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ABSTRACT 

We study electrostatic screening in two classes of metamaterials. The first class 

consists of a cubic array of metal cubes, which is known to give rise to a positive local 

dielectric function. We show that such a local positive dielectric function also correctly 

describes its electrostatic behavior. The second class consists of a variety of wire media 

that have a strong nonlocal response in their dielectric function. We show that in these 

wire media, the electrostatic potential generated by a point charge decays exponentially 

as a function of distance from the charge, and such an exponential screening is 

intrinsically related to the nonlocal behavior of the dielectric function. We also show, 

surprisingly, that the electrostatic behavior in some of these wire media is isotropic in 

spite of the strong anisotropy in the dielectric tensor. Our work here provides an 

understanding of how to geometrically control electrostatic screening and Coulomb 

interaction in metamaterials. 

 

I.INTRODUCTION 

The dielectric function and the magnetic permeability were widely considered to 

be materials’ intrinsic properties that cannot be easily engineered. The developments of 

metamaterials, however, allow geometric control of the dielectric function and the 

magnetic permeability, and have led to many new opportunities for controlling the 

propagations of electromagnetic waves [1] [2] [3] [4].  

In addition to its importance in describing electromagnetic wave propagation, the 

dielectric function also controls the electrostatic screening. In vacuum, two static 



charges separated by a distance interact through the Coulomb interaction. Inside a 

material, the Coulomb interaction between the two charges is reduced in its strength 

due to the electrostatic screening. The control of the Coulomb interaction and the 

electrostatic screening is of great interest for solid-state devices. As just one example, 

in excitonic solar cells such as organic and dye-sensitized solar cells, the ability to lower 

the Coulomb force via increasing the electrostatic screening facilitates exciton 

separation into electrons and holes and hence may be important for efficiency 

improvement  [5]. The effect of electrostatic screening is described by the dielectric 

function. Since metamaterials allow geometric control of dielectric function, it is of 

fundamental importance to study how to design metamaterials to control electrostatic 

screening and Coulomb interaction. Such a study, however, has not been reported 

previously.  

In free-electron metals, it is well known that the electrostatic limit where the 

frequency ω approaches zero needs to be carefully handled. While the electromagnetic 

wave properties of a free-electron metal can be well described by the Drude model 

which gives a local dielectric function that is negative below the plasma frequency, such 

a local dielectric function cannot be used at the ω→0 limit to describe electrostatic 

screening [6]. Instead, the nonlocal aspects of the dielectric function, as described by 

the Thomas-Fermi approximation, are essential to provide a correct description of the 

electrostatic screening behavior [6].  

Motivated by the consideration of the electrostatic screening in material systems, 

in this paper we study electrostatic screening in two classes of metamaterials. The first 

class consists of a cubic array of metal cubes, which is known to give rise to a local 

positive dielectric function. We show that such a local positive dielectric function also 

correctly describes its electrostatic behavior. The second class consists of a variety of 

wire media that have a strong nonlocal response in their dielectric function. We show 

that in these wire media, the electrostatic potential generated by a point charge decays 

exponentially as a function of distance from the charge, and such an exponential 

screening is intrinsically related to the nonlocal behavior of the dielectric function. We 

also show, surprisingly, that the electrostatic behavior in some of these wire media is 



isotropic in spite of the strong anisotropy in the dielectric tensor. Our work here provides 

an understanding of how to geometrically control electrostatic screening and Coulomb 

interaction in metamaterials. 

The rest of the paper is organized as following: In Sec. II, as a background, we 

briefly review the electrostatic screening in bulk metals to highlight the relevant aspects 

for subsequent discussions on metamaterials. In Sec. III, we describe various 

metamaterial structures and present the theoretical results on the electrostatic 

screening in these metamaterial structures using the appropriate dielectric functions. In 

Sec. IV, we validate the theoretical findings presented in Section III with direct numerical 

simulations of the metamaterial structures. Finally, we conclude in Section V.  

