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We study the spectral function of the 2D Hubbard model using cluster perturbation theory, and
the density matrix renormalization group as a cluster solver. We reconstruct the two-dimensional
dispersion at, and away from half-filling using 2 x L ladders, with L up to 80 sites, yielding results
with unprecedented resolution in excellent agreement with quantum Monte Carlo. The main features
of the spectrum can be described with a mean-field dispersion, with kinks and pseudogap traced
back to scattering between spin and charge degrees of freedom.

PACS numbers: 71.30.+h, 71.10.Fd, 74.72.Gh, 79.60.-i

I. INTRODUCTION

Mott insulators defy conventional paradigms, since the
rigid band picture behind the physics of semiconduc-
tors does not apply: in strongly interacting systems, the
bands change with doping, giving rise to a complex phe-
nomenology that includes hole pockets, Fermi arcs and
kinks'™4. The spectral properties near the Mott transi-
tion in the Hubbard model have been studied extensively
by a number of computational techniques® 37 and results
indicate the emergence of excitations in the Mott gap at
finite doping. The “leaking” of spectral weight into the
gap has been explained a while ago by a seminal work by
Eskes et al’®, reviewed in Ref.39.

Previous numerical studies using cluster perturbation
theory (CPT)3® indicate the survival of one-dimensional
aspects in the spectrum of the fully two-dimensional sys-
tem, and suggest that some of the features observed
in the experiments, such as kink or waterfalls,! could
be attributed to spin-charge separation and traced back
adiabatically to spinon and holon dispersion in one-
dimensional chains.

In one-dimensional (1D) systems, the Fermi-liquid pic-
ture breaks down: the natural excitations are described
by Luttinger liquid theory?®—*2 as collective bosonic
modes carrying spin and charge, with each degree of
freedom being characterized by a different energy scale.
Even though spin-charge separation is intrinsically a
manifestation of 1D physics, the possibility of its pres-
ence in two-dimensions (2D) or quasi-2D systems has
been extensively debated, particularly within the con-
text of high-temperature superconductivity*3. Some nu-
merical studies in this direction, looking at 2,3 and 4-
leg t — J ladders, indicate the presence of spinon and
holon excitations***8. Whether spin-charge separation,
or electron-phonon interactions are responsible for the
unexpected spectral features such as kinks, and ’water-
falls’ in cuprates, is still open to interpretation and a
topic of great debate.

Since CPT relies on the solution of small clusters, it
cannot describe long-range order. These shortcomings
can be overcome by using an extension of the method

called the variational cluster approximation (VCA) also
referred to as VCPT. The VCA extends the previous
ideas by incorporating additional ingredients, such as
external fields, or even additional cluster sites, and in-
troducing a variational principle to self-consistently de-
termine the optimal symmetry-breaking fields?2:2%:49-52,
The variational principle is derived from a general frame-
work,the self-enegy functional approach, that has the
power to unify several cluster methods, including cluster
(or cellular) dynamical mean field theory (C-DMFT)%3
and the dynamical cluster approximation (DCA),5%5°
under the same mathematical structure®®.

In this work, we use the time-dependent density matrix
renormalization group method (tDMRG)®" % as a solver
for CPT, and study the spectral function of the 2D Hub-
bard model with unprecedented resolution at, and away
from half-filling. The tDMRG allows us to couple clus-
ters that are already infinite (very large) in one spatial
dimension, representing a tremendous advance over tra-
ditional calculations with small clusters, with typically
12-16 sites.

In Section II we introduce the methods, in Section III
we describe and analyze the results, and we conclude with
a discussion.

II. METHODS

Cluster perturbation theory (CPT) is a technique that
applies to problems with local interactions, such as the
Hubbard model'®2961 It provides an approximation to
the single particle Green’s function of the problem in
the thermodynamic limit by coupling clusters of small
size in a variant of strong coupling perturbation theory.
The main idea consists in dividing the lattice into small
clusters which can be solved exactly, and coupling them
together to reconstruct the original system. The single
particle Green’s function for the thermodynamic limit is
constructed by solving a simple Dyson-like equation:

Gl=g"'-T, (1)

where the bold symbols represent matrices: G is the
Green’s function we seek, G’ is the Green’s function in
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FIG. 1: Spectral function of a Hubbard ladder with L = 80
and U/t = 8, at half-filling, obtained with tDMRG. Panels
(a) and (b) show the symmetric and anti-symmetric sectors,
respectively, which are related by particle-hole symmetry.

the cluster, and T is a hopping matrix connecting the
clusters. In the following we assume that the symbol G
refers to retarded Green’s functions.

