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Abstract

We investigate the spin and spin-orbital textures and electronic structures of topologically pro-

tected surface states at side surfaces of Bi2Se3 by using slab models within density-functional the-

ory (DFT). This is motivated by recent experiments on nanowires, nanoribbons, and nanoplates

of Bi2Se3 with side surfaces. In particular, two representative surfaces normal to the (111) surface,

such as (11̄0) and (112̄) surfaces, are examined, in the presence of time-reversal symmetry and

inversion symmetry. The (11̄0) surface lying in the mirror plane has twofold (C2) rotational sym-

metry, whereas the (112̄) surface has only mirror symmetry. For the (11̄0) surface, we find that a

Dirac cone with strongly anisotropic Fermi velocity is formed at Γ with the Dirac point at the Fermi

level, and that the spin texture reveals features of Rashba-type combined with Dresselhaus-type

spin-orbit coupling. For the (112̄) surface, a Dirac cone is found at either Γ or the Y point (along

the mirror symmetry axis) below the Fermi level. In this case, the spin texture of the surface

states strikingly differs from that of the (111) and (11̄0) surfaces: (i) the in-plane spin polariza-

tion dominantly aligned perpendicular to the [111] direction or the mirror symmetry axis, (ii) the

Dresselhaus-like spin texture, and (iii) significant out-of-plane spin polarization away from the mir-

ror symmetry axis. Our findings distinctively differ from the previous works based on the effective

bulk model Hamiltonian. Our calculated spin and spin-orbital textures and band structures can

be observed by spin-resolved angle-resolved photoemission spectroscopy.
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I. INTRODUCTION

Symmetry-protected topological phases are interesting due to robustness of boundary

states within a bulk band gap as long as a given symmetry is preserved. Two well-known

examples are topological insulators (TIs) in the presence of time-reversal symmetry [1, 2] and

topological crystalline insulators with mirror symmetry [3]. One class of the most studied

three-dimensional TIs is the rhombohedral Bi2Se3 family with strong spin-orbit coupling

(SOC). Along the crystal c axis, i.e., the [111] direction, atomic layers are arranged in units

of quintuple layers (QLs) consisting of Se-Bi-Se-Bi-Se with ABC stacking [Fig. 1(a)] [4].

The thickness of one QL is about 1 nm. Neighboring QLs are bonded via weak van der

Waals interactions, which facilitates exfoliation to create a (111) surface (or (0001) surface

in the hexagonal lattice structure) and allows one to intercalate various neutral atoms within

the van der Waals gap. Therefore, most studies of topologically protected surface states in

the Bi2Se3 family have been carried out for the (111) surface. The previous theoretical

and experimental works show an in-plane Rashba spin texture with interesting spin-orbital

correlation in the vicinity of the Dirac point at Γ for the (111) surface [5–8].

Recently, nanoribbons and nanowires of Bi2Se3 family have been grown along the [11̄0]

direction (i.e., [112̄0]hex), or along the [111] direction [9–12]. In the former case, the top

and bottom surfaces correspond to (111) surfaces, while the side surfaces are (112̄) surfaces,

where the [112̄] direction corresponds to [11̄00]hex. In the latter case, the top and bottom

surfaces are (11̄0) surfaces, and the side surfaces are (112̄) surfaces. See Fig. 1(a)-(c) for the

overall directions and top views of the (11̄0) and (112̄) surfaces, respectively. In addition,

nanoplates of Bi2Se3 family have been fabricated with facets other than (111) [13]. Films

of Bi2Se3 family with a (221) surface were also synthesized and their transport properties

have been measured [14, 15]. Measurements of transport properties of the nanoribbons,

nanowires, and nanoplates have shown strong anisotropy in electrical conductivity and in

response to an external magnetic field, which is distinct from corresponding experiments on

the (111) surface. Furthermore, at the side surfaces the outermost atomic layer contains

both Bi and Se atoms, which would facilitate the possibility of either hole or electron doping

by adsorption, whereas at the (111) surface adsorption mostly likely gives rise to electron

doping due to the anionic nature of the outermost Se atomic layer.

Despite the interesting experiments on the side surfaces of the Bi2Se3 family, there are
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much fewer theoretical studies on those side surfaces than on the (111) surface. The previous

works [16–18] based on the effective model Hamiltonian treated all the normal surfaces to

the (111) surface to be equivalent, and thus the spin textures of the (11̄0) and (112̄) surfaces

were shown to be identical. In these works, exclusion of higher order terms in the bulk

Hamiltonian imparted continuous rotational symmetry to the (111) surface rather than the

discrete symmetries actually present, and the surface reconstruction effect was absent.

In this work, we examine the spin and spin-orbital textures and electronic structures of

topological surface states at the side or normal surfaces, such as (11̄0) and (112̄) surfaces, by

using relaxed slab models within density-functional theory (DFT). We find that the topolog-

ical Dirac surface states for the two side surfaces have entirely different spin and spin-orbital

textures from each other and from those of the (111) surface due to different symmetries of

those side surfaces and the surface reconstruction. Our results are distinct from those of the

literature [16–18]. For the (11̄0)-surface slab, a topological surface-state Dirac cone is formed

at Γ (k = 0) with strongly anisotropic Fermi velocity, and the spin texture of the Dirac cone

reveals Rashba-type features combined with Dresselhaus-type SOC. For the (112̄)-surface

slab, a Dirac point at either the Γ or Y point appears below the Fermi level EF. Additionally,

the spin texture of the Dirac cone for the (112̄) surface near Γ distinctively differs from that

of the (111) and (11̄0) surfaces: (i) The spin polarization is dominantly normal to the mirror

symmetry axis; (ii) The upper Dirac cone reveals Dresselhaus-like spin texture, whereas the

lower Dirac cone does not; (iii) There is a significant out-of-plane spin polarization except

for the mirror symmetry axis. Our findings can be observed in spin-resolved angle-resolved

photoemission spectroscopy.

