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A nanophononic metamaterial is a new type of nanostructured material that features an array, or
a forest, of intrinsically distributed resonating substructures. Each substructure exhibits numerous
local resonances, each of which may hybridize with the phonon dispersion of the underlying host
material causing significant reductions in the group velocities and consequently a reduction in the
lattice thermal conductivity. In this paper, molecular dynamics simulations are utilized to inves-
tigate both the dynamics and the thermal transport properties of a nanophononic metamaterial
configuration consisting of a freely suspended silicon membrane with an array of silicon nanopillars
standing on the surface. The simulations yield results consistent with earlier lattice-dynamics based
predictions which showed a reduction in the thermal conductivity due to the presence of the local
resonators. Using a spectral energy density approach, in which only simulation data is utilized and
no a priori information on the nanostructure resonant phonon modes is provided, we show direct
evidence of the existence of resonance hybridizations as an inherent mechanism contributing to the
slowing down of thermal transport in this system.

Material nanostructuring has emerged as a powerful
approach in the field of nanoscale heat transfer as it
provides a means for direct manipulation of thermal
transport properties [1]. One of the primary applica-
tions is thermoelectric materials where there is a need
for new concepts and material architectures in order to
attain high levels of energy conversion performance [2].
A promising strategy for increasing the performance of
thermoelectric materials, measured by the figure of merit,
ZT , to levels attractive to industry is to enable a sig-
nificant lowering of the total thermal conductivity in a
manner that does not negatively affect the electrical con-
ductivity and the Seebeck coefficient. In semiconductors,
this may be achieved by lowering the lattice thermal con-
ductivity, k, by nanostructuring. A common approach is
to introduce obstacles, such as holes, inclusions, and in-
terfaces, within a semiconducting material in order to
enhance phonon scattering and thus reduce k [3]. How-
ever, in addition to scattering the phonons, the motion of
electrons is likely to be impeded as well by the same ob-
stacles, which diminishes improvements to the ZT value.
A new avenue of research for increasing ZT is based

on the concept of a nanophononic metamaterial (NPM)
[4]. In a particular realization of a NPM, presented in
Ref. [4], an array of nanopillars is built on top of a free-
standing membrane or thin film. Each nanopillar exhibits
numerous local resonances that roughly span the entire
phonon spectrum for the base membrane−as many as the
number of atoms in the nanopillar multiplied by 3 (the
number of degrees of freedom for each atom). This pro-
vides millions of resonances for a pillar that is only a few
tens of nanometers in size. Each of these resonances may,
in principle, couple with the phonon dispersion curves of
the underlying membrane and reduce the group veloc-
ity significantly at each coupling location in the band
structure. This in turn reduces the lattice thermal con-
ductivity, effectively without using scattering as a prime
mechanism since there is no longer a need to introduce

holes, particles or interfaces into the main body (interior
space) of the membrane. Surface scattering is also not
required, i.e., the surfaces do not need to be rough. Re-
gardless of the degree of surface roughness, the condition
required for the hybridization mechanism to take place in
its full extent is that the phonon mean free path (MFP)
distribution be large enough for the resonant standing
waves to travel across the full cross-section of the mem-
brane. For a silicon membrane with a thickness on the
order of a few nanometers, or a few tens of nanometers,
recent experimental studies have shown that the MFP
distribution comfortably spans a length scale that at a
minimum is on the order of the membrane thickness [5].
Thus resonance hybridization by nanostructuring, as de-
scribed above, is well suited for thermoelectric energy
conversion since it provides a unique opportunity to re-
duce the lattice thermal conductivity significantly with
minimum negative effects on the electrical conductivity
and the Seebeck coefficient.

In Ref. [4], the thermal conductivity of the pillared
silicon membrane was obtained using a model based on
the Boltzmann transport equation (BTE) following the
single-mode relaxation time (SMRT) approximation [6].
In this model, complete phonon dispersion information
was provided from harmonic lattice dynamics (LD) cal-
culations of the NPM unit cell incorporating the motion
of all atoms and using an empirical interatomic potential.
The scattering time constants were obtained by a fitting
procedure on available experimental thermal conductiv-
ity data for suspended uniform silicon membranes. The
analysis was conducted for room temperature conditions.
The results for the particular unit-cell configuration ex-
amined showed that the nanopillars reduce the thermal
conductivity of an otherwise uniform (unpillared) mem-
brane by a factor of 2. In this paper, we investigate
a very similar pillared silicon membrane configuration
using equilibrium molecular dynamics (MD) simulations
and spectral energy density calculations. The advantage
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of MD simulations is that they are inherently anharmonic
thus the phonon lifetimes are directly and implicitly in-
corporated. The objectives are twofold: (1) to exam-
ine the validity of the LD-based calculations, especially
concerning the assumptions made on the scattering con-
stants, and (2) to reveal in a direct manner the existence
of the resonance hybridization phenomenon within the
equilibrium field of MD-simulated atomic motion.

