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Abstract

We propose a fully ab initio method, the opposing crystal potential (OCP), to calculate the

crystal field parameters of transition metal impurities in insulator hosts. Through constrained

density functional calculations, OCP obtains the constraining Lagrange multipliers, which act as

cancellation potential against the crystal field and lead to spherical d-electron distribution. The

method is applied to several insulators doped with Mn4+ and Mn2+ ions and shown to be in good

agreement with experiment.
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I. INTRODUCTION

Semiconductor and insulating crystals doped with transition metal ions have found nu-

merous applications in modern technological devices, e.g. solid-state laser, solid-state light-

ing, scintillators and infrared to visible up-conversion.1,2 The open d shell of 3d dopant ions

play a central role in the optical properties of these materials, providing low-lying excited

states involving dN multiplets and tunable optical transitions, which are controlled by the

interactions these ions experience in host materials of different chemical compositions and

crystal structures. Together with the d-electron on-site correlation, these interactions with

the crystal determine the overall energy level schemes and splitting of the electronic states

and manifest themselves in the optical absorption and emission spectra. Empirically such

interactions are dictated by factors such as covalency of the bonding with ligands as well as

geometry of the ligand coordination, i.e. number of bonds (coordination number) and the

length/angle of bonds. The crystal field theory (CFT)3 is a well established tool for quan-

tifying the ligand environment of localized d-electrons.4 Beyond transition metal ions in

optical materials, CFT finds extensive applications in describing the electronic structure of

f -electrons of lanthanide and actinide systems,5–7 including studies on magnetic anisotropy

energies for permanent bulk- and single-molecule magnets.8–10

The semi-empirical Exchange Charge Model (ECM)11 has been successfully applied to

transition metal ions in optical materials to calculate the crystal field parameters (CFP).

First-principles approaches,12,13 including wavefunction-based quantum chemical methods

for molecules and clusters and the density functional theory (DFT), have the advantage of

predicting CFPs from first-principles without having to fit to experiment.14–18 However, they

are often plagued by the following three technical challenges in the electronic structure of

d/f -systems. (1) Lack of a fully self-consistent treatment of the d/f -charge density. (2) Lack

of explicit consideration of strong on-site electronic correlation effects and self-interaction,

which may severely impair the accuracy of obtained parameters. Earlier, one of us de-

veloped a method to calculate crystal field splitting of lanthanide/actinide oxides19 using

self consistent DFT+U20 calculations with aspherical self-interaction corrections,21 although

many calculations of different electronic configurations are required to parametrize the CFT

model. Recently Novák and co-workers22 developed a DFT-based approach using Wannier

wavefunctions and achieved considerable progress in predicting CFPs of rare earth ions.23–25
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In their approach the f -electrons were treated as core electrons in DFT calculations and

correlation effects were considered by introducing an adjustable parameter. (3) Moreover,

compared to f -electrons, transition metal d-electrons hybridizes considerably more strongly

with ligand p-electrons, resulting in broader d bands and difficulty identifying the crystal

field splitting.

In this paper we propose a fully ab initio method for the CFPs of transition metal dopants

in optical host materials. We constrain the d-shell charge density to be spherical by a matrix

of Lagrange multipliers that act as a cancellation potential and effectively opposes the DFT

crystal field potential to produce a spherical d-shell distribution. All CFPs are then solved

for using a linear equation of the obtained Lagrange multipliers. The opposing crystal

potential (OCP) method is outlined below and applied to select semiconductors doped with

Mn4+ and Mn2+ ions. Finally, We will return to address the above questions before make

conclusions.

II. METHOD

Historically CFPs have been defined prevalently in two different normalization conven-

tions, the so-called Stevens26 and Wybourne4 notations. In this paper we adopt the former

one with Steven’s operators Ok
p and the associated real-valued parameters Bk

p . The matrix

element 〈m|ĤCF|m′〉 ≡ Vmm′ of the crystal field potential ĤCF = Ôk
pB

k
p is:

Vmm′ =
2l∑

p=0,2,...

p∑
k=−p

∫
Ȳ m
l O

k
pB

k
pY

m′

l dΩ

≡Mmm′,kpB
k
p , or ~V = M ~B (1)

where |m〉 designates atomic orbitals (e.g. Y m
l states), and Ok

p ’s are real-valued spherical

harmonics

O0
2 = 4

√
π/5Y 0

2 , O
1(−1)
2 = −2

√
2π/15<(=)Y

1(−1)
2 ,

O
2(−2)
2 = 4

√
2π/15<(=)Y

2(−2)
2 .