In this work, our cluster consists of a 2 x L ladder, and
the model is given by the usual Hubbard Hamiltonian:

H= —t Z (CI’AUCHLM —|—h.c.) +

i\, 0

- tz (032001'10 + h~C~) +U Z ni AL (2)
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where the operator CL\U creates an electron on rung ¢
and leg A = 1,2 with spin o, n;), is the electron num-
ber operator, and ¢t and U parametrize the hopping and
Coulomb repulsion, respectively. In the following we as-
sume periodic boundary conditions in the leg direction,
and we will address the finite size effects in the technical
discussion below.

Since the cluster possesses translational invariance
along the leg direction x, we can readily Fourier trans-
form our Green’s functions as:

v (ke) =Y ™G (x),

n

where a is the lattice spacing, x = na, and we have omit-
ted the spin index, since our problem is also invariant
under a spin inversion. This expression defines a Green’s
function in a hybrid representation, since the leg index A
still represents a real space coordinate. However, Eq.(1)
is diagonal in k,, meaning that G is a 2 x 2 matrix for
each value of k,, which is exactly equivalent to solving
the CPT equations for a 2-site cluster:

G;}A’ (kT7 Q7 w) = G/A_’){’ (k’rv (.(}) - T)\,)\/ (Q)7
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FIG. 2: CPT spectral function of the U = 8 2D Hubbard
model at half-filling obtained using a 2 x 80 ladder as a cluster,
and tDMRG as a solver. The dashed line shows the Hartree-
Fock dispersion.

with
Tan(Q) = —t [6iQ5A,25A/,1 + 671‘@5,\,1%/,2]

and () = 2k, introducing the dependence on k,. By
restoring the quasi-translational invariance, we obtain
the CPT Green’s function as:

2
ST e mONIGy  (hy, 2k, w).

AN =1

(3)

In addition, by symmetry we obtain G1; = Ga2 and
G21 = G412, which reduces the number of required sim-
ulations. These equations are clearly very simple, and
the main challenge consists in calculating the Green’s
functions with tDMRG, which can be readily done us-
ing well established methods, extensively described in
the literature®®, and reviewed in Ref.60. The tDMRG
method yields the single-particle correlation function in
real space and time, and the Green’s functions are ob-
tained by Fourier transforming the results to momentum
and frequency. The most subtle aspect of the calculation
concerns the use of open boundary conditions along the
x direction. As discussed in Refs.57,59,62, the finite size
effects introduced by the boundaries can be controlled in
two ways: by convolving the Fourier transform to mo-
mentum space with a smooth window that vanishes at
the boundaries, and by limiting the simulation time to
prevent reflections at the two ends of the ladder. In ad-
dition, to avoid artifacts such as “ringing” in the Fourier
transform to frequency, we also convolve the results with
a Hann window along the time direction. This has the
effect of introducing an artificial broadening in the spec-
tral function that is inversely proportional to the width
of the time window. Long simulation time would reduce
the broadening in frequency, with the price of introducing

GCPT(]%’; ky,w) =



ringing. These features are amplified when the matrix is
inverted and plugged into the CPT equation, introducing
instabilities that result, for instance, in negative values
of the spectral function. Therefore, our simulation time
(and Hann window width) is relatively short tax ~ 15 in
units of the inverse hopping, and makes the use of linear
prediction methods to extrapolate in time% completely
unnecessary.

