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Increasing the spin imbalance in superconductors can spatially modulate the gap by forming
Cooper pairs with finite momentum. For large imbalances compared to the Fermi energy, the
inhomogeneous FFLO superconductor ultimately becomes a normal metal. There is mounting
experimental evidence for this scenario in 2D organic superconductors in large in-plane magnetic
fields; this is complemented by ongoing efforts to realize this scenario in coupled tubes of atomic
Fermi gases with spin imbalance. Yet, a theory for the phase transition from a metal to an FFLO
superconductor has not been developed so far and the universality class has remained unknown.
Here we propose and analyze a spin imbalance driven quantum critical point between a 2D metal
and an FFLO phase in anisotropic electron systems. We derive the effective action for electrons
and bosonic FFLO pairs at this quantum phase transition. Using this action, we predict non-Fermi
liquid behavior and the absence of quasi-particles at a discrete set of hot spots on the Fermi surfaces.
This results in strange power-laws in thermodynamics and response functions, which are testable
with existing experimental set-ups on 2D organic superconductors and may also serve as signatures
of the elusive FFLO phase itself. The proposed universality class is distinct from previously known
quantum critical metals and, because its critical fluctuations appear already in the pairing channel,
a promising candidate for naked metallic quantum criticality over extended temperature ranges.

PACS numbers: 74.40.Kb, 71.10.Hf, 05.30.Rt, 74.70.Kn

I. INTRODUCTION

The concept of electronic “quasiparticles” moving
through a crystal and scattering off each other at rates
smaller than their typical kinetic energy has –together
with fermionic quantum statistics– led to a satisfactory
understanding of the electrical conductance and the for-
mation of superconductivity observed in many metals
at low temperatures. However, an increasing number
of observations in technologically relevant compounds
indicate intriguing “strange metal” phases1, with long-
ranged quantum entanglement2, where interactions de-
stroy the electronic quasiparticles, and where electrical
currents flow at anomalously slow rates3.

Here, we propose a new strange metal phase associated
with an underlying quantum critical point (red region in
Fig. 1) in anisotropic electronic systems at the onset of
inhomogeneous FFLO (Fulde-Ferrell-Larkin-Ovchinikov)
superconductivity7–9 in two spatial dimensions. We ar-
gue that organic superconductors10,11 are promising can-
didates hosting this new phase of matter in which elec-
tronic quasiparticles are destroyed over regions of the
Fermi surface from scattering off FFLO waves carrying
a finite momentum. As a consequence, specific heat and
NMR (nuclear magnetic resonance) relaxation rates be-
come non-Fermi liquid power-laws, whose exponents we
compute. We propose that a new round of data-taking
with existing experimental set-ups4,6 on for example the
compound κ−(BEDT-TTF)2Cu(NCS)2 could provide a
near-future experimental test of our predictions.
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FIG. 1: New strange metal phase with non-Fermi liquid be-
havior (red region) at the quantum critical point for the on-
set of inhomogeneous FFLO superconductivity in anisotropic
electronic systems in an in-plane magnetic field (h) in two
spatial dimensions. In the organic conductor κ−(BEDT-
TTF)2Cu(NCS)2, recent evidence places the onset of FFLO
correlations (green region) to high in-plane magnetic fields
h ∼ 24− 30T and low temperatures (T < 4K)4–6. The black-
dashed line is crossover scale Tcross explained in the text.

A. FFLO phase in organic superconductors

Organic superconductors have emerged as leading can-
didates for observing FFLO superconducting states in
electronic systems4–6,12–15; complementary efforts are un-
dertaken in heavy Fermion16 and iron-based17,18 com-
pounds, as well as in ultracold atoms19–21. The crystals
of organic superconductors are grown relatively clean,
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with a mean-free path larger than the coherence length
of the pairs carrying a finite momentum QFFLO. For
in-plane magnetic fields, superconductivity can be de-
stroyed by a Zeeman splitting before orbital effects be-
come relevant. For an isotropic superconductor with no
orbital effects, the critical Pauli limit field HP is reached
when the Zeeman energy µBHP > ∆/

√
2 overcomes the

gap22,23. A Zeeman driven transition14 requires an or-
bital critical field Horb larger than HP . The Maki pa-
rameters α =

√
2Horb/HP must thus be larger than one,

as in κ−(BEDT-TTF)2Cu(NCS)2 where α ' 84.
Due to only very weak and/or incoherent elec-

tron motion between the two-dimensional layers
(εF /tinterlayer ∼ 3700 for κ−(BEDT-TTF)2Cu(NCS)2

4

and tin−plane/tinterlayer ∼ 500 in the Bechgaard salt
(TMTSF)2ClO2

13,24), out-of-plane orbital currents dis-
sipate quickly. This is essentially true for the two
compounds mentioned previously and also in the
β′′-phase compound β′′-(BEDT-TTF)2SF5CH2CF2SO3,
whose phase diagram and NMR spectra do not depend
on the in-plane orientation of the B-field52.