The Einstein convention for repeated indices is used through the paper. Alternatively, the

Wybourne notation adopt complex spherical harmonics Ck
p =

√
4π/(2p+ 1)Y k

p and complex

CFP Bk
p to represent ĤCF = Ĉk

pB
k
p .
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Consider a transition-metal ion in a host material. The total energy of the entire system

is

E =
∑

σ,mm′ Vmm′nσmm′ + Eee[n] + Ehost (2)

where n is the on-site density matrix of d electrons

nσmm′ =
∑
nk

fσnk〈ψσnk|m〉〈m′|ψσnk〉, (3)

projected from the Kohn-Sham states ψσnk with occupancy fσnk. The on-site Coulomb interac-

tion Eee between the strongly correlated d or f electrons represents a formidable challenge for

accurate electronic structure calculations. While the Local Density Approximation (LDA)

and the Generalized Gradient Approximation (GGA) are well known for their qualitative

failure in strongly correlated systems due to lack of consideration of on-site correlation, more

advanced methods such as DFT+U20 provide explicit treatment of Eee. Finally, Ehost is de-

fined as the energy of the host material that does not depend explicitly on the d states. The

energy derivative with respect to n, or generalized “chemical potential” of the d-electrons,

is

∂E/∂nσmm′ = Vmm′ + ∂Eee[n]/∂nσmm′ , (4)

where the first term represents the desired crystal field potential, and the second term

represents on-site contributions.

Our OCP method attempts to calculate Vmm′ with Eq. (4) enforcing a spherical charge

distribution n0
mm′ = n̄δmm′ where n̄ = Trn/(4l + 2) is the average occupancy. Since any

physical Eee is rotationally invariant, the second term in Eq. (4) must be spherical

∂Ehost[n]/∂nσmm′|n=n̄1 = V̄ee1.

Therefore OCP has the advantage of having no explicit dependence on the on-site correlation

treatment, as long as a rotationally invariant Eee is used. To be specific, we propose a

constrained, non-spin-polarized DFT calculation,

min
ρ
E(ρ) s.t. n[ψnk[ρ]] = n0

by introducing Lagrange multipliers λmm′ for the constraints and minimizing without con-

straint

F = E − λmm′(n− n0)mm′ ≡ E + ∆Ecs. (5)
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The multiplier matrix λ then corresponds to the chemical potential in Eq. (4) under a

spherical d-shell and coincides with the V matrix other than a trivial scalar shift that may

be absorbed into B0
0 :

λ = ∂E/∂n = V + V̄ee1.

The procedures follow the Lagrange multiplier method

• Determine the average occupancy n̄ by normal DFT. Initialize n0 = n̄1, step size µ,

λ(1) = 0

• For k = 1, . . . , N

1. Compute matrix n from Eq. (3).

2. At fixed λ(k), perform (unconstrained) self-consistent DFT minimization with a

non-local constraint potential:

∆V̂ cs = −λmm′|m〉〈m′|. (6)

The above acts to oppose the potential due to the crystal environment. When

converged, it cancels the aspherical components of the crystal potential and yields

an evenly occupied d/f -shell, i.e. a spherical distribution.

3. Update λ(k+1) = λ(k) − µ(n− n0).

4. If n− n0 is sufficiently small, break.

Finally, we invert linear equation (1) to obtain CFPs

~B = M−1~λ.