II. SCREENING IN BULK METALS 

Before investigating metamaterials in the electrostatic limit, we briefly review the 

electrostatic screening in bulk metals. In general, the electromagnetic properties of a 

metal is described by its dielectric function ε(ω, k), where k is the wavevector  and ω is 

the angular frequency. For most studies of electromagnetic wave properties in metal, 

one assumes a local dielectric function:  [6] 

εሺωሻ  ൌ  εሺω, k ൌ 0ሻ ൌ  ε଴ ቆ1 െ  ω଴ଶωଶቇ 

(1)  

where ε0 is the dielectric constant of the free space, and ω0 is the plasma frequency. 

Eq. (1) provides a description of the plasmonic behavior of metal. On the other hand, to 

treat dielectric screening at the electrostatic limit, the nonlocal behavior of the dielectric 

function is essential. At ω=0, the Thomas-Fermi approximation gives:  

εሺω ൌ 0, kሻ ൌ ε଴ ቆ1 ൅  kୱଶkଶቇ 

(2)  



where ks is the Thomas-Fermi wavevector. From Eq. (2), we can express the electric 

potential φ associated with a point charge q placed in metal as 

φሺkሻ ൌ  qε଴ 1kଶ ൅ kୱଶ. 
(3)  

Taking the inverse Fourier transform of φ(k), we obtain the screened electric potential: 

φሺrሻ ൌ  q4πε଴ eି୩౩୰r . 
(4)  

As seen in this brief review above, the electrostatic screening is controlled by the 

nonlocal dielectric function in the electrostatic limit ε(0, k).  Metamaterials have 

generated substantial excitements due to the possibility of engineering dielectric 

functions that are not available in naturally occurring materials. Unlike the control of 

electromagnetic waves, however, to control electrostatic screening with metamaterials, 

one needs to focus on the nonlocal response. With this consideration in mind, in the 

next section we discuss various metamaterial systems. 

III. METAMATERIALS IN THE ELECTROSTATIC LIMIT 

In this section, we study the electrostatic characteristics of metamaterials 

theoretically by considering the effective dielectric tensors of these materials. The 

theoretical prediction here will then be checked against direct numerical simulations in 

Section IV. We examine five different topologies of metamaterials: one is a cubic array 

of metal cubes (Fig. 1) and the other four are wire media consisting of metallic wires 

(Figs. 2-5). These metamaterial structures are chosen to highlight those structural 

aspects that are important to control the electrostatic screening.   

In all metamaterials considered in this section, the metals are assumed to be 

perfect electric conductors (PEC) and embedded in a uniform lossless dielectric host 

medium, which is assumed, without any loss of generality, to be the vacuum with the 



electric permittivity ε0. As will be shown in Sec. B, without loss of generality any metal 

can be used instead of PEC. In the electrostatic regime, plasmonic losses do not have 

any impact on the Coulomb interaction. Having stated the common factors in all 

metamaterials, we now introduce each one separately.  

A. Cubic array 

The first metamaterial we consider is a cubic array of metal cubes as illustrated 

in Fig. 1. The lattice constant is a and the size of a cube is b.  

 

FIG. 1. A cubic array composed of isolated metal cubes. (a: lattice constant, b: length of a side of a cube) 

The relative dielectric function εr of a cubic array can be found by a local 

homogenezation model [7]. Since this topology has an octahedral (Oh) symmetry point 

group, its electromagnetic properties are isotropic with εr being a scalar [8] [9]. In the 

large cube limit (i.e., b ≈ a), εr is approximated as [10] 

 

(5)  

Using this dielectric model, the electric potential of point charge q in a cubic array is 

given by 



 

(6)  

B. Uniaxial wire medium 

Fig. 2 shows a uniaxial wire medium, which consists of a two-dimensional square 

array of parallel infinitely long thin wires. The lattice constant of the square array is a. 

We denote the radius of wires as r0. The radius r0 is assumed to be much smaller than 

the lattice spacing a (r0<<a). 