We consider a unit-cell model of a suspended pillared
membrane consisting of Ax ×Ay ×Az conventional cells
(CC) of silicon forming the base (membrane portion) and
Apx×Apy ×Apz CC of silicon forming the nanopillar. A
silicon CC consists of eight atoms packaged as a cube
with a side length of a = 0.5431 nm (see Fig. 1a). Thus,
the unit cell considered has a membrane thickness of
d = aAz and a nanopillar height of h = aApz. An LD
calculation is by construction performed on a single unit
cell. However, in an MD simulation, it is a matter of
choice on how many unit cells to include in the model to
provide an adequate representation of the physical phe-
nomenon of interest. In general, we describe an array of
unit cells by Nx×Ny×Nz, where Ni denotes the number
of unit cells in the ith-direction.
Figure 1c displays a particular configuration we con-

sider featuring a unit cell with dimensions of aAx =
aAy = aAz = 6 CC = 3.258 nm, aApx = aApy = 2 CC
= 1.086 nm and aApz = 6 CC = 3.258 nm. A shorthand
notation is adopted in the rest of the paper such that this
unit cell’s dimensions are represented as 6×6×6+2×2×6
CC. The model for a corresponding uniform thin mem-
brane (i.e., with the nanopillar removed) has dimensions
6 × 6 × 6 CC and is shown in Fig. 1b. For the LD cal-
culations, Bloch conditions are applied at the membrane
in-plane boundaries for the pillared and the uniform unit
cells, whereas the bottom and top membrane surfaces
and all the nanopillar surfaces are free. For the MD
simulations, where the computational domain consists of
one or more unit cells, standard periodic boundary con-
ditions are applied at the in-plane boundaries. For all
models and calculations, room temperature, T = 300 K,
is assumed and the Stillinger-Weber empirical potential
is used to represent the interatomic forces [7]. Only wave
propagation and phonon transport along the x-direction
is investigated. This corresponds to the ΓX path in the
unit-cell reciprocal lattice space.
In addition to the models shown in Figs. 1b and 1c, we

consider cases where the nanopillar height is Apz = 1, 3
and 9 CC. Using the same procedure and fitting pa-
rameters as in Ref. [4] (i.e., prediction of the thermal
conductivity using BTE with SMRT approximation, the
phonon dispersion by harmonic LD calculations [8], and
the lifetimes using experimentally fitted scattering con-
stants based on uniform membranes with the same thick-
ness), we obtain the results shown in blue (dashed line) in
Fig. 2a. We observe that (i) the nanopillars reduce k by
nearly a factor of 2, as in Ref. [4], and (ii) the increasing
height of the nanopillars causes a modest, but increasing,
reduction in k. Next we execute a series of equilibrium

MD simulations on the same cases and analyze the re-
sults using the Green-Kubo (GK) formulation to predict
the thermal conductivities [9–11]. Classical MD simu-
lations like the ones we conduct here are valid at room
temperature where quantum effects are negligible. The
GK approach follows the linear response theorem and is
based on the dissipation of equilibrium fluctuations for
the heat current vector, J . Defining the time average of
the heat current auto-correlation function (HCACF) for
a generally anisotropic material as 〈J(0) ⊗ J(t)〉, where
⊗ denotes the tensor product, the thermal conductivity
tensor is expressed as

k =
1

kBV T 2

∫

〈J(0) ⊗ J(t)〉dt, (1)

where kB is the Boltzmann constant, V is the system
volume.
The MD simulations are performed using the