Note that for a given l shell, there are
∑2l

p=0,2,... 2p + 1 = (l + 1)(2l + 1) unknown Bk
p ’s

(including B0
0), matching exactly (l + 1)(2l + 1) independent elements of Hermitian matrix

λ, and M is invertible. Following Novák,22 one may alternatively use the completeness of the

spherical harmonic basis set. In particular, any given CFP in the Wybourne normalization

can be computed from the Lagrange multiplier matrix λmm′ according to

Bk
q =

(−1)k+q

2k + 1

〈
`||Ck||`

〉2
∑
mm′

λmm′
〈
`m′
∣∣Ck

q

∣∣`m〉. (7)
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In this work, we use experimental values for the cell metric. One transition metal ion

is embedded in a supercell of about 70-120 atoms. We use the Perdew-Becke-Ernzerhof

(PBE)27 parametrization of GGA for the OCP calculations, projector augmented-wave

(PAW) potentials,28 and no symmetry constraints as implemented in the VASP package.29

Brillouin zone integration was carried out on k-point meshes of at least 2 × 2 × 2 with

Gaussian broadening of width 0.05 eV. Unless otherwise specified, all internal coordinates

of the supercells were relaxed using GGA+U to better treat possible Jahn-Teller structural

distortions. We chose atomic basis functions |m〉 represented by normalized, real-valued

spherical harmonics21 and ignored spin-orbit coupling so that all matrices V , λ and M are

real.

III. RESULTS

First we study octahedrally coordinated Mn4+ used in red phosphors, in which Mn4+ (3d3)

has a 4A2g ground state configuration. Depending on the competition between crystal field

and Coulomb repulsion, the first excited state is either 3T2 or 2Eg. The red luminescence

is ascribed to the 2Eg →4 A2g + hν emission, which is mainly controlled by the free-ion

parameters and insensitive of CFPs. Given the high effective positive charge and small ionic

radius of Mn4+, large CFPs are expected.

Fig. 1 shows the convergence of our method applied to perovskite SrTiO3:Mn, a rare-

earth-free phosphor material.30 Given the m3̄m point group of the substitutional tetravalent

site (Ti4+), a crystal field of cubic symmetry for the Mn4+ ion is expected. The multipliers λ

indeed become triply degenerate λ(t2g) and doubly-degenerate λ(eg), while the occupancies

start with n(t2g) > n(eg) and gradually converge towards a uniform n̄, which was set to

0.477 according to initial structurally relaxed GGA+U calculations. Upon convergence, the

added potential ∆V̂ cs in Eq. 6 reaches a splitting λ(eg)− λn(t2g) = 2.386 eV and effectively

cancels out the crystal field potential on the transition metal ion, leading to overall equal

occupancy. Comparing results using step sizes µ=3 eV (solid curves) and 2 eV (dashed), µ

is found to affect only the convergence speed, not the final results.

To shed light on the effects of our approach on the electronic structure of SrTiO3:Mn,

Fig. 2a shows the total and Mn t2g/eg decomposed density of states (DOS) from a normal

spin-polarized GGA+U calculation (U=5 eV, J=1 eV). The strong on-site Coulomb inter-
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FIG. 1. For SrTiO3:Mn, the t2g−eg difference in the multipliers (upper blue curves) and occupancies

(lower red), respectively.

actions give rise to a charge-transfer band gap and sizable exchange splitting with the Mn4+

ion in the t32g majority high-spin configuration. The p-d hybridization leads to broad bands

with d characters, broader for eg with stronger hybridization than t2g. In the minority spin

channel, both empty t2g and eg bands are so wide due to hybridization that they lie in ap-

proximate the same energy range above the Fermi level, in contradiction to the conventional

crystal field picture of clear-cut t2g-eg splitting. Therefore it is infeasible to assign specific

energies to these crystal field levels and extract CFPs from Kohn-Sham eigen-energies.

Fig. 2b shows the results from constrained non-spin polarized PBE calculations, where

all five 3d orbitals, including t2g and eg, become equally occupied as the crystal potential

is effectively canceled by the applied potential −λ in Eq. 6. Note that the five 3d states

are not degenerate but spread out, since in a crystal they contribute to p-d bands, not five

flat levels. For example, the bonding p-eg bands are well below the Fermi level (< −6 eV)

whereas the anti-bonding p-eg bands are near the Fermi level. Our method makes use of

well-defined occupancies, not ill-defined CF energy levels. The constrained calculation in

Fig. 2b leads to metallic electronic structure as an artifact of the GGA functional used.