 

FIG. 2. The geometry of a uniaxial wire medium formed by infinitely long PEC wires arranged in a square 

lattice. (a: lattice constant, r0: wire radius) 

Unlike cubic arrays of metal cubes as shown in Fig. 1, wire media have 

prominent nonlocal effects [11] [12] [13] [14]. In the presence of spatial dispersion, the 

electric displacement vector D and the magnetic field H at a point of space can no 

longer be written in terms of average electric field E and average induction field B at the 

same point of space. Instead, they can be related in the Fourier domain by a nonlocal 

dielectric function . As it was shown, this dielectric function alone is sufficient to 



describe the homogenized medium [15] [16]. The nonlocal dielectric function can be 

derived analytically using the thin wire assumption, i.e., r଴ a ا 1⁄ . With this assumption, 

polarizations due to the metal-wire that are orthogonal to wires are negligible. Thus, the 

effective permittivity for an external electric-field polarized orthogonal to wires is simply 

the host medium permittivity ε0. Therefore, a uniaxial wire medium (Fig. 2) can be 

modelled using the following permittivity dyadic: εധሺβ, kሻ ൌ ε଴ሺܠ଴ܠ଴ ൅ ଴ܡ଴ܡ  ൅  ε୸ሺβ, k୸ሻܢ଴ܢ଴ሻ   

(7)  

where x0, y0 and z0 are unit vectors directed along the respective direction. β ൌ ωඥε଴µ଴  

is the wavenumber corresponding to ω in the host medium. The wavevector k is given 

by (kx, ky, kz)T, where kx, ky and kz refer to the wavevector components in respective 

directions x, y or z. A nonlocal dispersive model was developed for εz as [11] [12] 

ε୸ሺβ, k୸ሻ ൌ  1 െ  β଴ଶβଶ െ  k୸ଶ. 
(8)  

Here, as a good analytic approximation, β0 is given by [11] [14] 

β଴ଶ ൌ  2π aଶ⁄ln ቀ a2πr଴ቁ ൅ 0.5275. 
(9)  

which is solely defined by the medium’s geometry parameters a and r0. Here, it should 

be noted that ε୸ሺβ, k୸ሻ can be generalized to include plasmonic losses [17] 

[18]:ε୸ሺβ, k୸ሻ ൌ  1 ൅ ଵభሺ಍ౣ౛౪౗ౢషభሻ౜Vି ಊమష ౡ౰మಊబమ  

(10)  

where fV = π(r0/a)2 is the volume fraction of wires and εmetal is the dielectric function of 

metal used in wires, which is given by the Drude model and is complex. For the 



electrostatic case ω=0, Eq. 8 is recovered from Eq. 10. Thus, in the electrostatic case 

metal loss does not play a role. In general, while metals have a non-zero conductivity at 

ω=0, there is no electric current inside metals in the case we consider in the paper, and 

hence there is no loss. This argument applies to all other geometries that we consider in 

this paper. 

We use the dielectric function of Eqs. (8) and (9) to discuss the electrostatic 

screening. For the electrostatic analysis, we can take the β→0 limit of εz(β,kz ) to obtain:  

ε୸ሺ0, k୸ሻ ൌ  1 ൅  β଴ଶk୸ଶ, 
(11)  

and therefore εധሺβ, kሻ becomes εധሺ0, kሻε଴ ൌ ଴ܠ଴ܠ  ൅ ଴ܡ଴ܡ  ൅ ሺ1 ൅  β଴ଶk୸ଶሻܢ଴ܢ଴. 
(12)  

Having the dielectric function expressed in the electrostatic limit, we can 

determine the electric potential of a point charge q placed in this medium using Gauss’s 

law:  

∇ · ۲ሺrሻ ൌ  qε଴. 
(13)  

In the k-space, the electric displacement field D is related to the electric field E by D(k) = εധሺ0, kሻ E(k). Additionally, using the relation E(r) = - ∇φ and converting this relation into 

the k-space, we can re-write Eq. (12) as  

ሺെikሻε നሺkሻ ሺെikሻφሺkሻ ൌ  െ qε଴. 
(14)  