We describe the symmetries of the (11̄0) and (112̄) surfaces and reiterate the main differ-

ences between our approach and the method used in the literature, Refs.[16–18], in Sec.II.

Then our slab geometries and the calculation method follow in Sec.III. The calculated results

and analysis for the (11̄0) and (112̄) slabs are separately presented in Secs.IV and V, re-

spectively, since they show different spin textures and electronic structures. The differences

between our results and the literature are also mentioned in Secs.IV and V. The conclusion

is made in Sec.VI.
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FIG. 1: (Color online) (a) Top view of bulk Bi2Se3 crystal along the crystal c axis. The bulk

rhombohedral structure has ABC stacking that organizes into quintuple-layers Se-Bi-Se-Bi-Se. The

stacking of the normal surfaces is emphasized by the hashed rulers on the left half of the figure.

(b)-(c) Top views of (11̄0) and (112̄) surfaces of Bi2Se3, which are normal to the (111) surface. Here

(11̄0) and (112̄) surfaces are equivalent to (112̄0) and (11̄00) in the hexagonal lattice, respectively.

Large, blue circles are Bi and small, green circles are Se. (11̄0) stacks with two inequivalent atomic

layers in the unit cell and (112̄) stacks with six inequivalent atomic layers in the unit cell. In both

cases, the topmost atomic layer is brightly colored, and in the latter case the second atomic layer is

dull and labeled while the third atomic layer is merely dull. For (112̄), the three other inequivalent

atomic layers are accessible by repeating the three shown atomic layers, but with a shift of 1
2
a1. In

(b) and (c) the lattice vectors a1 and a2 are shown with the local x and y axes in the plane. (b)

and (c) are drawn by using visualization program VESTA [19].

II. SYMMETRIES OF SIDE SURFACES

To cleave the (11̄0) and (112̄) surfaces, the chemical bonding between neighboring Bi

and Se atoms must be broken. There is only one kind of surface termination for each side
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surface. For both (11̄0)- and (112̄)-surface slabs, the supercell or unit cell consists of two Bi

and three Se atoms per atomic layer, as shown in the area confined by the lattice vectors

(white arrows) in Fig. 1(b) and (c), respectively. Since the chemical bonding is broken, the

surface reconstruction effect may be significant. However, each side surface is neutral in

charge and thus passivating layers are not added to the slabs. Both slabs maintain time-

reversal symmetry and inversion symmetry. Henceforth, the (x, y, z) coordinates are local

coordinates rather than the crystal coordinates, unless specified otherwise; the z axis is

selected to be perpendicular to the surface of interest.

The (11̄0) slab has stacking in units of two atomic layers, as illustrated in Fig. 1(a). The

x axis is chosen to be parallel to the [111] direction, as shown in Fig. 1(b). The (11̄0) surface

has C2 symmetry about the z axis (x → −x, y → −y) and it lies in the mirror plane.

The un-optimized (11̄0) slab has perfect C2 symmetry, which is only slightly broken upon

surface reconstruction. For the (112̄) slab, we choose the y axis to be parallel to the [111]

direction and the x axis to align along the [1̄10] direction, as shown in Fig. 1(c). The (112̄)

slab has stacking in units of six atomic layers, as illustrated in Fig. 1(a). The (112̄) surface

has mirror symmetry across the y axis (x → −x, y → y), and this symmetry is retained

even after geometry relaxation. Therefore, the (11̄0) and (112̄) surfaces have distinct spatial

symmetries.

We now compare the above spatial symmetries of the side surfaces with symmetries con-

sidered in the previous theoretical works [16–18]. In the literature, the spin textures of the

side surfaces were derived starting from the effective bulk model Hamiltonian consisting of

only linear and quadratic terms in momentum k. Higher-order terms than the quadratic

terms were neglected in the model Hamiltonian. This simplification allows continuous rota-

tional symmetry about the crystal c axis for the bulk and the (111) surface, implying that all

normal surfaces to the (111) surface are identical in terms of symmetry. However, the bulk

has only discrete symmetries [4] (rather than the continuous rotational symmetry), such as

C3 symmetry about the c axis, C2 symmetry about the [11̄0] direction, and mirror symmetry

about the (11̄0) plane. See Fig. 1(a). The crystal symmetries can be properly addressed

and incorporated in the side surfaces only when the higher-order terms in k are included in

the model Hamiltonian prior to rotations of the spatial and spin coordinates. In contrast to

the literature, our DFT calculations of the (11̄0) and (112̄) slabs include the aforementioned

correct discrete symmetries of the side surfaces as well as the surface reconstruction effect.
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III. SLAB GEOMETRIES AND CALCULATION METHOD

We first construct the (11̄0) and (112̄) slabs with thicknesses of 29 and 49 atomic

layers, respectively, by using the bulk experimental lattice constants a = 4.143 and

c = 28.636 Å [20]. For the (11̄0) and (112̄) slabs, the distances between adjacent atomic

layers are a/2 =2.0715 Å and
√
3a/6 =1.196 Å, respectively, before the geometry optimiza-

tion or surface reconstruction. These slabs are equivalent to the (11̄0) slab consisting of 14

units and an additional atomic layer and to the (112̄) slab comprising 8 units and one more

atomic layer, respectively. We choose these thicknesses in order to keep inversion symmetry

and to reduce the surface hybridization. Since both slabs have non-polar surfaces, we do

not include passivating layers in the slabs. A vacuum layer of 4a (16.6 Å) is included in

the supercell in order to avoid artificial interactions between neighboring supercells. The

relaxed (11̄0) and (112̄) slabs have thicknesses of 5.87 nm and 5.80 nm, respectively.

