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Defects in silicon carbide are of intense and increasing interest for quantum-based applications due
to this material’s properties and technological maturity. We calculate the multi-particle symmetry
adapted wave functions of the negatively charged silicon vacancy defect in hexagonal silicon carbide
via use of group theory and density functional theory and find the effects of spin-orbit and spin-
spin interactions on these states. Although we focused on V−Si in 4H-SiC, because of its unique
fine structure due to odd number of active electrons, our methods can be easily applied to other
defect centers of different polytpes, especially to the 6H-SiC. Based on these results we identify the
mechanism that polarizes the spin under optical drive, obtain the ordering of its dark doublet states,
point out a path for electric field or strain sensing, and find the theoretical value of its ground-state
zero field splitting to be 68 MHz, in good agreement with experiment. Moreover, we present two
distinct protocols of a spin-photon interface based on this defect. Our results pave the way toward
novel quantum information and quantum metrology applications with silicon carbide.

Over the last several years, deep-center defects in solids
have been intensely researched for applications in quan-
tum information [1, 2], quantum sensing and nanoscale
imaging [3] including bioimaging [4, 5]. Their success and
popularity stem from their unique properties, combining
advantages from atomic and solid state systems-most no-
tably long spin coherence times even at room tempera-
ture and integrability into a solid state matrix. The NV−

center in diamond is the most studied defect for quan-
tum technologies, so that its properties, strengths and
limitations are by now very well understood. Deep defect
centers in silicon carbide (SiC) have emerged as strong
contenders due to this material’s significantly lower cost,
availability of mature microfabrication technologies [6, 7],
and favorable optical emission wavelengths [8].

Some of the stable defects in SiC have the same struc-
ture as the NV− center in diamond in terms of sym-
metry and the number of active electrons and, as a re-
sult, spin and electronic structure. Such defects include
the silicon-carbon divacancy, which has been investigated
over the last several years [9–12]. Experiments [8, 13–18]
on the Si monovacancy (V−Si) have shown that this is a
distinct defect in terms of electronic and spin structure.
It features a ground state with total spin 3/2 [13, 15], of-
fering both quantitative improvements and qualitatively
new capabilities [16] compared to NV-like defects. To
date, room temperature spin polarization and coherent
control of V−Si have been implemented via electron spin
resonance [17, 19] and optically detected magnetic reso-
nance (ODMR) [8, 15, 18, 20]. Unlike the well-studied
NV− center in diamond [21–23], theoretical studies of the
V−Si in SiC have been mostly limited to finding single-
particle levels and their energies via density functional
theory (DFT) [24–26]. While such DFT calculations are
an important first step, it is of crucial importance to ob-
tain the multi-particle electronic structure to understand

the properties of this defect and take full advantage of the
novel opportunities it affords.
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FIG. 1. (color online) V−Si in 4H-SiC: (a) C3ν-structure of the
defect, and the optically-active orbitals of V−Si using DFT: (b)
ū (A1 symmetry), (c) v̄ (A1), and (d) ēx,y (E). Only carbons
near the V−Si are shown for clarity.

In this Letter we address this need by calculating the
multi-particle wave functions of V−Si through a combina-
tion of group theory and DFT. We explicitly find the
ground states as well as the excited state manifolds, con-
sidering both the orbital and the spin degrees of free-
dom. Furthermore, we investigate the effects of spin-
orbit and spin-spin interactions. Based on these results
we (i) explain quantitatively the spin polarization mech-
anism in experiments, (ii) find the zero-field splitting, in
good agreement with experiment, (iii) present a mecha-
nism that allows this defect to be used for electric field
or strain sensing, and (iv) propose two spin-photon inter-
face protocols enabled by the rich electronic structure of
this defect, including the generation of strings of entan-
gled photons and the creation of a Lambda system with



Orbital S ms Γ Γo ⊗ Γs Symmetry adapted total wave functions Label

1E3/2 A2 ⊗ 2E3/2 ||vexey + iv̄ēxēy〉/
√

2 Ψ1
g± 3

2 2E3/2 A2 ⊗ 1E3/2 ||vexey − iv̄ēxēy〉/
√

2 Ψ2
g

+ 1
2

E+
1/2 ||vexēy + vēxey + v̄exey〉/

√
3 Ψ3

g

ve2

(Ground)
&

ue2 (q1)