And as a result, φ(k) is found to be: 

φሺkሻ ൌ  qε଴ 1kଶ ൅ β଴ଶ. 
(15)  

In real space, the electric potential is then: 

φሺrሻ ൌ  q4πε଴ eିஒబ୰r . 
(16)  

The functional form of φ(k) and φ(r) given by Eq. (15) and Eq. (16) are the same as 

those for bulk metals (given by Eq. (3) and Eq. (4)). Like in bulk metals, we can define, 

for this uniaxial wire medium, a screening length: 1/β0. Unlike in bulk metals, however, 

where the screening length is controlled entirely by material properties, in these 

metamaterials the screening length is controlled by geometry. Therefore, it becomes 

possible to control the Coulomb interaction by engineering the geometry of the medium. 

Also, remarkably, while the dielectric tensor for such a uniaxial wire medium (Eq. 

(11)) is strongly anisotropic, the resulting electrostatic potential (Eq. (15)) is completely 

isotropic in space. We will see such elimination of anisotropy is in fact quite general for 

other wire medium as well.  

 

C. Biaxial wire medium 

Figure 3 shows a biaxial wire medium. It consists of two sets of doubly periodic 

wires oriented along two orthogonal directions (z- and y- directions, respectively). Each 

set of the wires forms a square lattice with a lattice constant a. The wires do not 

intersect, and the axes of adjacent orthogonal wires are spaced by a/2.  



 

FIG. 3. The geometry of a biaxial wire medium formed by two sets of mutually orthogonal infinitely long 

PEC wires, each set arranged in square lattices. (a: lattice constant, r0: wire radius) 

 As the starting point of the derivation of electric potential, we use a general 

dielectric function formalism— similar to the one in Eq. (8) for a uniaxial wire medium. 

For a biaxial wire medium, reads [13] 

  

(17)  

where 

 

(18)  

 

(19)  



Such separation of εധሺβ, kሻ into its components εy(β,ky) and εz(β,kz) rests on the 

assumption that the polarizations from orthogonal wires do not interact with each other. 

Therefore, εy(β,ky) can independently be derived like εz(β,kz) given in Eq. (8).  εy(β,ky) 

and εz(β,kz) have the same form as required by the symmetry of the structure.  

Having εധሺβ, kሻ derived, we can examine the electrostatic limit. For β→0, εധሺβ, kሻ 

approaches εധሺ0, kሻε଴ ൌ ଴ܠ଴ܠ  ൅ ቆ1 ൅ β଴ଶk୷ଶቇ ଴ܡ଴ܡ ൅ ቆ1 ൅ β଴ଶk୸ଶቇ  .଴ܢ଴ܢ
(20)  

Solving Poisson’s Equation with this εധሺ0, kሻ, φ(k) and φ(r) are found to be 

φሺkሻ ൌ  qε଴ 1kଶ ൅ 2β଴ଶ, 
(21)  

φሺrሻ ൌ  q4πε଴ eି√ଶஒబ୰r  

(22)  

where the screening length is 1 ሺ√2β଴ሻ⁄ . Here, again we see the same effect as the 

uniaxial wire medium case of an isotropic electrostatic response from a highly 

anisotropic dielectric tensor.  

 

 

D. Triaxial wire media 

Having three sets of wires, with the sets being orthogonal to one another, we 

obtain a triaxial wire medium. Again, each set of wires has a square lattice of a lattice 

constant a. We consider two different configurations of triaxial media: nonconnected 



and connected, which are depicted in Fig. 4 and Fig. 5, respectively. While the 

nonconnected medium has mutually orthogonal adjacent wires separated by a/2, the 

connected medium has intersecting wires.  