Fig. 2 shows three approximate Fermi surfaces from
FFLO-candidate organic superconductors that share flat
regions to which QFFLO would couple to preferentially.
QFFLO are also incommensurate with the underlying
crystal momenta. We expect our main results to be (i)
universal across the various Fermi surface topologies, as
well as (ii) relevant for both uni-directional (discussed
later) and bi-directional FFLO modulation provided that
the Fermi surface has (at least locally) nested parts which
can –and will– be connected by fluctuating QFFLO order.

II. MODEL

To understand the main features of prototypical
anisotropic 2D Fermi surfaces depicted in Fig. 2, let us
consider a simplified model with a spin-dependent single
particle dispersion

ξσ(k) = k2
x/2m− 2ty cos(dky)− µ− σh. (1)

Here, m is the effective mass for the motion along the
chains in x-direction. The chains are coupled by a weak
hopping matrix element ty as is the case for example in
the Bechgaard salt (TMTSF)2ClO2

13,24. There, the hop-
ping parallel to chains is tx ∼ 1340 K, between the chains
ty ∼ 134 K and much weaker in the out-of-plane direction
tz ∼ 2.6 K24, the latter is therefore neglected in ξσ(k).
Orbital effects from tz-hopping influence the (material-
specific and non-universal) location of hc2

13,24,25. For the
κ-compound the interlayer motion is very small and for
the β′′-compounds even incoherent, and plays therefore
no role26. d is the distance between the chains (∼ 7Å in
(TMTSF)2ClO2)), µ is the chemical potential, and h the
Zeeman field which splits the energies for spin-up (σ = 1)
and spin-down electrons (σ = −1). The key feature of
ξσ(k) is a nested pair of so called hot spots (indicated by
black points in Fig. 2) connected by QFFLO; the universal
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FIG. 2: Approximate Fermi surfaces geometry of candidate
materials for the FFLO phase and associated strange metal.
(a): κ−(BEDT-TTF)2Cu(NCS)2 with closed elliptic hole
pockets corresponding to a orbit frequency of about 600 Tesla4

and open parts roughly aligned with the c-axis26. Therefore
an in-plane magnetic field of h = 30 T results in a ∼ 5%
mismatch (exaggerated in the figure) of the spin-up and spin-
down Fermi surfaces. Preferential FFLO ordering possibilities
include a uni-directional modulation in c-direction along the
short axis of the hole pocket, where QFFLO would nest and
connect the (Zeeman-split) sides of the hole pocket. (b): β′′-
(BEDT-TTF)2SF5CH2CF2SO3 with tilted hole pockets. A
preferential two-dimensional QFFLO, with components along
the b and c axis, would again connect the weakly curved parts
of the hole pocket at a right angle. In both the κ- and β′′-
phase interlayer transport is weak and incoherent such that
orbital effects can be neglected. (c): Open Zeeman-split
Fermi sheets characteristic for the two-dimensional arrays of
conducting chains of the Bechgaard salt (TMTSF)2ClO2

13,24

in an in-plane magnetic field. The precise warping of the
Fermi sheets also depends on the applied pressure27.

feature it shares with the Fermi surface topologies also of
κ−(BEDT-TTF)2Cu(NCS)2 for short-axis FFLO mod-
ulation, and β′′-(BEDT-TTF)2SF5CH2CF2SO3with di-
agonal two-dimensional FFLO modulation as per Fig. 2.
The most relevant interaction for the onset of spin-singlet
FFLO pairing is a short-range attraction g:

Ĥint = −g
∫
d2r ψ̂†↑(r)ψ̂†↓(r)ψ̂↓(r)ψ̂↑(r) , (2)

where the electrons are represented by anti-commuting

operators ψ̂†σ, ψ̂σ. For our calculations below, we can
assume a weak coupling scenario, where the microscopic
origin of the pairing interaction plays no role5354. The
Fermi surface mismatch between spin-up ↑ and spin-down
↓ electrons frustrates conventional homogeneous BCS

pairing, where the Cooper pairs ∆BCS = 〈ψ̂−k,↑ψ̂k,↓〉
carry zero net momentum and the superconducting gap
function is homogeneous in space. As analyzed in Fig. 3
for the specific ξσ(k) given above, the mismatched Fermi
surfaces force the electrons to pair at a finite momentum
QFFLO = (Q0, 0) leading, here in x-direction along the
chains, to a modulated order ∆FFLO = ∆0 cos(QFFLO ·r),
like at a liquid crystal transition28,29.
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III. NOVEL EFFECTIVE ACTION

At zero temperature T = 0, the FFLO state forms out
of the imbalanced metal at large magnetic fields upon de-
creasing h via a continuous quantum phase transition at
h = hQCP in Fig. 1 (see also Appendix). Gaps open at the
hot spots, i.e. at the discrete points on the Fermi surface
connected by QFFLO. Our aim is now to describe quan-
tum fluctuations of electrons around the hot spots that
can scatter off the incipient FFLO order with momentum
transfer ±QFFLO+δq between hot spots. We parameter-

ize the electron operator ψ̂↑↓ by fermionic quantum fields

ψR,L↑↓ (τ,k) corresponding to the right and left part of the

Fermi surface, as indicated in Fig. 2 (c). The construc-
tion goes completely analogously for the Fermi surfaces
Fig. 2 (a,b). Fluctuations of the FFLO order parame-
ter are described by one bosonic complex quantum field
∆(τ,k)1,2 per hot spot pair, with τ the (imaginary) time
coordinate. Fluctuations of both, the electrons and the
FFLO field, are encoded in the partition function

Z =

∫
D{ψ̄L,R↑,↓ , ψ

L,R
↑,↓ }D{∆∗1,2∆1,2} exp(−S) , (3)

where the exponential of the action S =
∫ β

0
dτ
∫
d2r L

weights the field configurations according to:

L = g
∑
i=1,2

|∆i|2 +
∑
σ=↑,↓
j=R,L

ψ̄jσ

(
∂τ − ivjσ∂x +

∂2
y

2my

)
ψjσ

− g
[(

∆∗1ψ
R
↓ ψ

L
↑ + ∆∗2ψ

L
↓ ψ

R
↑
)

+ h.c
]
. (4)

Here we have expanded the electronic dispersion around
the hot spots ξR,Lσ (k) = vR,Lσ kx + k2

y/2my, with x, y be-
ing the direction orthogonal and parallel to the Fermi
surface, respectively. my is (inversely) proportional to
the curvature of the Fermi surface (and thus to ty) and
related to the applied pressure in the Bechgaard salt
(TMTSF)2ClO2

13,24,27. Further, we note that in the ab-
sence of time-reversal symmetry Eq. (4) is not invariant
under the spin-flip transformation ↑↔↓. The fermion-
boson vertex g converts bosons with momentum QFFLO

into electron pairs, one at each hot spot of a given pair.
The finite curvatures of the Fermi surface allow to re-
strict Eq. (4) to the hot spots provided temperatures are
smaller than Tcross ∼ tyh/εF (cf. Fig. 1).

A. Distinct universality class

The electronic propagators in Eq. (4) bear some sim-
ilarity to those in two-patch theories for metals cou-
pled to nematic and U(1)-gauge field fluctuations30,31

as well as for the onset of incommensurate 2kF

antiferromagnetism32. An important difference to these
latter cases is that the electronic interactions in the
particle-hole channel and that they preserve time-reversal

FIG. 3: (a): Pairing susceptibility Π(ωn = 0,Q) at zero
frequency and finite momentum for the Fermi surfaces c) in
Fig. 2. The position of the maximal peaks at QFFLO = (Q0, 0)
determine the, here unidirectional, modulation wave vector
of the FFLO-phase. (b): cuts of the pairing susceptibility
around the peak at QFFLO, displaying the asymmetrically-
sloped ridges along Qx characteristic of incommensurate
symmetry-breaking. To capture quantum fluctuations around
the peaks ±QFFLO + δq, we later parameterize the pair-
ing fluctuation propagator with a linear slope from the
“outside” and a non-analytic square-root from the “inside”
ridge. Along Qy the peak is symmetric. The susceptibil-

ity Π(ωn,q) = g2

β

∑
k

1−nF (βξ↓(q−k))−nF (βξ↑(k))
ξ↑(k)+ξ↓(q−k)−iωn involves a

sum
∑

k over available states in momentum space (numer-
ator) weighted by the inverse of their energies (denominator).
Here nF (E) = (1 + exp(βE))−1 is the Fermi function and
β = 1/kBT the inverse temperature. Parameter values for the
plot are ty = 0.5 ~2/md2, µ = 3.3 ~2/md2, h = 1.0 ~2/md2.