LAMMPS software [12]. The systems are equilibrated
under NVE (constant mass, volume and energy) ensem-
bles with a time step ∆t = 0.5 fs for a time span of 6 ns,
which is sufficiently large compared to the longest phonon
lifetime. The HCACFs converge within the first 500 ps.
All reported thermal conductivities are the average of
values from six independent simulations with different
initial velocities. Furthermore, the thermal conductivi-
ties are averaged in the x- and y-directions, effectively
resulting in an averaging over twelve predicted values.
The MD-based thermal conductivities are also plot-

ted in Fig. 2a and are in excellent agreement with the
LD-based predictions, thus supporting the conclusions
presented in Ref. [4]. We point out again to the slight
decrease in the thermal conductivity with increasing
nanopillar height (particularly as seen from the LD data
which represent deterministic results). The effect of the
diameter as well as other geometric parameters provide
a promising avenue for future design studies to achieve
further reductions in the thermal conductivity.
In the results of Fig. 2a, the MD computational domain

consists of only a single unit cell with standard periodic
boundary conditions applied, i.e., Nx = Ny = Nz = 1.
This assumption is made in light of our interest in the
effects of local resonances on an intrinsic in-plane mate-
rial property, the lattice thermal conductivity. A larger
computational domain, however, is needed in order to
account for Bragg scattering stemming from the peri-
odic presence of the nanopillars−which is a wave inter-
ference mechanism on the order of the unit cell size. In
Fig. 2b, we show thermal conductivity predictions for a
unit cell with dimensions 6× 6× 6+ 2× 2× 3 CC within
a computational domain that consists of Ny = Nz = 1
and an array of Nx cells laid out periodically in the x-
direction. In principle, one might expect an additional re-
duction in the thermal conductivity due to Bragg scatter-
ing; however, in our system, this additional reduction−if
it exists−appears to be very modest that it falls within
the margin of error of the processed data. Furthermore,
the results indicate that there is no noticeable computa-
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FIG. 1. (a) Silicon conventional cell with the lattice constant
a = 5.431 Å, (b) uniform (unpillared) membrane unit cell (c)
NPM (pillared) unit cell, (d) array of NPM unit cells forming
an MD computational domain.

tional size effect when simulating a domain consisting of
only a single unit cell with standard boundary conditions
applied; this in fact is one of the benefits of equilibrium
MD simulations [11].
In addition to altering the base membrane disper-

sion curves and creating resonance hybridizations that
roughly span its full phonon spectrum, the nanopillars
are expected to also trigger additional phonon-boundary
scattering compared to a uniform membrane. In order
to examine whether the resonance hybridization mecha-
nism does indeed exist and unfolds within the MD sim-
ulations (and as suggested by the harmonic lattice dy-
namics band diagrams), we compute the spectral energy
density (SED) [13–16], which is a quantity obtained di-
rectly from the simulations.
There are two SED formulations reported in the lit-

erature for phonon transport problems. In one SED ex-
pression, referred to as Φ, the MD atom velocities are
projected onto the phonon normal modes of the con-
stituent unit cell, which are obtained separately from
lattice dynamics calculations. This approach allows for
an accurate prediction of both phonon frequencies and
lifetimes [16]. In an alternative formulation, the SED ex-
pression requires knowledge of only the crystal unit-cell
structure and does not require any a priori knowledge of
the phonon mode eigenvectors. This alternative SED ex-
pression, referred to as Φ′, accurately predicts only the
phonon frequencies and not the lifetimes [16]. In the
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FIG. 2. Thermal conductivity predictions at T = 300 K. In
(a) and in the inset of (b), the NPM thermal conductivity,
kNPM is normalized with respect to the thermal conductivity
of a uniform membrane with the same thickness, kMembrane.
In (a), Nx = Ny = Nz = 1 and the unit cell has dimensions
6× 6× 6 + 2× 2× h CC. In (b) Ny = Nz = 1, Nx is varying
and the unit cell has dimensions 6×6×6+2×2×3 CC. The
error bars represent uncertainties in the MD-based results.

current investigation, we intentionally seek a technique
that allows us to extract the frequency-wave vector spec-
trum directly from the MD simulations without any prior
knowledge of the phonon band structure. Thus the Φ′

formulation is perfectly suited for our aim.
As provided in Ref. [13], the SED expression, Φ′, is a

function of wave vector, κ, and frequency, ω, and for our
all-silicon system is given by

Φ′ (κ, ω) = µ0
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where µ0 = m/(4πτ0N), m is the mass of a silicon atom,
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FIG. 3. Phonon dispersion of a NPM and a corresponding uniform membrane with the same thickness. Subfigure (a) shows the
phonon dispersion for both material structures as directly obtained from harmonic LD calculations. Subfigure (b) and (c) show
the SED spectrum for the uniform membrane and NPM, respectively. The SED spectrum of the NPM considering only the
membrane atoms is displayed in (d). The NPM unit-cell dimensions are 6×6×6+2×2×3 CC; the uniform membrane unit-cell
dimensions are 6× 6× 6 CC. Each inset presents a schematic of the unit cell analyzed, with the orange color representing the
portion accounted for in the SED calculation.