3
2

− 1
2

E−1/2
A2 ⊗ E1/2 ||v̄ēxey + v̄exēy + vēxēy〉/

√
3 Ψ4

g

+ 1
2 E+

1/2 ||exēxey + iey ēyex〉/
√

2 Ψ1
d1

− 1
2 E−1/2 ||ēxexēy − iēyey ēx〉/

√
2 Ψ2

d1
1E3/2 ||(exēxey − iey ēyex)− i(ēxexēy + iēyey ēx)〉/2 Ψ3

d1

e3

(d1)
1
2

± 1
2 2E3/2

E ⊗ E1/2

||(exēxey − iey ēyex) + i(ēxexēy + iēyey ēx)〉/2 Ψ4
d1

+ 1
2 E+

1/2 ||vexēy + vēxey − 2v̄exey〉/
√

6 Ψ1
d2ve2

(d2)
1
2 − 1

2 E−1/2
A2 ⊗ E1/2 ||v̄ēxey + v̄exēy − 2vēxēy〉/

√
6 Ψ2

d2

1E3/2
||(vexēy − vēxey)− i(v̄ēxey − v̄exēy)
+i(vexēx − vey ēy)− (v̄ēxex − v̄ēyey)〉/2

√
2

Ψ1
d3

2E3/2
||(vexēy − vēxey) + i(v̄ēxey − v̄exēy)
+i(vexēx − vey ēy) + (v̄ēxex − v̄ēyey)〉/2

√
2

Ψ2
d3

E+
1/2 ||(vexēy − vēxey)− i(vexēx − vey ēy)〉/2 Ψ3

d3

ve2

(d3)
1
2 ± 1

2

E−1/2

E ⊗ E1/2

||(v̄ēxey − v̄exēy) + i(v̄ēxex − v̄ēyey)〉/2 Ψ4
d3

+ 1
2 E+

1/2 ||vexēx + vey ēy〉/
√

2 Ψ1
d4ve2

(d4)
1
2 − 1

2 E−1/2
A1 ⊗ E1/2 ||v̄ēxex + v̄ēyey〉/

√
2 Ψ2

d4

+ 1
2 E+

1/2 ||vv̄ex − ivv̄ey〉/
√

2 Ψ1
d5

− 1
2 E−1/2 ||v̄vēx + iv̄vēy〉/

√
2 Ψ2

d5
1E3/2 ||(vv̄ex + ivv̄ey) + i(v̄vēx − iv̄vēy)〉/2 Ψ3

d5

v2e
(d5)

1
2

± 1
2 2E3/2

E ⊗ E1/2

||(vv̄ex + ivv̄ey)− i(v̄vēx − iv̄vēy)〉/2 Ψ4
d5

+ 3
2 E1/2 E ⊗ 1E3/2 ||uvex〉 , ||uvey〉 Ψ1

q2, Ψ2
q2

− 3
2 E1/2 E ⊗ 2E3/2 ||ūv̄ēx〉 , ||ūv̄ēy〉 Ψ3

q2, Ψ4
q2

E+
1/2 ||(uvēy + uv̄ey + ūvey) + i(uvēx + uv̄ex + ūvex)〉/

√
6 Ψ5

q2

E−1/2 ||(ūv̄ey + ūvēy + uv̄ēy)− i(ūv̄ex + ūvēx + uv̄ēx)〉/
√

6 Ψ6
q2

1E3/2
||(uvēy + uv̄ey + ūvey)− i(uv̄ēy + ūvēy + ūv̄ey)
−i(uvēx + uv̄ex + ūvex) + (uv̄ēx + ūvēx + ūv̄ex)〉/2

√
3

Ψ7
q2

uve
(q2)

3
2

± 1
2

2E3/2

E ⊗ E1/2

||(uvēy + uv̄ey + ūvey) + i(uv̄ēy + ūvēy + ūv̄ey)