To relax the geometry and obtain band structures, we use a DFT code, VASP [21],

within the Perdew-Burke-Ernzerhof generalized-gradient approximation (GGA) [22] for an

exchange-correlation functional, with the projector-augmented-wave (PAW) pseudopoten-

tials [23]. We take into account SOC in a self-consistent manner within DFT. A cutoff

kinetic energy is set to 250 eV and the total energy converges down to 1×10−5 eV. For

the (11̄0) slab, the geometry is optimized by allowing the top nine and bottom nine atomic

layers to relax until the maximum residual force is less than 0.1 eV/Å. The k-points of

7×7×1 are sampled including Γ within the Monkhorst-Pack scheme. For the (112̄) slab, the

geometry is optimized by allowing the top seven and bottom seven atomic layers to relax

to the same force criterion. The k-points of 11×3×1 are sampled including Γ within the

Monkhorst-Pack scheme. For both surfaces, we check that our findings are not affected by

further geometry relaxation with a more stringent force criterion, by relaxing more atomic

layers, or by increasing the number of sampled k-points. At the examined thicknesses, hy-

bridization between the top and bottom surface states is small, i.e. on the order of meV,

for both slabs (for details, see Secs.IV and V).

The surface states are identified from our calculated band structures by examining elec-

tron density localization as a function of the z coordinate normal to a given surface. Surface

states have electron density localized at the top or bottom surface within fifteen atomic

layers by more than 80% for the (11̄0) slab, or within ten atomic layers by more than 60%
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for the (112̄) slab. Small changes of these criteria do not change our identification of the

surface states.

IV. RESULTS AND DISCUSSION FOR (11̄0) SURFACE

A. Electronic structure: (11̄0) surface

Figure 2(a) shows our calculated band structure of the un-optimized (11̄0) slab. The

surface Brillouin zone is shown as the inset of Fig. 2(b). The large residual forces are

found at the z components of the atoms close to the surface and they are on the order of

1 eV/Å. The band structure does not show a well-defined Dirac cone in the vicinity of Γ

and EF . The Dirac-cone candidate bands have quadratic dispersion near Γ, and there are

several bands bunched together right below EF . The candidate bands for the lower Dirac

cone have their charge densities strongly localized at the surface within three atomic layers,

or 4.143 Å. This is different in character from the candidate band for the upper Dirac cone

and implies that these bunched bands derive their surface state nature from the unrelaxed

surface structure rather than a topological invariant. The inversion symmetry and time-

reversal symmetry dictate that the band structure of the slab must have at least double

degeneracy for all momenta.

Upon the geometry relaxation [Fig. 2(b)], a doubly degenerate Dirac cone near EF is

clearly identified, with the Dirac point located at Γ. The energy gap between the upper

and lower Dirac cone is 3.2 meV at Γ due to the hybridization between the top and bottom

surface states. Now the previously bunched bands right below EF are shifted out of the

bulk gap as expected. The decay length of both top-surface and bottom-surface Dirac states

is about 30 Å, as shown in Fig. 2(c), which is about twice as long as that for the Bi2Se3

(111) surface. In both the upper and lower Dirac-cone surface states, Se contributions are

dominant over Bi at a ratio of roughly 2.5:1, in contrast to the case of the (111) surface where

Bi contributes more than Se at a ratio of 1.5:1 [24]. The dominant orbitals are px orbitals

corresponding to pz orbitals in the bulk crystal coordinates. Henceforth in this subsection,

we discuss characteristics of the Dirac surface states for the optimized slab only.

The effective Hamiltonian for the px-dominated surface states localized at the (11̄0) sur-
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FIG. 2: (Color online) Band structures of (a) the un-optimized and (b) the optimized Bi2Se3 (11̄0)

slabs, where the top/bottom surface states are identified as circles/squares in red/blue. The Fermi

level is zero in (a) and (b). (Inset) The surface-projected first Brillouin zone. (c) Charge density

distributions vs vertical coordinate z for the top and bottom surface states in the optimized slab

calculated near Γ (at ~k = (0.003, 0) 2π/a and 4.3 meV below the Dirac point), shown as red and

blue, respectively.

face, in the vicinity of Γ, up to quadratic order is given by

H1(k) = E0(k)I + [vxkxσy − vykyσx] + {αxkxσx − αykyσy} (1)

where I is a 2 × 2 identity matrix, E0(k) contains a constant term and quadratic terms

in k with effective masses, and vx and vy are the Fermi velocities along the x and y axes.