 

 

FIG. 4. The geometry of a nonconnected triaxial wire medium formed by three sets of mutually orthogonal 

infinitely long PEC wires arranged in square lattices (adjacent orthogonal wires are spaced of a/2). (a: 

lattice constant, r0: wire radius). (a) Multiple periodicities. (b) A single unit cell 

 Due to their different connectivity, these two media have different electrostatic 

characteristics. The derivation of the electric potential in a nonconnected triaxial 

medium follows the same pattern of a biaxial medium. εധሺβ, kሻ has the general form of εധሺβ, kሻ ൌ  ε଴൫ ε୶ሺβ, k୶ሻܠ଴ܠ଴ ൅  ε୷൫β, k୷൯ܡ଴ܡ଴ ൅  ε୸ሺβ, k୸ሻܢ଴ܢ଴ ൯. 

(23)  

Based on the same assumptions as discussed above for biaxial medium, εധሺβ, kሻ for the 

triaxial non-connected wire medium is [14] 



εധሺβ, kሻε଴ ൌ  IӖ െ  β଴ଶβଶ െ k୶ଶ ଴ܠ଴ܠ െ β଴ଶβଶ െ  k୷ଶ ଴ܡ଴ܡ െ  β଴ଶβଶ െ  k୸ଶ  ଴ܢ଴ܢ

(24)  

where IӖ is a unit dyadic. In the electrostatic limit (β→0), εധሺβ, kሻ becomes εധሺ0, kሻε଴ ൌ  IӖ ൅  β଴ଶk୶ଶ ଴ܠ଴ܠ ൅ β଴ଶk୷ଶ ଴ܡ଴ܡ ൅  β଴ଶk୸ଶ  .଴ܢ଴ܢ
(25)  

Using this εധሺ0, kሻ to solve Poisson’s Equation, we find φ(k) and φ(r) as 

φሺkሻ ൌ  qε଴ 1kଶ ൅  3β଴ଶ 

(26)  

φሺrሻ ൌ  q4πε଴ eି√ଷஒబ୰r  

(27)  

where the screening length is 1 ሺ√3β଴ሻ⁄ . 

 



 

FIG. 5. The geometry of a connected triaxial wire medium formed by three sets of mutually orthogonal 

infinitely long PEC wires arranged in a square lattice. (a: lattice constant, r0: wire radius). (a) Multiple 

periodicities. (b) A single unit cell 

 A connected medium is formed by three mutually orthogonal sets of wires joined 

at the intersection points (Fig. 5). Unlike in a nonconnected medium, here the 

polarizations in the different sets of the wires do couple to each other. As a result, εധሺβ, kሻ takes the form [14] [19] εധሺβ, kሻε଴ ൌ  IӖ െ  β଴ଶβଶ ൬ IӖ െ kଶܓܓ െ  ݈଴βଶ൰ 

݈଴ ൌ  31 ൅ 2 β଴ଶβଵଶ
 

(28)  

where β1 is another medium geometry dependent variable and is given by [14] 

1βଵଶ ൌ  ቀ a2πቁଶ ෍ ൤J଴ ൬2πlr଴a ൰൨ଶ
lଶ୪ஷ଴ . 



(29)  

Here, l is an integer and J0 stands for the Bessel function of the first kind and order 0. 

Limit β→0 cannot directly be applied on this εധሺβ, kሻ because εധሺ0, kሻ diverges to negative 

infinity. However, the electrostatic screening is controlled only by the longitudinal part of 

the dielectric function, we therefore decompose εധሺβ, kሻinto its longitudinal εl and 

transverse εt components: εധሺβ, kሻε଴ ൌ  ε୲ሺβሻ ൬IӖ െ kଶܓܓ  ൰ ൅ ε୪ሺβ, kሻ ൬ ܓܓkଶ ൰ 

(30)  

where 

ε୲ሺβሻ ൌ 1 െ  β଴ଶβଶ, 
(31)  

ε୪ሺβ, kሻ ൌ 1 ൅ l଴β଴ଶkଶ െ  l଴βଶ. 
(32)  

Such decomposition in Eq. (29) is possible since the connected triaxial medium has a 

cubic symmetry [15] . For β→0, εl reads 

ε୪ሺ0, kሻ ൌ 1 ൅ l଴β଴ଶkଶ . 
(33)  

Solving Poisson’s Equation with this εl(0,k), we find the electric potential as 

φሺkሻ ൌ  qε଴ 1kଶ ൅ l଴β଴ଶ, 
(34)  



φሺrሻ ൌ  q4πε଴ eିඥ୪బஒబ୰r  

(35)  

where the screening length is 1 ሺඥl଴β଴ሻ⁄ . 