−i(uvēx + uv̄ex + ūvex)− (uv̄ēx + ūvēx + ūv̄ex)〉/2
√

3
Ψ8

q2

TABLE I. Negatively charged Si vacancy wave functions for various configurations in the three hole representation. The states
are classified in terms of orbital electronic configuration, total spin (S) and spin projection along the C3-axis (ms), overall
symmetry representation of the state (Γ) and its decomposition in terms of the orbital and spin symmetries (Γo⊗Γs). q1 states
(not explicitly shown) are defined similarly to states Ψ1

g-Ψ4
g with the replacement v → u. The notation || . . . 〉 represents the

Slater determinant of each component inside the bracket. The bar (no bar) over an orbital indicates spin down (up).

potential applications in quantum technologies.
The C6ν symmetry of bulk 4H-SiC is lowered to the

C3ν point group in the presence of V−Si. The local geom-
etry of V−Si is shown in Fig. 1(a), where the missing sili-
con leaves four dangling bonds (sp3-orbitals) on the sur-
rounding carbons [27]. Single electron molecular orbitals
(MO) can be constructed from symmetry-adapted linear
combinations of the three equivalent sp3-orbitals (a, b
and c) from the basal-plane carbons and the sp3-orbital,

d, belonging to the carbon atom on the C3-axis that coin-
cides with the crystalline c-axis. Using the standard pro-
jection operator technique [28] and our DFT results as a
guide [Fig. 1(b)-(d)], we obtain the following MOs of the
defect center: u=αu(a+b+c)+βud, v=αv(a+b+c)+βvd,
ex=αx(2c − a − b), and ey=αy(a − b), where the coeffi-
cients are given in [29]. The orbitals, as calculated by
DFT [30–32], are shown in Fig.1. The functions u and
v transform as A1, eX and eY transform as the x and y



components of the E representation respectively and the
states are listed in order of increasing energy according
to our DFT calculations.

The electronic configuration of this defect is modeled
by three holes, a simpler but equivalent picture to that of
five active electrons. Then, the three-hole lowest energy
quartet configurations are identified as vexey, uexey, and
uvex (or uvey), respectively, increasing in energy [29].
The tensor products of u, v, and ex,y states with the
total spin eigenstates comprise our basis set, from which
we calculate the multi-particle symmetry-adapted states
compatible with C3ν . The odd number of particles and
the symmetry only slightly broken from Td here results in
a complicated electronic and spin structure different than
those of NV− or NV0 centers [33, 34] in diamond and
divacancies in SiC. Thus, we obtain the multi-particle
wave functions systematically by use of the projection
operator on the basis states for both the orbital and the
spin degree of freedom:

P(j) = (Ij/h)
∑
R

χ(j)(R)∗Γ(j)(R), (1)

where, χ(j)(R) is the character of operation R in the jth

irreducible representation [29], and Γ is the irreducible
matrix representation for the R symmetry operator (ten-
sor product of the three-particle orbital and spin oper-
ators [29]). The resulting symmetry adapted states are
shown in Table I, and are characterized by the total spin
S, the orbital and spin symmetry, as well as their overall
symmetry. These classifications are of key importance in
understanding the nature of these states, their additional
interactions, as well as the allowed optical or spin-orbit
assisted transitions and selection rules. The ground state
manifold has S=3/2 (quartet), while there are nearby
additional manifolds (each a doublet, S=1/2) with some
having the same orbital composition as the ground state
and split from each other only due to Coulomb interac-
tions (see Fig. 3 and [29]).

The states are split and mixed further by spin-orbit
(SO) and spin-spin interactions. The SO coupling is

HSO =
∑
j

`j · sj , (2)

where `j and sj are orbital and spin angular momen-
tum operators belonging to the jth hole. The former is
defined as (`j)i = εikl[∇V (rj)]k[pj ]l/2m

2c2 where the
V (rj) is the local potential, pj is the hole momentum
operator with coordinate indices i, k, l. The compo-
nents of both ` and s transform as the (EY , EX , A2)
representation and the HSO Hamiltonian itself trans-
forms as A1. With these symmetry classifications we
see that the diagonal part of HSO,

∑
j `j,zsj,z, will

only couple states of the same L and S and of or-
bital symmetry E (since A1⊂E⊗A2⊗E). Thus, the

ground states do not split due to this term, while states
{Ψj

d} and {Ψj
q2} shift and/or mix within their mani-

folds, as shown in Fig. 2 by ∆d=〈φEξ ||LA2
z ||φEξ 〉/(2

√
2)

and ∆q=〈φEuve||LA2
z ||φEuve〉/(2

√
2) respectively (given in

terms of reduced matrix elements and ξ = {e3, v2e}).
Note that the total orbital angular momentum operator
is used here, which is equivalent to using Eq. 2 for matrix
elements between states of the same total S and L [28].