This Hamiltonian satisfies time-reversal symmetry and the C2 symmetry (kx,y → −kx,y,

σx,y → −σx,y, and σz → σz) of the (11̄0) surface. The square-bracketed terms are Rashba-

type SOC terms, and the braced terms are Dresselhaus-type SOC terms that are additionally

allowed by the C2 symmetry. Note that Rashba [25] and Dresselhaus [26] SOC terms are

conventionally defined with isotropic coefficients such as vx = vy and αx = αy.

The band structure, Fig. 2(b), and the constant energy contours, Fig. 3, unambiguously

show strong anisotropy in the Fermi velocity. The Fermi velocities along the x and y axes

would ordinarily be found by fitting the energy eigenvalues of the Dirac surface states in

the small k region where only linear terms in k significantly contribute (0.0015 2π/a ≤
k ≤ 0.015 2π/a). The constant energy contours show that the ellipses have their principal
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axes somewhat tilted from the x and y axes even for small k (the clockwise tilting angle

of 16◦), implying that the linear Rashba-type terms alone would incompletely describe the

low-energy physics near Γ for this surface. Including the Dresselhaus-type terms in Eq. (1)

gives rise to the tilting of the ellipse. These extra linear terms prevent us from extracting

the Fermi velocities because the energy eigenvalues E1 are

E1 = E0 +
1

2m⋆
x

k2
x +

1

2m⋆
y

k2
y

±k

√

u2 cos2 φ+ q2 sin2 φ− 2r2 sinφ cosφ, (2)

u2 = v2x + α2
x, q2 = v2y + α2

y, r2 = vyαx + vxαy, (3)

where E0 is a constant term, m⋆
x,y are the effective masses, and φ is an azimuthal angle in the

kx−ky plane measured counter-clockwise from the kx-axis. Hence any fitting procedure will

be unable to extract the set of four parameters, {vx, vy, αx, αy}, from just three equations.

However, the u, q, and r values can be found from the fitting of the energy eigenvalues at

several different values of φ. As evidenced by the energy contours, the ellipse for the lower

Dirac cone is somewhat elongated in the major axis direction compared to the upper Dirac

cone. This small particle-hole asymmetry leads to the u value being slightly larger for the

unoccupied or upper Dirac cone than for the occupied or lower Dirac cone. Upon averaging

the values of each parameter found from fitting at different values of φ and averaging across

the upper and lower Dirac cones, we find that u = 1.02±0.07 eV·Å, q = 2.35±0.03 eV·Å, and
r = 1.20±0.03 eV·Å, where the uncertainties are obtained by considering the small difference

between the upper and lower Dirac cones. We can estimate the values of the Fermi velocities

and Dresselhaus parameters appearing in Eq. (1) by making the assumption that the ratio

of the Fermi velocities, (vx/vy), is the same as the ratio of the Dresselhaus parameters,

(αx/αy). With this assumption, the values of the four parameters are as follows in units of

eV·Å : vx = 0.97± 0.10, vy = 2.23± 0.04, αx = 0.33± 0.04, and αy = 0.74± 0.07.

B. Spin and Spin-Orbital Textures: (11̄0) surface

Let us first discuss the in-plane spin texture of the Dirac surface states. The arrows in

Fig. 3 show total in-plane spin textures at the constant energy contours for the upper and

lower Dirac cones localized at the top surface that are obtained from spin expectation values

of the DFT-calculated surface-state bands. To avoid effects of higher-order terms in k, the
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FIG. 3: (Color online) Spin-texture of the Dirac cone surface states localized at the top surface for

the optimized (11̄0) slab at the constant energy contours. The length of the vectors indicates in-

plane spin polarization, and out-of-plane spin polarization is indicated by the color scale. Constant

energy contours corresponding to ± 10, 20, 30, and 35 meV with respect to the Dirac point (Fermi

level) are overlaid in green, blue, red, and black, respectively. (a) The upper Dirac cone and (b)

the lower Dirac cone. (c) A schematic representation of the in-plane spin directions along the -20

meV energy contour of the lower Dirac cone. The spins are calculated using DFT at points very

near to the energy contour, and the principal axes are shown, as are the tangents to the energy

contour at points along the principal axes.
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spin textures are calculated close to the Dirac point. The total in-plane spin polarization

is similar for both the upper and lower Dirac cones and reaches up to 0.51 µB, which is

about a 25% increase compared to that in the (111) surface. The in-plane spin polarization

rotates counter-clockwise (clock-wise) around the Γ point for the upper (lower) Dirac cone.

Interestingly, the spin directions neither align parallel to the tangent to the constant energy

contours nor obey perpendicular momentum-locking along the kx and ky axes, despite some

similarity to Rashba-like features. Here the perpendicular spin-momentum locking means

sk · k = 0, where sk is an in-plane spin vector at in-plane momentum k. To understand

the origin of our calculated spin texture, we examine five representative cases: (i) vx 6= vy

and αx = αy = 0, (ii) vx = vy and αx = αy, (iii) vx = vy and αx 6= αy, (iv) vx 6= vy

and αx = αy, (v) vx 6= vy, αx 6= αy. Our analysis shows that the spin directions do not

align tangent to the energy contours away from either the kx and ky axes or the principal

axes when the contours are elliptic such as in all the five cases. However, the perpendicular

spin-momentum locking still persists along either the kx and ky axes or the principal axes,

only when the Fermi velocity is isotropic or there are no Dresselhaus-type terms, i.e., cases

(i)-(iii). Therefore, we suggest that our calculated spin texture is attributed to a combined

effect of anisotropic Fermi velocity with the Dresselhaus-type terms.