To summarize Section III, we see that all presented wire media create 

exponentially decaying isotropic electric potentials. Since these structures have different 

connectivity properties, the theoretical results indicate that it is the nonlocal aspects of 

the dielectric function which arises from the infinite nature of the wires, rather than the 

connectivity properties, that lead to the exponential screen behavior. For the wire media 

considered here, the difference between their electrostatic properties is their strength of 

screening, as characterized by screening lengths. Screening lengths are found as 1 ሺβ଴ሻ⁄ , 1 ሺ√2β଴ሻ⁄ , 1 ሺ√3β଴ሻ⁄  and 1 ሺඥl଴β଴ሻ⁄  for a uniaxial, biaxial, nonconnected triaxial 

and connected triaxial, respectively.  

We emphasize that the effective dielectric functions that have been assumed in 

this section have all been previously developed to account for the properties of 

electromagnetic waves with non-zero frequencies. Whether these dielectric functions 

can be used to account for the electrostatic properties of these systems have in fact 

never been tested before. This is not a trivial issue. As we have seen in Section II, the 

commonly used dielectric function of Eq. (1) does give excellent description of the 

electromagnetic properties of free-electron metal, but it gives qualitatively incorrect 

prediction of the electrostatic screening in metal when one takes the ω→0 limit. 

Therefore, in the next section we provide direct numerical calculations of the 

electrostatic screen in the metamaterial systems described above in order to confirm the 

theoretical prediction provided here.  

V. NUMERICAL RESULTS 

Our numerical approach involves solving Poisson’s Equation for the electric 

potential distribution φ(r) for physical structures. A commercial software package 

(Sentaurus TCAD) [20] is used to perform the simulations. The simulation domain 



includes a finite-size metamaterial structure with several periods in all three dimensions. 

The finite-size structure is surrounded by air regions. A point test charge q is placed in 

the origin of the simulation space, which is also the center of the metamaterial structure. 

In order to account for the electric potential approaching zero in infinity in real space, a 

Dirichlet boundary condition of φ(r=boundary)=0 is imposed on the outer boundary of 

the simulation domain. No boundary condition for φ(r) is applied on the metal surfaces, 

i.e., on cubes and wires. Instead, charge neutrality is imposed on each metal structure. 

The electrostatic potential of each metal element is determined in the simulation from 

this charge neutrality condition.   

Initially, we perform a control simulation of the empty space. We obtain 1/(ε0r) 

dependence of the electric potential as expected. We use this electric potential as a 

reference for comparisons in the subsequent metametarial simulations. Since the 

studied metamaterials theoretically have infinite dimensions, large dimensions for the 

simulation space need to be chosen. We find that a simulation domain with a size of 

12a x 12a x 12a gives sufficiently accurate results. 

The first simulated metamaterial is the cubic array of metal cubes (Fig. 1). For 

the unit cell size a and the cube side length b, we choose the geometry as b = 19/20a. 

We present simulation results in two forms as illustrated in Fig. 6. φ(r) vs r is plotted in 

Fig. 6(a), and ln(r φ(r)), where ln is the natural logarithm, vs r is plotted in Fig. 6(b). The 

use of ln(rφ(r)) provides a simple graphic means to distinguish between the 1/r and the 

e- κr/r dependency with respect to r, where 1/κ denotes the screening length. With ln(r 

φ(r)) as the vertical axis, the 1/r dependency would be a flat line while the e-κr/r 

dependency would be represented by a straight line whose slope is the negative inverse 

of the screening length, i.e., -κ. As expected, we observe a flat line in Fig. 6(b). By 

comparing it to the electric potential curve associated with the empty space, we see that 

the electric potential in a cubic array is lower due the enhanced εr. Therefore, the local 

dielectric function of Eq. (5) provides an accurate description of the electrostatic 

properties of such a metamaterial consisting of a cubic array of metal cubes.  