The transverse parts of the SO interaction,∑
j `j,⊥sj,⊥, couple states of different total spin

and orbital character {u, v} to both ex and ey at single
particle level. Hence the ground states will couple to
{Ψj

d1} (defined in Table I) via these transverse SO terms.
This coupling is crucial both in explaining existing
experiments and in designing future applications. The
key is to notice that ground states and q1 excited
states with |Sz|=3/2 couple more strongly to excited
{Ψj

d1} (e3) states compared to the states with |Sz|=1/2.
In fact using the states of Table I we can show that
the ratio of the matrix elements is

√
3. From this we

identify the dominant intersystem crossing channel that
constitutes the spin polarization mechanism seen in
recent experiments at the single-spin level [17] with
h-site (V2) defects, where optical driving polarizes the
system into the |Sz|=3/2 states. This mechanism, shown
in Fig. 3, also successfully predicts the recently seen
increase in the ODMR photo-luminescence intensity
with microwave drive [8, 15, 17, 18, 20].

We can also consider first-order perturbing corrections
to the ground state wave functions from the excited dark
doublet states through spin-orbit coupling (see Fig. 3).
The different strength of the SO matrix elements (e.g.,
the extra involvement of lj,zsj,z with ms = ±1/2 states
only) will cause a different degree of admixture of excited
states to the |Sz|=3/2 and |Sz|=1/2 ground states, which
in turn will allow an electric field [35], strain and mechan-
ical motion [36–38] to couple ground states with different
|Sz| projections. This paves the way toward unexplored
SiC-based applications in sensing.

Next we consider the spin-spin interaction between the
holes. The Hamiltonian is

HS =
µ0g

2µ2
B

4π

∑
i>j

1

r3ij
{si · sj − 3 (si · r̂ij) (sj · r̂ij)} ,

(3)
where g is the electron g-factor, µ0 is the vacuum
permeability, and µB is the Bohr magneton. The
spin operator of each hole, the distance to each
other and its unit vector are si, rij and r̂ij , respec-
tively. The spin-spin splittings of the quartets and
doublets are shown in Fig. 2 in terms of the split-
ting parameters defined as γg=γ0〈φA2

ve2 ||I2||φ
A2

ve2〉/
√

10,

γq1=γ0〈φA2

ue2 ||I2||φ
A2

ue2〉/
√

10, γd=γ0〈φEξ ||I2||φEξ 〉/(6
√

10),

γ1q2=γ0〈φEuve||I2||φEuve〉/(2
√

10) and γ2q2=γ1q2(1− 1.028ζ),
where I2 is an irregular solid harmonic of second rank,
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FIG. 2. (color online) Electronic configuration of V−Si, shown
in terms of the wave functions given in Table I. The split-
tings are shown explicitly for the SO and spin-spin interac-
tions. The spin quartets are grouped on the left half whereas
the metastable doublets are on the right. The states with
subscript q and d denote excited quartet and doublet states,
respectively. The dashed (green) arrows indicate the mixing
due to spin-spin interactions.