Table I shows the t2g-eg splitting 10Dq of SrTiO3:Mn calculated with LDA and GGA. In
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FIG. 2. DOS of SrTiO3:Mn. (a) Normal spin-polarized GGA+U and (b) Our OCP method using

constrained GGA calculations. The Fermi level is set to zero.

all cases 10Dq increases when one allows for ionic relaxation using GGA+U with decreased

Mn-O bond length of 1.906 Å from 1.949 Å in the unperturbed host. The PBE prediction of

10Dq of the relaxed structure is about 6% larger than the value 2.25 eV fitted to experimental

spectra. The LDA results are almost the same as PBE. A direct comparison of theory

to experimental d3 energy levels requires free-ion parameters (e.g. Racah parameters) in

addition to CFPs and is not attempted in this work.

Further tests on several insulators with Mn4+ substitution on tetravalent cation sites

are shown in Table II, including both oxides and fluorides. For non-cubic materials, the

4th eigenvalue of the λmm′ matrix is given as 10Dq. In Na2SiF6 we list calculated CFPs
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LDA PBE Expt.

no relax 2.181 2.168

relaxed 2.398 2.386 2.2530

TABLE I. Calculated 10Dq in eV for SrTiO3:Mn before and after ionic relaxation.

for both kinds of Si sites: the 1a sites with point group D3, and 2d sites with C3. In the

relaxed configurations, Mn4+ is more stable on the C3 sites by 0.06 eV than on the former.

Note again that the literature values of Dq are fitted to experiment, not direct experimental

observations. Overall good agreement with experimental fitted values is obtained. Our

approach reproduces the trend in the crystal field strength very well, with a slight systematic

overestimation. The octahedral Zr4+ site in CaZrO3 has a low 1̄ symmetry, resulting in a

large number of CFPs. The values in Table II for CaZrO3:Mn are given directly in the relaxed

supercell without re-orientation of axes and are validated by the fact that the corresponding

d1 crystal field levels shown in Fig. 3, i.e. eigenstates of the corresponding λ matrix, are

properly aligned with the rotated low-symmetry MnO6 octahedron. For example, the two

higher d1 eigenstates have the familiar shape of dz2 and dx2−y2 with their lobes against the

ligand oxygen atoms.

Compared to its tetravalent counterpart, the Mn2+ ion is characterized by a wide range

(∼500–700 nm) of luminescence color, tunable by the crystal field and crystal structure

(green in tetrahedral sites, orange/red in octahedral sites).34–36 Table III shows the results

for two chalcogenides (oxide and sulfide) and two halides (fluoride and chloride). Due to

the smaller effective charge and larger ionic radius than tetravalent Mn, the overall splitting

Dq is considerably smaller. We again found good agreement with experiment with small

systematic overestimation of Dq except CaCl2, for which our prediction of Dq = 702.5 cm−1

is significantly larger than the only experimental data37 but agrees better with Dq = 718

cm−1 in MnCl2 and the general trend for the crystal field of octahedrally coordianted Mn2+

observed in Ref. 34. For ZnS our prediction is in better agreement with Ref. 38 than an

earlier fitting in Ref. 39.
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SrTiO3 CaZrO3 K2SiF6 Na2SiF6

Sp. Grp. Pm3̄m Pcmn Fm3̄m P321

Pt. Grp. m3̄m 1̄ m3̄m 32. (1a) 3.. (2d)

B−2
2 -1674

B−1
2 -214

B0
2 729 -433 51

B1
2 -629

B2
2 1959

B−4
4 -15496

B−3
4 2400

B−2
4 -11981

B−1
4 -8652

B0
4 5053 -929 6187 -4118 -4116

B1
4 17241

B2
4 19336

B3
4 -24507 -11923 -118270

B4
4 25263 11190 30932

Dq 1925 1869 2357 2404 2387

Prev. 1818 1850 2323 1970; 2193

Ref. 30 31 32 33; 32 a

a According to the CFPs in Ref. 32

TABLE II. Calculated CFPs and splitting in cm−1 for octahedrally coordinated Mn4+ compared

to literature values fitted to experimental measurements. The symmetry of substitutional sites is

also shown.