III. RESULTS

We have simulated a 2 x 80 Hubbard ladder with
600 DMRG states, and using a time window of width
At = 15, a time step 6t = 0.02, and a third order
Suzuki-Trotter decomposition of the evolution operator
(In the following, we take ¢ = 1 as our unit of energy).
In Figs.1(a) and (b) we show results for the bare spectral
function of the ladder (before CPT), at half-flling and
for U/t = 8, as a function of k,, and for the symmet-
ric and antisymmetric sectors, represented by k, = 0, ,
respectively:

G (kg ky = 0,m,w) = Gy (ko w) £ Gy (ks w),
where the & signs correspond to the two values of k.
Interestingly, the truncation errors are very small, of the
order of 1077, which can be explained by noticing that
the cluster is gapped in both the charge and spin sectors.
Curiously, and to the best of our knowledge, there are
no results with DMRG for this ladder system in the lit-
erature, probably stemming from previous observations
that dynamical DMRG%4 %6 is computationally very ex-
pensive in this geometry, and only recently has it been
applied to t — J ladders®”.

Even though ladders are quasi-one-dimensional sys-
tems with spin-charge separation and Luther-Emery
behavior®®69 the sharp features observed in chains, such
as shadow and spinon bands, are washed out and less dis-
cernible, with most of the spectral weight concentrated
in the holon bands. The spinon band in the lower Hub-
bard band (LHB) for k, = 0 shows a tendency to merge
with the holon band and forms a single quasi-particle dis-
persion, as one would expect from a Fermi liquid. The
dispersion presents a “waterfall” that resembles a dis-
continuity in the dispersion at k, = 7/2, and could be
attributed to a mixing between the charge and spinon
modes. The upper Hubbard band (UHB) displays a
sharp spinon-like dispersion centered at k, = 7w with
very small bandwidth. These features are reversed for
ky = m: Due to particle-hole symmetry, the bands are
reflected about the Fermi energy and shifted in k, by 7.

In Fig.2(a), we present the tDMRG+CPT spectral
function of the 2D Hubbard model at half-filling with
U/t = 8 along the I' - X — M path in the Brillouin
zone (BZ). The CPT equations along the X — M line
will produce a mixture of G;(m,w) and G5(m,w). The
small cluster size in the transverse direction yields very

limited resolution along this line. However, in a rota-
tional invariant lattice, they should be identical to the
results for the k, = 7 boundary of the Brillouin zone,
which can be obtained with very high resolution. For
this reason, we have plotted the CPT spectrum for the
k, = m along the X — M segment, with the price of
introducing an artificial discontinuity at the X point.

The spectrum shows an uncanny resemblance to the
ladder’s, albeit with a weak renormalization. As ex-
plained in Ref.35, the CPT introduces a shift of spec-
tral weight at high energies while keeping the spectral
weight near the Fermi level almost unaffected, which
makes the holon-like bands sharper and the spinon-like
bands weaker, yielding a dispersion that resembles that
of quasi-particles. The spinon features remain as an inco-
herent background at low energies, while preserving the
“waterfall” at (7/2,7/2).

Following Ref.70, the quasi-particle dispersion can be
fitted by a mean-field (Hartree-Fock) dispersion assuming
a Néel antiferromagnetic order”® " (AFM), given by the
two bands

E.(k) = :l:\/[f2t~(cos ky + cosk,)]? + A2,

as shown by the dashed line in the figure, where we
take the gap A and f as a free fitting parameters. This
indicates that, despite its low dimensionality, the lad-
der cluster already introduces features in the spectrum
that contain information about the onset of AFM or-
der. Moreover, the spectral function displays a remark-
able agreement with the quantum Monte Carlo (QMC)
results from Refs.11,12,15,70 but with much better reso-
lution. In particular, we observe similar features such as
the flat dispersion in the UHB and LHB centered at the
(m,0) point, and the weak spinon-like incoherent back-
ground at low energies. The high energy “bands” ob-
served in QMC can be associated to the shadow bands in
the ladder dispersion, echoes of one-dimensional physics.
Remarkably, these same features are also obtained us-
ing square clusters with CPT3?, and VCPT?2:2% after
introducing an external staggered field to induce anti-
ferromagnetic correlations in 2D clusters. Putting to-
gether the results from this and previous works, the ev-
idence indicates that: (i) these features are not artifacts
of the quasi-one-dimensional ladder, (ii) they survive in
the presence of long-range order.