The detailed calculations of the implications of the calculated spin texture on transport

properties are beyond the scope of this paper. There have been multiple studies of observa-

tions of spin accumulations of Bi2Se3 thin films driven by spin-unpolarized charge currents,

especially when layered on a ferromagnetic material. [27, 28] Due to the traditional perpen-

dicular spin-momentum locking associated with the surface states of the (111) slab, the spin

accumulation direction was always perpendicular to the direction of the carrier momentum.

If similar experiments are performed for this side surface, the observed spin accumulation

direction may not be perpendicular to the carrier momentum direction.

Another noticeable effect is found in the in-plane spin-orbital texture. The arrows in

Fig. 4(a)-(c) show px, py, and pz orbital projections of the spin expectation values for the

upper Dirac cone shown in Fig.3(a). The spin-orbital texture of the lower Dirac cone is

opposite to that of the upper Dirac cone. We find that the px and pz orbitals show the same

spin circulation directions, whereas the spin expectation values arising from the py orbitals

reveal Dresselhaus-like spin texture, i.e., rotates away from the Γ point. However, since

the contribution of the px orbitals is dominant, the total spin texture follows that of the px
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orbitals. The Se and Bi contributions to the spin textures are not the same as each other;

aside from Se and Bi contributing to the spin polarization at a ratio of approximately 2.5:1,

the spin directions from the Bi and Se sublattices are not parallel to each other for most φ

values [Fig. 4(d)-(e)]. For the Bi sublattice the y components of spin are dominant in the

plane, whereas for the Se sublattice there is no such tendency.

The color scale in Fig. 3 shows the total out-of-plane spin textures for the upper and lower

Dirac cones localized at the top surface. For the out-of-plane spin component, we find that

the spin polarization is greater than 0.01 µB even at small k values on the order of 0.01 2π/a,

where contributions of higher-order terms are expected to be negligible. The magnitude

of out-of-plane spin polarization increases slowly with increasing k. Perfect C2 symmetry

combined with time-reversal symmetry does not allow an out-of-plane spin component from

any order of the in-plane momenta in the effective Hamiltonian, Eq. (1). Therefore, the

z component of spin must originate from slightly broken C2 symmetry, which we find is

attributed to the geometry optimization. For example, for the un-optimized (11̄0) slab

which has perfect C2 symmetry, the upper Dirac-cone candidate band does not have the z

component of spin. Considering this observation, we expect that small linear terms such as

(γxkx + γyky)σz are allowed upon the slightly broken C2 symmetry. These additional linear

terms would only affect the energy eigenvalues through modification of u2 to (v2x + α2
x + γ2

x)

and q2 to (v2y + α2
y + γ2

y) without any change of r2 in Eq. (3). Thus, the effect of γx and γy

on the energy eigenvalues is evidently much less than that of αx and αy. Furthermore, since

the values of γx and γy are expected to be much smaller than the values of αx and αy, in

order to obtain the values of γx and γy from the fitting, the higher-order terms in the bulk

Hamiltonian need to be included before rotations of the spatial and spin coordinates. This

is beyond the scope of our current work. Notice that the spin and spin-orbital textures of

the Dirac cones aforementioned in this subsection are opposite to those of the Dirac cones

localized at the bottom surface in the sense that both the spin circulation directions and

the out-of-plane spin polarization are opposite to each other. Therefore, the existence of

the z component of spin does not break time-reversal symmetry in the slab because the z

component of spin at a given k value localized at the top surface exactly cancels out with

that localized at the bottom surface.

We now compare our calculated spin textures to those predicted by Refs. [16–18], where

the (11̄0) and (112̄) surfaces are supposed to show identical spin textures, as previously stated
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FIG. 4: (Color online) Spin-orbital textures of the upper Dirac cone localized at the top surface

for the (11̄0) slab, projected onto the (a) px, (b) py, and (c) pz orbitals. Note the in-plane scale for

(a) differs from those for (b) and (c). Sublattice decomposed spin textures of the upper Dirac cone

localized at the top surface: (d) Bi sublattice, and (e) Se sublattice. In (a)-(e) the color scales are

for the out-of-plane spin component. Note the in-plane scale for (d) differs from that of (e).

in Sec.II. In the literature, the continuous rotational symmetry in the bulk Hamiltonian,

enforced by keeping only linear and quadratic terms in k, dictates that the spin polarization

be perpendicular to the mirror symmetry plane at un-tilted elliptic constant energy contours

for all the surfaces normal to the (111) surface. In addition, the Se and Bi sublattices were

assumed to equally contribute to the Dirac surface states. However, as shown in Fig. 1(b),

the (11̄0) surface does not have mirror symmetry. Instead it has C2 symmetry about the

z axis. Our DFT-calculated Dirac surface states form elliptic constant energy contours
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tilted by about 16◦ from the kx axis, and our DFT-calculated spin and spin-orbital textures

completely differ from those of the literature. The surface reconstruction effect included in

the DFT calculation is found to be important for Dirac surface states, although the geometry

relaxation maintains the spatial symmetry to a high degree. The qualitative differences

between our result and the literature are due to the fact that our DFT calculations capture

the correct spatial symmetry and the surface reconstruction effect of the (11̄0) surface,

whereas the model Hamiltonian in the literature does not.