IV. SUMMARY

Let’s revisit the challenges of CFP calculations with DFT outlined earlier and summarize

our treatment:

1. Charge self-consistency. Our OCP method is carried out fully self-consistently without
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FIG. 3. The d1 eigenstates according to CFPs of MnO6 in CaZrO3. The upper/lower states are

(approximately) eg/t2g.

freezing d/f -electrons into the core. The obtained CFPs therefore directly correspond

to the crystal environment that the ion experience given a spherical density matrix

n̄1. Since the main purpose of the crystal field model is to describe various excited

states with completely different spin and charge distribution, our choice of a spheri-

cal, non-spin polarized reference distribution is justified as an unbiased average of dN

configurations and validated by excellent agreement with experiment.

2. On-site correlation effects. Our approach does not explicitly depend on and to a large

extent circumvents the complication of on-site correlation for d or f -electrons, since

any physical exchange-correlation yields a uniform potential shift in our method that

gets absorbed into the spherical part (B0
0) of the crystal field. We were able to use local

approximations (LDA, GGA) in this work, despite the expected deficiency of GGA for

strongly correlated materials. Use of more advanced methods may potentially mildly

improve the results.

3. Primarily for d-electrons, the difficulty in identifying d bands due to strong d-p hy-

bridization. Our method relies on the projected on-site occupancy, which are always

well-defined, and does not suffer from the ill-defined assignment of broad energy bands
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MgGa2O4 ZnS ZnF2 CaCl2

Sp. Grp. Fd3̄m F 4̄3m P42/mnm Pnnm

Pt. Grp. 4̄3m 4̄3m mmm ..2/m

Coord. tet tet oct oct

B−2
2 -1654 -96

B0
2 229 247

B2
2 122

B−4
4 2183

B−2
4 13880 9444

B0
4 -1522 -1487 -499 -522

B2
4 1864

B4
4 -7611 -7436 -8313 -5293

Dq 580 567 1020 703

Prev. 520 667; 502 930 507.3

Ref. 35 39; 38 36 37

TABLE III. The same as Table II for Mn2+ ion. The coordination is either tetrahedral or octahe-

dral.

to local d-states.

Our method for CFPs assumes a spherical d/f -electron charge distribution, which remains

reasonable as long as the charge distribution of the host marial is not significantly altered.

For 3d ions, the d-electrons are relatively localized and we expect this assumption to be valid.

In systems with strong d-p hybridization and more delocalized d-electrons, this assumption

needs to be reassessed. However, in those cases the whole notion of the crystal field models

is questionable and may have to be replaced by more elaborate theory anyway.

In summary, we developed a parameter-free ab initio method, the opposing crystal po-

tential, for crystal field calculation based on constrained DFT, with crystal field parameters

extracted from the constraining Lagrange multipliers, which effectively oppose the crystal

field potential and yield spherical d/f -electron distribution. Good agreement with exper-

iment was demonstrated on transition metal ions Mn4+ and Mn2+ used in rare-earth free
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phosphors. The approach is highly efficient with approximate the same computational cost

as conventional DFT calculations times a small pre-factor towards convergence of the La-

grange multipliers. It is equally applicable to crystals of low or high symmetry and can be

readily implemented in general-purpose DFT codes that support on-site non-local potentials

(e.g. DFT+U). Results on rare earth ions will be published separately.
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30 Z. Bryknar, V. Trepakov, Z. Pot̊uček, and L. Jastrab́ık, J. Lumin. 87-89, 605 (2000).

31 M. G. Brik and A. M. Srivastava, ECS Journal of Solid State Science and Technology 2, R148

(2013).

32 M. G. Brik and A. M. Srivastava, J. Lumin. 133, 69 (2013).

14

http://dx.doi.org/10.1007/978-3-642-30838-3_6
https://books.google.com/books?id=K2y5BgAAQBAJ


33 Y. K. Xu and S. Adachi, J. Appl. Phys. 105, 013525 (2009).

34 D. Curie, C. Barthou, and B. Canny, J. Chem. Phys. 61, 3048 (1974).

35 D. T. Palumbo and J. J. Brown, J. Electrochem. Soc. 117, 1184 (1970).

36 D. T. Palumbo and J. J. Brown, J. Electrochem. Soc. 118, 1159 (1971).
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