i.e. Iml =
√

4π/(2l + 1)Y ml /rl+1, γ0=µ0g
2µ2
B/4π, and

ζ=〈φEuve||I2||φEuve〉/∆q≈0, see [29]. Using in these expres-
sions the calculated bond lengths d=2.058 Å, a=2.055
Å, and θ0=35.26◦ from our DFT results, we estimate
the zero field splitting (ZFS) to be 2|γg|=68 MHz, in
good agreement with experiments [13, 15, 18, 20]. How-
ever, we found a negative D for the ground state, i.e.
HS'D[S2

z − S(S + 1)/3], causing ms = ±1/2 to be en-
ergetically higher than the ms = ±3/2 states contrary
to the some assumptions of D>0 in literature. In the
limit of perfect tetrahedral (Td) symmetry, our calcula-
tion also leads to a vanishing ZFS (0 MHz) consistent
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FIG. 3. (color online) Spin polarization channel of V−Si
through the spin-orbit assisted dominant intersystem cross-
ing 4A2(ue2)→ 2E(e3)→ 4A2(ve2) and all other allowed chan-
nels are shown in dashed lines. Thicker lines of blue
and green indicate 3× faster transition rate from or to
ms = ±3/2 states by the transverse component of spin-
orbit λ⊥ whereas orange represents a channel via the lon-
gitudinal λz component. Energies of the doublets are or-
dered in terms of the one-particle Coulomb Hamiltonian
χ = 〈φ|

∑
hi|φ〉 and leading many-particle direct integrals

[39], i.e. j0 =
´
ρaa(r1)VR(r1, r2)ρaa(r2)d3r1d

3r2, of Coulomb
repulsion [29].

with the lack of any ZFS with V−Si centers in 3C-SiC.
Based on Table I, the rich structure of the various

transitions and immunity to all local perturbing electric
and strain fields (Kramer’s degeneracy) enable the de-
sign of a spin-photon interface for applications in quan-
tum computing and quantum communications. Below we
propose two such protocols. First consider the ground
states with |Sz|=3/2, split by a B-field along the C3

axis, Ψ±g =Ψ1
g ± Ψ2

g. The excited states of interest are
Ψ+
e =Ψ2

q2−iΨ1
q2 and Ψ−e =Ψ4

q2+iΨ3
q2, which are degen-

erate energy eigenstates after SO has been included
(Fig. 2); these states have |Sz|=3/2, and since the g-
factor is the same in ground and excited states [24] they
split by the same amount as the lower levels. They
are also the only states which are not coupled to the
states of 4A2 q1 manifold via

∑
j `j,⊥sj,⊥ terms. The

allowed optical transitions between these sets of states
are Ψ+

g↔Ψ+
e and Ψ−g↔Ψ−e with right and left circularly

polarized light respectively, Fig. 4(a). A coherently ex-
cited superposition of the two excited states decays to an
entangled spin-photon state, |Ψ+

g 〉|σ+〉+|Ψ−g 〉|σ−〉. Re-
peating this process produces additional photons, all en-



tangled with the spin and each other, resulting in a mul-
tiphoton Greenberger-Horne-Zeilinger state. Augment-
ing the optical protocol with microwaves can couple the
ground states and allow the production of a cluster state
[40], similarly to a proposal for quantum dots [41, 42].

Next we consider a B-field perpendicular to the C3

axis. This mixes all four ground states, and from these
we select Ψα

g and Ψβ
g , along with the excited state Ψγ

e

(all of them given in [29] in terms of the states of Ta-
ble I). Then a Λ-system can be formed, Fig. 4(b). This
three-level system can be used in numerous quantum ap-
plications and demonstrations, including coherent popu-
lation trapping [43], optical spin qubit rotations [44, 45]
and generation of spin-photon entanglement [2, 46] with
applications in quantum repeaters [47].

g
g

e

e




cB || (a)


g


g


e

cB  (b)





FIG. 4. (color online) (a) A B-field parallel to the C3 axis
enables the creation of two two-level systems with the same
transition frequency but orthogonal polarizations. Periodic
coherent pumping followed by spontaneous emission leads to
strings of entangled photons. (b) A B-field perpendicular to
the C3 axis allows for the creation of a Lambda system.

In summary, we addressed the crucial need of calcu-
lating the multi-particle fine structure of the silicon va-
cancy defect in SiC. Based on the resulting spectrum we
identified the intersystem crossing channel that polar-
izes the system, found a mechanism to enable quantum
sensing applications, and proposed two spin-photon in-
terface protocols. Our work opens further opportunities
in understanding these defects and in implementing novel
quantum technological applications.

This work was supported in part by ONR. Computer
resources were provided by the DoD HPCMP. Ö.O.S. and
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