τ0 is the total simulation time, r0 is the equilibrium posi-
tion vector of the lth unit cell, and u̇α is the α-component
of the velocity of the bth atom in the lth unit cell at time
t. There are a total of N = Nx × Ny × Nz unit cells in
the simulated computational domain with n atoms per
unit cell.

We note that in Eq. (2) the phonon frequencies can
only be obtained at the set of allowed wave vectors as
dictated by the crystal structure. For our model, the
ΓX-path wave vectors are κx = 2πj/(NxAx), j = 0 to
Nx/2. We consider a unit cell identical to the one de-
picted in Fig. 1c except for the nanopillar height which
we select to be h = 3 CC. For the computational domain,
we set Nx = 50 and Ny = Nz = 1, which gives a ΓX
wave-vector resolution of ∆κx = 0.02. MD simulations
under NV E conditions are executed for this system for
222 time steps and based on ∆t = 0.5 fs as earlier. Equa-
tion (2) is evaluated by computing the Fourier transform
of the velocity trajectories extracted every 25 steps.
The results from these calculations are remarkable. As

a reference, the phonon band structure as obtained from
standard harmonic LD calculations is shown in Fig. 3a for
the NPM and, for comparison, for a uniform membrane
with the same d. The corresponding SED spectrum is
shown in Fig. 3b for the uniform membrane and in Fig. 3c
for the NPM. Only the frequency range 0 ≤ ω ≤ 1.5
THz is shown because higher frequencies are difficult to
distinguish in the SED field. This frequency range is re-

sponsible for roughly 40%−60% of the total lattice ther-
mal conductivity [4]. The phonon dispersion emerging
from the MD simulations matches very well with that ob-
tained by the independent LD calculations, thus provid-
ing confidence in both sets of simulations/calculations.17

In particular, the first two nanopillar local resonances,
present at nearly 0.2 THz, are clearly observed in the
NPM SED spectrum, appearing as horizontal lines. More
importantly, the interaction of these resonances with the
acoustic branches of the underlying membrane are dis-
tinctly observed and follow closely the hybridization pro-
files featured in the LD dispersion curves.18 Resonance
hybridizations are also clearly observed at higher frequen-
cies where local resonance modes interact with optical
dispersion branches. SED results for different nanopillar
heights are presented in [19].
Resonance hybridization, also known as avoided cross-

ing, is present in macroscale locally resonant metamateri-
als as well [20]. In addition to the difference in scales and
the contrast between atomic and continuum descriptions,
in a NPM the key effect that we exploit is the reduction in
the group velocities at the hybridization regions, rather
than the appearance of band gaps. Furthermore, unlike
acoustic metamaterials, here all resonances are beneficial
and not only those falling in the subwavelength regime.
Thus an effective medium theory is not necessary in the
study of NPMs.
Given our interest in the effects of the nanopillar res-
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onances on the heat carrying phonons within the base
membrane, we recalculate the SED spectrum for the
NPM considering only the contributions of the atoms
housed in the base membrane (i.e., discounting the SED
contributions of the nanopillar atoms). The outcome of
this calculation is shown in Fig. 3d where we see direct ev-
idence that the nanopillar resonances alter the fundamen-
tal nature of the phonon traveling waves within the mem-
brane. These alterations result in a significant reduction
in the phonon group velocities at each location in the
band structure where an interaction takes place, which
in turn leads to a reduction in the lattice thermal conduc-
tivity as seen from the GK analysis presented in Fig. 2.
While phonon-phonon and phonon-boundary scatterings
are still important mechanisms in the membrane-based
systems we have considered, the results are consistent
with the understanding that the MFP distribution com-
fortably spans, at a minimum, the length scale of the
membrane thickness. Such a MFP distribution is suffi-
ciently broad to allow at least a portion of the nanopillar
standing waves to impact the group velocities of in-plane

traveling phonons across the entire cross-section of the
membrane.
In conclusion, the results presented confirm the validity

of the earlier lattice-dynamics based predictions of a sim-
ilar sized NPM, and, importantly, provide direct evidence
of the resonance-hybridization phenomenon taking place
within the MD simulations. This is a significant outcome
as it provides direct proof that for the NPM system con-
sidered the effects of the local resonances in reducing k
are not undermined by the scattering environment. (See
Ref. [19] for details.)
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