symmetry. In contrast, Eq. (4) defines a new universal-
ity class as it describes singular electronic interactions in
the (FFLO) pairing channel and the Zeeman field breaks
time-reversal symmetry.

IV. ANOMALOUS QUANTUM DYNAMICS

The first step toward understanding quantum fluctua-
tions is to compute the dynamics of the bosonic FFLO

pairing field Di=1(τ, r) = 〈∆̂1(τ, r)∆̂†1(0,0)〉, which it
picks up from emission and absorption of electron pairs.
In frequency and momentum space, the interest lies in
the slopes and direction dependence of the pairing sus-
ceptibility close to the maxima in Fig. 3. The leading
contribution to D1(ωn,k) is given by the one-loop bub-
ble diagram evaluated in the Appendix. For the criti-
cal properties of interest here, it suffices to expand the
(massless) fluctuation propagator directly at the quan-
tum critical point for small frequencies ωn and momenta
±QFFLO +δk. The result in the physically relevant small
imbalance limit, δv = v↑ − v↓ � v = (v↑ + v↓)/2 (re-
call that an in-plane magnetic field of 30 T leads to a
∼ 5% mismatch in spin-up and down Fermi surfaces in
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κ−(BEDT-TTF)2Cu(NCS)2
4) is:

D−1
1 (ωn,k) =

V
√

2my

4πv|δv/v|

[
2Re

√
− k2

y

2my
+ δvkx +

δv

v
iωn

+B
k2
y

2myv
+ C

δv

v
kx

]
. (5)

The key feature here is the square root, introducing a
non-analyticity; the usual poles of coherent excitations
are substituted by a branch cut in the complex plane.
Physically, this reflects the overdamped, dissipative dy-
namics of the order parameter due to decay into electron
pairs. The subleading corrections to the square root sin-
gularity proportional to B,C are the first analytic cor-
rections which capture the asymmetry in the slopes of
the peaks in Fig. 3. Eq. (5) bears some resemblance to
the one-loop results for the order parameter dynamics in
the incommensurate antiferromagnetic and charge order
case32,33, which are singular fluctuations in the particle-
hole channel of different physical origin.

A. Non-Fermi liquid behavior of electrons

The peculiar dynamics Eq. (5) of the FFLO pairing
fluctuations strongly back-acts on the electrons close to
the hot spots. This renormalizes the electron propagator,

say, at the L ↑ hotspot, GL↑(τ, r) = 〈ψ̂L↑(τ, r)ψ̂†L↑(0,0)〉
whose Fourier transform reads [GL↑(νn,k)]

−1
= iνn −

ξL↑ (k) -ΣL↑(νn,k). The inverse quasi-particle lifetime

Γ−1 at the hot spots for propagators of the form (5) can
be computed analytically33. At the QCP, evaluation of
the one-loop self-energy with the dynamical pairing prop-
agator yields (see Appendix)

Γ−1
FFLO = ImΣret

L↑(ω,qHS) =
1√
3

( |δv/v||ω|
B

)2/3

, (6)

exhibits non-Fermi liquid behavior with a fractional ex-
ponent 2/3 due to the interactions with the singular
FFLO pairing fluctuations (recall that in a Fermi liq-
uid Γ−1

FL ∼ ω2). The strength of the anomalous decay in
Eq. (6) is proportional to the difference δv of the Fermi
velocities which itself is proportional to the applied Zee-
man field. In the language of critical phenomena Eq. (6)
implies an anomalous frequency dimension ητ = 1/3 as
the bare propagator is linear in frequency34–36. Probably
weaker non-Fermi liquid behavior may also appear in ho-
mogeneous Fermi systems with Zeeman-imbalance37–39.
A similar computation for the electron self-energy in kx
and ky direction yields a much weaker renormalization
such that the corresponding ηk’s vanish at the one-loop
level. For direct loop computations (in absence of in-
frared cutoffs), the fermionic dynamic exponent is defined
as zf = 1−ηk

1−ητ and deviates from the Fermi liquid value

(zfFL = 1) and instead attains the value zfFFLO, one−loop =

3
2 . We note this value is also obtained in nematic metals

at the one-loop level40 but receives quantitative correc-
tions at higher loops31,41. We expect diagrammatic ex-
pansions of the path integral of Eq. (4) to be different
to the nematic metal, however. One-loop corrections to
the fermion-boson vertex, for example, vanish here in the
FFLO case.