V. RESULTS AND DISCUSSION FOR (112̄) SURFACE

A. Electronic structure: (112̄) surface

Due to inversion symmetry and time-reversal symmetry, the band structure of the slab

has at least double degeneracy for all momenta. At the time-reversal invariant momenta (X,

Y, and Γ in the inset of Fig. 5) the bands have fourfold degeneracy. Similarly to the (11̄0)

slab, we first compare the band structures of the un-optimized and optimized (112̄) slabs,

as shown in Fig. 5(a) and (b), respectively. The surface Brillouin zone is shown as the inset

of Fig. 5(b). The un-optimized slab has large residual forces on the atoms close to the top

and bottom surfaces and the maximum force is on the order of 1 eV/Å. The band structure

of the un-optimized slab does not clearly show Dirac cones near Γ, despite Dirac-like cones

at the Y point. The bands crossing the Fermi level at Γ quickly flatten out and group with

other bands as k increases. Henceforth, we consider only the optimized slab.

1. Near the Γ point

The band structure of the optimized (112̄) slab is distinct from those of the (11̄0) and

(111) slabs in many ways, although the (112̄) slab holds topological surface states, as it

should in the presence of time-reversal symmetry. The complexity of the band structure of

the (112̄) slab in relation to those of the (11̄0) and (111) slabs is likely influenced by the lower

symmetry and the presence of twelve broken covalent bonds, whereas there are only eight

broken covalent bonds in the (11̄0) surface and zero in the (111) surface (due to the van der

Waals coupled quintuple layers along the crystal c-axis). Let us first discuss the upper and

lower Dirac cones near EF with the Dirac point at Γ, as shown in Fig. 5(b). The Dirac point
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FIG. 5: (Color online) Band structures of (a) the unoptimized and (b) the optimized Bi2Se3

(112̄) slabs, where the top/bottom surface states are identified as circles/squares in red/blue. The

horizontal line is to guide the eye at EDP
Γ = −0.12 eV. (Inset) The surface first Brillouin zone for

the (112̄) slab. (c) Charge density distributions vs vertical coordinate z for the top and bottom

surface states in the optimized slab calculated near Γ (at ~k = (0.009, 0) 2π/a and 8.7 meV below

the Dirac point), shown as red and blue, respectively.

at Γ, EDP
Γ , is located at 0.12 eV below EF , due to the surface potential. This indicates that

the surface reconstruction effect is significant, although the (112̄) surface is non-polar. The

energy gap between the upper and lower Dirac cones is 1.4 meV caused by the small surface

hybridization. The decay length of the surface states is about 15 Å, which is much shorter

than the (11̄0) surface but comparable to that for the (111) surface [Fig. 5(c)]. The py orbital

dominantly contributes to the surface states. Similarly to the (11̄0) slab, Se contributions

are dominant over Bi contributions at a ratio of 2.5:1 for both the upper and lower Dirac

cones.

Considering the symmetries of the (112̄) surface, the effective Hamiltonian for the py-

dominated surface states up to quadratic order, in the vicinity of EDP
Γ , is given by

H2(k) = E0(k)I + [vxkxσy − vykyσx] + {γkxσz}, (4)

where the braced term is an additional linear term allowed by the mirror symmetry of the

(112̄) surface about the y axis (kx → −kx, ky → ky, σx → σx, and σy,z → −σy,z).

Figure 6 (c) and (d) show our calculated constant energy contours above and below EDP
Γ ,
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respectively, for the states localized at the top surface. At low energies or energies up to 10

meV above or below the Dirac point, the contours are vertically elongated ellipses for both

the upper and lower Dirac cones. However, at high energies or energies sufficiently away

from the Dirac point, the size and shape of the contours for the upper Dirac cone differ from

those for the lower Dirac cone. The upper Dirac cone starts to have rectangular-shaped

contours from 15 meV above the Dirac point, while the lower Dirac cone retains the same

elliptic shape. Therefore, in the case of low energies we fit our DFT-calculated surface-state

bands to the energy eigenvalues as a function of k and φ for 0.0015 2π/a ≤ |k| ≤ 0.015 2π/a,

with two parameters s ≡
√

v2x + γ2 and vy. The energy eigenvalues E2 of Eq. (4) are

E2 = E0 +
1

2m⋆
x

k2
x +

1

2m⋆
y

k2
y ± k

√

s2 cos2 φ+ v2y sin
2 φ. (5)

Upon averaging the values of each parameter found from fitting at different values of φ and

averaging across the upper and lower Dirac cones, we find that s = 0.69 ± 0.07 eV·Å and

vy = 0.53 ± 0.05 eV·Å. This fitting result is consistent with our DFT-calculated energy

contours at low energies. We cannot separately obtain the values of vx and γ unless the out-

of-plane spin polarization is fitted. However, as will be discussed in Sec.V.B.1, we cannot

perform a quantitative fitting of the out-of-plane spin polarization based on Eq. (4) due to

the complex spin texture.

2. Other than the Γ point

In addition to the Dirac point at Γ, we find a pair of Dirac cones slightly above and

below EDP
Γ at the Y point and multiple crossings of the surface states between Γ and X near

EF , as shown in Fig. 5(b). All of the identified surface states appearing not near Γ, also

have a decay length comparable to those near Γ, as shown in Fig. 5(c). The Dirac points

at Y with energies of 0.08 eV and 0.17 eV below EF are referred to as EDP
Y,high and EDP

Y,low,

respectively. The energy gaps at the former and latter Dirac points are 2.6 meV and 1.8

meV, respectively. The crossings of the states at X and (kx, ky) = (0.318, 0) 2π/a (around

0.20 eV below EF ) are not associated with Dirac cones because their dispersion relations

are essentially flat rather than linear along the ky axis (not shown).