We now shift our attention toward the doped case.
In Fig.3(a) we show a similar calculation for a 2 x 40
ladder with 72 electrons, corresponding to 10% doping,
which also keeps us away from any charge-density wave
instabilities. We used a smaller cluster and more states
(m = 1000), since now the charge sector is gapless and
introduces more entanglement in the problem, making
the simulations computationally more expensive.

The spectrum looks very similar to the CPT results in
small clusters®®: the waterfall is no longer a discontinuity
but a continuous feature resembling a “kink”, and there
is clear transfer of spectral weight above the Fermi en-
ergy centered around the M point (Fig.3(c)). This kink
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FIG. 3: (a) CPT spectral function of the doped U = 8 2D
Hubbard model obtained using a 2 x 40 ladder as a cluster,
with n = 72 electrons. (b) Same results focusing on the kink
and the pseudogap region along the I' — X line. (c) Pseudo-
gap at the X point.

is identical to the one obtained with the DCA in Ref.26.
In addition, our results show an additional “splitting” of
the bands below and above the Fermi energy along the
ky = 0 line and centered at around the X point. The
splitting of the bands is accompanied by an additional
kink at the Fermi surface. This kink appears at the onset
of a branch of excitations that could be traced back to the
upper branch of the spinon-antiholon continuum in the
one-dimensional Hubbard model®33%. Remarkably, these
features also appear in DCA calculations®® which in prin-
ciple should not have any “memory” of 1D physics and
spin-charge separation. The splitting, though it is more
marked in our results, can be interpreted as a pseudo-
gap, as we can clearly see in a cut along the frequency
axes in Fig.3(c), in agreement with previous observations.
We point out, however, that CPT calculations on 4 x 4
clusters®® show instead a flat dispersion, similar to the
one observed in the undoped case. Although in Ref.35 it
is identified as a pseudogap, it is not sufficiently resolved

due to the small system size.
IV. DISCUSSION

We have presented a study of the spectral properties
of the 2D Hubbard model using the DMRG method as a
cluster solver for CPT. Our clusters are “infinite” (very
long) 2-leg ladders, which already contain information
about the thermodynamic limit along the leg direction.
In addition, it is reasonable to expect that due to the
large size of the ladders, charge fluctuations inside the
clusters are largely reduced. Results show a remarkable
resolution of the bands and allow us to identify features
such as waterfalls, kinks, and pseudogap, of significance
in the physics of cuprate superconductors. We relate
these aspects to one-dimensional physics that survives,
even in the presence of AFM correlations. We point out
that these features are also observed in simulations on
2D clusters, and DCA, indicating that they likely are
not artifacts of our cluster choice, despite its breaking
rotational symmetry.

Therefore, the main question one should ask is: What
is the fate of spin and charge separation in the presence of
long-range antiferromagnetic correlations? Whether our
spectra display genuine aspects of the physics of the 2D
Hubbard model cannot be determined with complete cer-
tainty from our results since cluster perturbation theory
does not account for the presence of long range antiferro-
magnetic order in two dimensions. Ladders are gapped
quasi-1D systems, with a fast decay of the correlations
(Hubbard ladders have a spin correlation length of about
4 lattice spacings™ for U = 8 at half-filling). The spin
gap and the correlation length decay quite rapidly upon
doping. In 2D, long range AMF order is also expected to
be greatly suppressed away from half-filling. The remark-
able agreement with Monte Carlo'!1%15:70  VCA?%2:25
and DCA?5 on square clusters, indicates that our ladders
contain a great deal of information and display features
corresponding to the 2D physics of the Hubbard model.
In addition, 2D-AFM long range order exists only at zero
temperature, so it is conceivable that the CPT spectrum
is a faithful representation of the excitations of the sys-
tem at finite 7', after the correlation length reduces to a
few lattice spacings, as also suggested by the aforemen-
tioned QMC results™. Further studies to elucidate these
questions may have to consider the artificial addition of
a staggered magnetic field a la VCA.
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