V. PREDICTIONS FOR NEW EXPERIMENTS

The general scaling form of the electronic specific heat
in the quantum critical “fan” in Fig. 1 is42,43

Ce/T ∼ T
d−θ
zf
−1 = T−0.33 , (7)

where the last equality has used zfFFLO, one−loop = 3/2,
d = 2, and θ = 1 in case hyperscaling is violated. Recall
that in a Fermi liquid Ce/T is independent of tempera-
ture. For κ−(BEDT-TTF)2Cu(NCS)2, the specific heat
has been measured by Lortz et al.4,44 over a range of B-
fields including values towards the upper phase-boundary
of the FFLO phase: an upswing with decreasing T incom-
patible with Fermi liquid behavior can be seen at h = 28
T but new rounds of data taking at high magnetic fields
are needed to resolve this.

A more recent experiment, where signatures of FFLO
order have been detected in the compound κ−(BEDT-
TTF)2Cu(NCS)2 was performed by Mayaffre et al. who
have measured the NMR relaxation rate 1/(T1T ) at high
magnetic fields including data set at h = 22, 27 Tesla
(see Fig. 2 of Ref. 6). They associate the observed up-
swing at h = 22 Tesla with bound states of quasiparticles
at the nodes of an FFLO order parameter. At h = 27
Tesla, however, 1/(T1T ) seems to decrease for tempera-
tures smaller than 3 Kelvin. Our strange metal sccenario
predicts a power law decrease of the form 1/(T1T ) ∼ T 2/3

which is suppressed compared to a constant Fermi liquid
relaxation rate. New rounds of data taking over extended
temperature and higher magnetic fields should resolve
this. The power-law exponent in 1/(T1T ) is determined
by the scaling behavior of the density of states

1

T1T
∼ 1

T

∫
dωNhot

↑ (ω)Nhot
↓ (ω)nF (ω) [1− nF (ω)] (8)

with Nhot
σ (ω) =

∫
d2k

(2π)2A
hot
σ (ω,k). For the critical elec-

trons at the hot spots the associated spectral function is
expected to fullfill ω/T scaling42,45

Ahot
σ (ω,k) ∼ c0

|ω|1−ητ Fσ
(

c1ω

(kx + k2
y)zf

,
ω

T

)
, (9)

where the anomalous scaling in spatial directions x and
y can take different finite values but do not influence zf
at the one-loop level. The same temporal anomalous di-
mension ητ = 1/3 that appears in the self-energy Eq. (6)
leads to Nhot

σ (ω) ∼ ω1/3 (see Appendix) and thus to the
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exponent 2/3 in Eq. (8) for electrons from the immediate
vicinity of the hot spots. As in the nematic metal, we ex-
pect higher-loop corrections to further suppress the den-
sity of states31. In contrast to the nematic metal, how-
ever, where all points on the Fermi surface can be taken
to be equivalent31,45, here in the FFLO strange metal a
discrete pair of hot spots is singled out. To account for
electrons from “colder” parts of the Fermi surface one
should add a constant Fermi liquid piece to the density
of states Nσ(ω) = N cold

0σ +Nhot
σ (ω) and NMR relaxation

rate when comparing with experiments. A proper anal-
ysis of crossovers and potential contributions violating
ω/T scaling46,47 require momentum-resolved renormal-
ization group techniques.

VI. SUMMARY

The FFLO strange metal phase proposed here pro-
vides a new universality class for the study of critical
thermodynamics and transport without electronic quasi-

particles. Our results open up the possibility to targeted
new rounds of data taking in the organic superconduc-
tors and may facilitate access to a naked quantum criti-
cal metal with critical fluctuations in the pairing channel
over extended temperature ranges.
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ferrell-larkin-ovchinnikov state in the one-dimensional at-
tractive hubbard model and its fingerprint in spatial noise
correlations,” Phys. Rev. A, vol. 78, p. 013637, Jul 2008.