Figures 6(b), (e), and (f) show constant energy contours of the states localized at the top

surface below EDP
Y,high and above and below EDP

Y,low at the Y point, respectively. The flat Dirac
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FIG. 6: (Color online) (a) Band structure centered about the Dirac point at Γ and the two Dirac

points at Y. Regions from which constant energy contours are drawn are shown in gray, along

with the corresponding figure label. (b-f) Total in-plane and out-of-plane spin textures at constant

energy contours for the states localized at the top surface of the optimized (112̄) slab: (b) the

lower Dirac cone at EDP
Y,high, (c) the upper Dirac cone at Γ, (d) the lower Dirac cone at Γ, (e) the

upper Dirac cone at EDP
Y,low, and (f) the lower Dirac cone at EDP

Y,low. In (b)-(f) the numbers at the

contours indicate energies relative to the Dirac point at Γ, and the arrows at the contours and the

color scale represent the in-plane and out-of-plane spin components, respectively.17



cone above EDP
Y,high prevents us from obtaining energy contours. Now at about 10 meV or

farther away from EDP
Y,low, the energy contours of the upper Dirac cone noticeably differ from

those of the lower Dirac cone. The upper Dirac cone has horizontally elongated elliptic or

rectangular contours, whereas the lower Dirac cone has vertically elongated elliptic contours.

B. Spin and Spin-Orbital Textures: (112̄) surface

1. Near the Γ point

We first present our analysis of the spin texture of the upper and lower Dirac cones

localized at the top surface near Γ, as shown in Figs. 6(c) and (d). This spin texture

is opposite to that of the Dirac cones localized at the bottom surface. Overall, the spin

textures of both Dirac cones reveal dominant x components of spin for |kx| < 0.02 2π/a.

Along the ky axis (kx = 0) the spin is polarized along the x axis with the magnitude 0.52 µB

at ky = 0.009 2π/a and it increases to 0.54 µB at ky = 0.063 2π/a. However, there is a

fundamental difference in the spin texture between the upper and lower Dirac cones. For the

upper Dirac cone the spin polarization circulates clockwise around the Y point (Dresselhaus-

like), whereas for the lower Dirac cone the spin rotates again clockwise around the Γ point.

This difference has not been observed for the (111) and (11̄0) surfaces. Compare Fig. 6(c)

to Fig. 3(a). For |kx| > 0.02 2π/a, along the kx axis, the in-plane spin polarization of both

Dirac cones becomes very small.

For a better understanding of the aforementioned spin texture, we examine the spin

polarization projected onto the px, py, and pz orbitals for each cone, as shown in Fig. 7. For

both Dirac cones the py orbital contributes most to the spin texture, while the px orbital

contributes least. The different in-plane spin circulations for the upper and lower Dirac

cones are clearly shown in the py orbital projection. However, that is not the case for the px

and pz orbital projections. Interestingly, the pz-orbital projection shows the spin circulation

around the Y point (Dresselhaus-like) for both the upper and lower Dirac cones, whereas

the px-orbital projection reveals the circulation around the Γ point (Rashba-like). Along the

ky axis the spin polarizations of the py and pz orbitals are opposite to that of the px orbital.

Additionally, we separate the spin polarization of the Bi atoms from that of the Se atoms, as

shown in Fig. 8. The contribution of the Se atoms is greater than that of the Bi atoms. The
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Se sublattice shows the spin circulating around the Y (Γ) point for the upper (lower) Dirac

cone, just like the total spin polarization. But the Bi sublattice reveals the spin winding

around the Y point (Dresselhaus-like) for both the upper and lower Dirac cones.

In addition to the in-plane spin polarization, our DFT calculation shows a small out-of-

plane spin polarization on the order of 0.01 µB even near Γ that is apparent from the color

scale of Figs. 7 and 8. The out-of-plane spin component appears in the whole plane except

for the ky axis. This is consistent with the reasoning that the out-of-plane spin polarization

arises from the γkxσz term in Eq. (4). An estimate of this term from the fitting of our

DFT-calculated spin expectation values is not feasible due to the aforementioned complex

dependence of the total spin polarization on k and φ.

We now briefly mention the comparison of our result to the prediction made by Refs.[16–

18]. The prediction states that for any normal surface the spin polarization is strictly

perpendicular to the [111] direction and it is in the surface plane at un-rotated elliptic

constant energy contours. Refs.[17, 18] suggest that the Bi sublattice gives rise to the

Rashba spin texture and the Se sublattice the Dresselhaus spin texture, which does not

agree with our DFT result for the upper Dirac cone and is opposite to that for the lower

Dirac cone. If the Bi and Se sublattices contribute equally, the prediction in Ref.[16] agrees

with that in Refs.[17, 18]. Hence, the result in Refs.[16–18] captures only the overall feature

of the in-plane spin polarization of our DFT-calculated Dirac surface states near Γ for the

(112̄) surface. The literature could not predict the additional Dirac points at the Y point.

Note that the Hamiltonian used in the literature and Eq. (4) have mirror symmetry, while

Eq. (1) does not. The absence of mirror symmetry in the (11̄0) surface makes the prediction

of the literature inapplicable to the (11̄0) surface.

