(uρνηµ)

−1
ψρνψηµ

−1

2
(gρνηµ)

−1
φρνφηµ

]
, (B1)

with integration measures chosen appropriately such that
Z = 1. By performing the shifts

ψρν → ψρν − uρνηµ
(
MX

η ·MX
µ + MY

η ·MY
µ

)
, (B2)

φρν → ψρν + gρνηµ
(
MX

η ·MX
µ −MY

η ·MY
µ

)
, (B3)

the terms quartic in M cancel accordingly. Following the
standard procedure we introduce a field (hρν) conjugate

to MX
ρ ·MX

ν −MY
ρ ·MY

ν and define φ̃ρν = φρν + hρν .
The resulting action is then

S[Mi
µ, ψµν , φµν ] =

∑
q,i=X,Y

(rµνi (q) + ψµν)Mi
µ ·Mi

ν

− 1

2
(uρνηµ)

−1
ψρνψηµ

+
1

2
(gρνηµ)

−1
(
φ̃ρν − hηµ

)(
φ̃ηµ − hηµ

)
− φ̃ρν

(
MX

ρ ·MX
ν −MY

ρ ·MY
ν

)
. (B4)

Here rµνi (q) = (Uµν )−1 +
∑
k Gνµ(k)Gµνi (k + q) and

Gµνi (k) ≡ Gµν(k+Qi). It is now straightforward to com-
pute the nematic susceptibility:

χρνηµnem = lim
h→0

(
δ2 lnZ
δhρνδhηµ

)
=
(
gρνικgηµφλ

)−1 〈φικφφλ〉 − (gρνηµ)
−1

,(B5)

where we used the fact that 〈φρν〉 = 0 as we are above
the nematic instability. To continue we note that

δ2F

δφρνδφηµ
= 〈φρνφηµ〉−1

, (B6)

where the free energy is

F = −T lnZ, (B7)

obtained by integrating out the magnetic degrees of free-
dom and taking the large N limit. We find the effective
action

Seff[ψµν , φµν ] =
1

2
(gρνηµ)

−1
φρνφηµ

+
1

2
Tr ln

[
χ−1
ικ,Y χ

−1
κλ,X − φικφκλ

+ χ−1
ικ,Y φκλ − φικχ

−1
κλ,X

]
, (B8)

where we have ignored the Gaussian fluctuations ψρν and
(χµνi (q))−1 = rµνi (q). Finally

〈φρνφηµ〉−1
= (gρνηµ)

−1

− 1

2

∑
q,i=X,Y

χρµ,i(q)χνη,i(−q) (B9)

and after some manipulations we arrive at the expression
given in the text for the nematic susceptibility.

Appendix C: Frequency dependence of the magnetic
susceptibility

In this section we illustrate the frequency depen-
dence of the magnetic propagator at various tempera-
tures for representative filling factors of the (n, T ) phase
diagram (Fig. 4(a) of the main text). Because the
magnetic propagator peaks at (π, 0)/(0, π), we focus on
QX . For n = 5.90 as we approach the instability (at
kBT = 45 meV), the frequency dependence of the prop-
agator

∑
µν χ

µν
X (QX ,Ωn) has the form shown in Fig.

5, where the bosonic Matsubara frequency is given by
Ωn = 2πnT . The gray area denotes the region included



7

FIG. 5. Frequency dependence of the magnetic propagator∑
µν χ

µν
X (QX ,Ωn) for n = 5.90 at different temperatures.

The parameters used are quoted in the main text. The mag-
netic instability takes place at kBT = 45 meV. From (a) we
see that the contribution to the bare nematic susceptibility
comes mostly from the zero frequency part of the magnetic
susceptibility.

FIG. 6. Frequency dependence of the magnetic propagator∑
µν χ

µν
X (QX ,Ωn) for n = 6.04 at different temperatures.

The parameters used are quoted in the main text. As is ev-
ident in (a), the peak broadens as zero temperature is ap-
proached. However, even at higher temperatures, shown in
(b) and (c), finite Matsubara frequencies provide considerable
contributions to the bare nematic susceptibility.

in the cut-off Ωc = 1 eV, and the dotted line indicates∑
µν χ

µν
X (QX ,Ωn → ∞). The plots in Fig. 5 justify

the statement made in the main text that near a finite-
temperature magnetic transition, one can safely neglect
the higher frequency contributions.

To illustrate the importance of including high fre-
quency contributions in the case where magnetic order is
absent, in Fig. 6 we also plot the frequency dependence
of the magnetic propagator for n = 6.04. It is clear that
the peak is broadened, implying that it is no longer jus-
tified to ignore the contributions originating from finite

frequencies.

Appendix D: Derivation of the ferro-orbital order
susceptibility

Ferro-orbital order is characterized by the breaking of
the degeneracy between the dxz and dyz orbitals. In the
itinerant framework this is seen by an inequivalent oc-
cupation of the two orbitals, i.e. nxz 6= nyz. Defining
∆n(q) ≡ nxz(q) − nyz(q) as in the main text, the ferro-
orbital susceptibility is given by 〈∆n(q)∆n(−q)〉. Using
the definition of ∆n(q), we find that this is nothing but a
linear combination of specific components of the charge
susceptibility, (χc)µνρλ . In the standard RPA approach,
the full expression is [31, 55]

χoo = (χc
RPA)xz,xzxz,xz + (χc

RPA)yz,yzyz,yz

− (χc
RPA)xz,yzxz,yz − (χc

RPA)yz,xzyz,xz , (D1)

where the RPA charge susceptibility is given by the usual
expression [25]

(χc
RPA)µνρλ =

(
[1 + χ0Uc]

−1
)µδ
ργ

(χ0)δνγλ , (D2)

where χ0 is the standard particle-hole bubble

(χ0(q))µνρλ = −
∑
k

Gµν(k)Gρλ(k + q) (D3)

and Uc is the interaction matrix in the charge channel.
The latter differs from the interaction in the SDW chan-
nel and is given by (a 6= b)

(Uc)
aa
aa = U , (D4)

(Uc)
aa
bb = 2U ′ − J = 2U − 5J , (D5)

(Uc)
ab
ab = 2J − U ′ = 4J − U , (D6)

(Uc)
ba
ab = J ′ = J . (D7)

We note that, due to the implicit summation over re-
peated indices in Eq. (D2), all orbitals contribute to the
RPA orbital order susceptibility. The static part of Eq.
(D1) at q = 0 is the quantity plotted in Fig. 4(b) in the
main text.
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Wolf, H. v. Löhneysen, K. Ishida, and C. Meingast Phys.
Rev. Lett. 114, 027001 (2015).

[48] S.-H. Baek, D. V. Efremov, J. M. Ok, J. S. Kim, J. van
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