50 A. E. Feiguin and F. Heidrich-Meisner, “Pair correlations
of a spin-imbalanced fermi gas on two-leg ladders,” Phys.
Rev. Lett., vol. 102, p. 076403, Feb 2009.

51 R. M. Lutchyn, M. Dzero, and V. M. Yakovenko, “Spec-
troscopy of the soliton lattice formation in quasi-one-
dimensional fermionic superfluids with population imbal-
ance,” Phys. Rev. A, vol. 84, p. 033609, Sep 2011.

52 J. Wosnitza, private communication
53 Microscopically, the attractive interactions may thus be

either due to a phonon-exchange mechanism or due to spin-
fluctuation mediated pairing.

54 Note also that a model with the simple single particle dis-
persion ξσ(k) of Fig. 2(c) and an adjustable attraction can
be realized with ultracold atoms, where both the band
structure and strength of the attraction can be engineered
via optical lattices and Feshbach resonances20,21,48–51.



7

Appendix A: Continuous mean-field FFLO transition

We decouple the interaction term (Eq.(1) of the main text) in the pairing channel and write the partition function
as the following functional integral

Z =

∫
D(ψ̄↑,↓, ψ↑,↓)D(∆∗,∆)e−Stot[ψ̄↑,↓,ψ↑,↓,∆

∗,∆] (A1)

for the complex Grassmann field ψ and the bosonic field ∆, with the euclidean interaction action

Sint =

∫ β

0

dτ

∫
d2r

[
1

g
|∆(τ, r)|2 −

(
∆∗(τ, r)ψ↓(τ, r)ψ↑(τ, r) + ∆(τ, r)ψ̄↑(τ, r)ψ̄↓(τ, r)

)]
.

An effective Ginzburg-Landau theory for the pairing field is obtained by integrating out the fermionic fields. Written
in Fourier space the latter reads

Seff =
β

g

∑
ωn,k

|∆(ωn,k)|2 − Tr lnβG−1 , (A2)

where Tr =
∑
νn,k

tr, with tr meaning the trace in the 2x2 spinor space, the bosonic(fermionic) Mastubara frequency

ωn = 2πn/β(νn = π(2n+ 1)/β), β the inverse temperature, and with the matrix propagator

G−1(νn,k; ν′n,k
′) =

(
δνn,ν′nδk,k′(iνn − ξ↑(k)) ∆(νn − ν′n,k− k′)

∆∗(ν′n − νn,k′ − k) δνn,ν′nδk,k′(iνn + ξ↓(−k))

)
, (A3)

where ξσ(k) is the fermionic dispersion relation. Now, upon expanding the logarithm in powers of ∆, we can compute
the coefficients of the effective Ginzburg-Landau theory. In particular, the second order term contains the pairing
susceptibility

Π(ωn,q) =
∑
k

1− nF (βξ↓(q− k))− nF (βξ↑(k))

ξ↑(k) + ξ↓(q− k)− iωn
. (A4)

Specifying now to the mean-field FFLO transition with favoured momentum |QFFLO| we can express the paring field
as

∆(ωn,q)→ ∆0(0,QFFLO) = βδωn,0
[
d+QFFLOδq,QFFLO(2π)2 + d−QFFLOδq,−QFFLO(2π)2

]
. (A5)

The d′s are the amplitudes of the FFLO-order parameter, that are chosen to be equal and real.
The quadratic Landau coefficient is thus given by

a2 = 1/g −Π(ωn = 0,QFFLO) .

The quartic Landau a4 coefficient results from the expansion of the logarithm to fourth order in ∆ and contains
all possible contractions of four fermionic propagators with the four external momenta fixed at ±QFFLO and zero
frequency. It must be numerically calculated. All contractions diverge when T → 0, indicating the need to devise a
renormalization group procedure for the problem at very low temperatures. For generic choices of parameters

lim
T→0

a4 > 0 (A6)

indicative of a continuous phase transition at least at the mean-field level.

Appendix B: Pairing fluctuation propagator, fermion propagator and density of states

In this section we compute the one-loop corrections to the pairing and fermion propagators, leading to the Eqs.(4)
and (5) of the main text. We use the low-energy Lagrangian from Eq.(3) of the main text, whose Fermi surface
structure and one-loop diagrams are shown in Fig. 4.