2. Near the Y point

We discuss the spin and spin-orbital textures of the Dirac cones localized at the top surface

near the Y point. The arrows in Fig. 6(b), (e), and (f) show the spin textures of the lower

Dirac cone at EDP
Y,high and the upper and lower Dirac cones at EDP

Y,low, respectively. The former

lower Dirac cone circulates clockwise around the Y point with dominant x components of

spin along the ky axis, similarly to the lower Dirac cone at the Γ point. Immediately away

from the ky axis, the spin polarization of this band is greatly reduced. The spin texture of
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FIG. 7: (Color online) Orbitally decomposed spin textures of (a-c) the upper Dirac cone and (d-f)

the lower Dirac cone of the surface states localized at the top surface near Γ for the (112̄) slab

shown in Fig. 6(c,d); (a) and (d) for the px orbital, (b) and (e) for the py orbital, and (c) and (f)

for the pz orbital. The in-plane spin polarization is given by the magnitude of the arrows, and the

out-of-plane spin polarization is given by the color-scale. Note the different in-plane scale in (b)

and (e) for the py orbital from the other in-plane scales.

the upper Dirac cone at EDP
Y,high is not obtained since it is difficult to assign constant energy

contours due to the flatness of the cone. Now regarding the Dirac cones at EDP
Y,low, the spin

at the ky axis is polarized along the x axis with the magnitude 0.33 µB at ky = 0.063 2π/a

about the Y point. However, right away from the ky axis, unexpectedly, their spin textures

are distinct from those of the Dirac cones at Γ in two ways. Compare Fig. 6(c) and (d) to (e)

and (f). The first feature is that both the upper and lower Dirac cones now circulate around

Γ, similar to the Dresselhaus-type spin texture. The spin polarization of the upper (lower)

cone rotates clockwise (counter-clockwise) relative to the Γ point. The second feature is
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FIG. 8: (Color online) Sublattice decomposed spin textures of (a,b) the upper Dirac cone and (c,d)

the lower Dirac cone of the surface states shown in Fig. 6(c,d): (a,c) Bi sublattice and (b,d) Se

sublattice. The meanings of the in-plane and out-of-plane spin polarization scales are the same as

those in Fig. 7.

that there is a significant out-of-plane spin polarization except for the ky axis, at least one

order of magnitude greater than that of the Dirac cones near Γ.

To understand these features near EDP
Y,low at Y , we calculate the spin-orbital texture and

Bi and Se sublattice contributions. Figure 9(a-c) show the spin polarization projected onto

the px, py, and pz orbitals of the lower Dirac cone at EDP
Y,low. The py orbital contributes

most to the spin polarization. The spin polarization arising from the py orbitals circulates

counter-clockwise around Γ and it has also a significant out-of-plane component. The py-

and pz-orbital spin projections are opposite to the px-orbital contribution. Both py and pz

orbitals show the Dresselhaus-like spin texture. The spin-orbital texture of the upper Dirac

cone (not shown) is opposite to that of the lower Dirac cone. Figure 9(d-e) shows the Bi and

Se sublattice contributions to the spin texture for the lower Dirac cone. In this case, both
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FIG. 9: (Color online) Orbitally decomposed spin textures of (a-c) the lower Dirac cone of the

surface state localized at the top surface near EDP
Y,low shown in Fig. 6(f): (a) the px orbital, (b)

the py orbital, and (c) the pz orbital. (d,e) Bi and Se sublattice decomposed spin textures of the

lower Dirac cone near the Y point, respectively. The meanings of the in-plane and out-of-plane

spin polarization scales are the same as those in Fig. 7. The scales of the arrows in (a) and (c) are

different from those in (b), (d), and (e).

the Bi and Se sublattices reveal the circulations of the spin around Γ or the Dresselhaus-like

SOC feature about Y .

VI. CONCLUSION

We have investigated the spin and spin-orbital textures and electronic structures of the

topological surface states of two representative normal surfaces to the (111) surface, such

as (11̄0) and (112̄) surfaces, by using relaxed slabs constructed within DFT. In addition to
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inversion and time-reversal symmetries, the (11̄0) surface has C2 symmetry and the (112̄)

surface has mirror symmetry. Effects of different surface symmetries and surface reconstruc-

tion were included in our DFT calculations of the slabs, in contrast to the effective model

Hamiltonian approach based on linear and quadratic terms in momentum. This difference

produces qualitative discrepancy between our findings and the results of the model Hamil-

tonian approach. We found that the spin and spin-orbital textures of the Dirac cones for

the two normal surfaces entirely differ from each other and from those for the (111) surface.

Interestingly, the (11̄0) surface shows a combination of Rashba-type and Dresselhaus-type

spin texture, and the spin directions do not align tangent to the tilted elliptic constant

energy contours. For the (112̄) surface, the upper and lower Dirac cones near Γ shows the

Dresselhaus-like and Rashba-like spin textures, respectively, whereas both Dirac cones near

the Y point have the Dresselhaus-like spin texture.
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[19] K. Momma and F. Izumi, J. Appl. Crystallogr. 44, 1272-1276 (2011).

[20] S. Nakajima, J. Phys. Chem. Sol. 24, 479 (1963).

[21] G. Kresse and D. Joubert, Phys. Rev. B 59, 1758 (1999).

[22] J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).
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