The inverse pairing fluctuation propagator diagrammatically shown in the upper row of Fig. 4(b) contains the bare
part, simply given by the Landau coefficient a2 (vanishing at the critical point), plus the pairing susceptibility:

Πi=1(ωn,q) =
1

β

∑
νn,k

G
(0)
R↓(νn,k)G

(0)
L↑(ωn − νn,q− k) =

1

β

∑
νn,k

1

iνn − ξR↓ (k)

1

i(ωn − νn)− ξL↑ (q− k)
, (B1)
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FIG. 4: Elements of the low-energy quantum field theory for a single hot-spot of the Lagrangian given in Eq.(3) of the main
text. (a): Fermi surfaces for the two species with dispersion relation ξR,Lσ (k) = vR,Lσ kx + k2y/2my. A finite curvature is present
and the Fermi velocities of the two species are different. (b): Feynman diagrams at one-loop order. Upper row: propagator
for the pairing fluctuations, containing the susceptibility given in Eq. (B1). Lower row: self-energy correction to the electron
dispersion and quasi-particle lifetime, given in Eq. (B3).

We first perform the Matsubara sum in Eq. (B1). By restricting to T = 0, we integrate first over kx and then over
ky, always discarding the unphysical UV-divergent terms, and get

Πi=1(ωn,k) =− V
√

2my

2π(v↑ + v↓)

[
1

|v↑v↓ − 1|

√
−v↑
v↓

k2
y

2my
+ (

v↑
v↓
− 1)(v↑kx + iωn)+

+
1

|v↓v↑ − 1|

√
−v↓
v↑

k2
y

2my
+ (

v↓
v↑
− 1)(−v↓kx + iωn)

]
, (B2)

which in the small imbalance limit δv = v↑ − v↓ � v = (v↑ + v↓)/2 gives Eq.(4) of the main text since D−1
i=1(ωn,k) =

−Πi=1(ωn,k) at the critical point. In the main text the first analytical corrections coming from higher order terms
in the fermionic dispersion have been included in Πi=1(ωn,k).

In order to compute the non-Fermi-liquid exponent we consider the quasi-particle decay rate given by the imaginary
part of the analytically continued self-energy. At the one-loop level the fermionic self-energy is given by (Feynman
diagram in the lower row of Fig. 4(b))

ΣL↑(νn,q) =
1

β

∑
νn,k

Di=1(ωn,k)G
(0)
R↓(ωn − νn,k− q) . (B3)

After analytical continuing iνn → ω + i0+ and taking the imaginary part we get

ImΣret
L↑(ω,q) = −

∑
k

[nF (ξR↓(k)) + nB(ξR↓(k) + ω)] ImDret
1 (ξR↓(k) + ω,k + q) . (B4)

We now set T = 0, q = 0, and first integrate over kx and then over ky, to get Eq.(5) of the main text. By computing
the self-energy (B3) at finite momentum we obtain no q-dependence at leading order, once we expand the pairing
propagator (Eq.(4) in the main text) consistently with the small imbalance limit, to get the Landau-damped form

D−1
1 (ωn,k) ' V

√
2my

4πv|δv/v|

[√
2my
|δv/v||ωn|
|ky|

+B
k2
y

2myv

]
. (B5)

Within this approximate one-loop framework we have therefore no anomalous dimension for the fermion momenta:
ηx = ηy = 0.

By adding the self-energy correction from Eq.(5) in the main text to the retarded fermion propagator, we can
compute the spectral function A↑(ω,k) = −ImGret

L↑(ω,k)/π which satisfies the scaling relation of Eq.(8) in the main

text with ητ = 1/3. The density of states

N↑(ω, T ) ∼ ω1/3 (B6)
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is then obtained by integrating the spectral function over kx, ky after rescaling both coordinates in order to eliminate
the ω-dependence from the integrand. This procedure is based on the idea that we have to put a UV-cutoff on both
the kx and the ky integrals since we are dealing with a low-energy theory in the proximity of the hot-spot. Accordingly,
we add to the hot-spot contribution (B6) (called Nhot

↑ in the main text) a ω-independent shift coming from the “cold”

part of the Fermi surface (called N cold
0↑ in the main text), which indeed should behave like a Fermi liquid. However,

in this way the exponent in Eq. (B6) can be strongly overestimated.