 

FIG. 6. Electric potential as a function of distance normalized by the lattice constant a for a single point 

charge placed in a cubic array compared to electric potential in vacuum: (a) Electric potential. (b) 

Transformed electric potential. The transformation is done by multiplying the electric potential by distance 

and taking the natural logarithm of this multiplication. As expected, flat lines are observed both for 

vacuum and a cubic array because electric potentials have 1/r dependency. The lower flat line of the 

cubic array is due to the enhanced relative dielectric function.  

We next simulate the wire media illustrated in Figs. 2-5. We choose the radius of 

the wires r0 = 1x10-3a, in order to satisfy the condition for the thin-wire approximation 

(r0<<a). When displaying the simulation results of the electric potential, we use ln(r φ(r)) 

as the vertical axis. The results demonstrated in Fig. 7 show that ln(r φ(r)) scales 

linearly with respect to r with a negative slope, thus electric potentials φ(r) indeed decay 

exponentially in wire media.  



 

FIG. 7. Transformed electric potential as a function of distance normalized by the lattice constant a for a 

single point charge placed in (a)  uniaxial, (b) biaxial, (c) nonconnected triaxial and (d) connected triaxial 

wire media. The electric potential in vacuum is given as a reference for comparison. The transformation of 

electric potential is done by multiplying it by distance and taking the natural logarithm of this multiplication. 

The electric potential in vacuum results in a flat line because this electric potential has 1/r dependency. 

On the contrary, transformed electric potentials drop linearly, which is an indication of exponential decay 

in un-transformed electric potentials. Slopes of lines show how strong exponential decays are. In (a), a 

pair of numerical results is illustrated: (I) and (II). (II) shows the electric potential along a direction 

perpendicular to uniaxial wires, whereas (I) shows the electric potential in a direction parallel to wires. 



Such a discrepancy occurs due to numerical reasons. Theoretically, electric potential shall fall off 

isotopically.  

In order to understand how well theoretical and numerical results agree, we 

compare theoretical and numerical screening lengths. The theoretical ones are 

calculated as 1/ β0 = 0.943a, 1/ (√2β0) = 0.667a, 1/ (√3β0) = 0.544a, and 1/ (√l0β0) = 

0.544a for a uniaxial medium, a biaxial medium, a nonconnected triaxial medium and a 

connected triaxial medium, respectively. Numerical screening lengths of wire media are 

obtained by taking the negative inverse of slopes of ln(r φ(r)) lines. For all systems, 

theoretical and numerical results agree well as seen in Figure 7. For the simulation of 

the empty space, there is ~1% difference between the numerical and the theoretical 

one. For the simulations of metamaterials, we observe a difference of about 10% 

between theoretical and numerical results. This error is associated with the limited 

dimensions of the simulation space. Increasing the number of units cells of 

metametarials used, we observe monotonically decreasing discrepancies between the 

theoretical results and the numerical simulations.  

 

FIG. 8. Equipotential lines in the y-z plane of a single point charge placed in a uniaxial wire 
medium. Wires are along the z axis. The theoretical expectation is perfectly circular 
equipotentials. Numerical results generally agree with the theoretical expectation, the small 
discrepancy is due to imperfect numerical convergence. 



In the simulation of the uniaxial medium, as a function of r, the electric potential 

parallel to the axis of wires is approximately equal to the electric potentials in orthogonal 

directions (as seen in Fig. 7(a) and Fig. 8). The slight discrepancy of the electric 

potentials along these two directions occurs due to the finite size of the simulation 

space. Making the space larger reduces the discrepancy. In a biaxial medium, there is 

no observable difference for the electric potentials along the direction parallel to a set of 

wires, and along the direction orthogonal to all wires (Fig 7b). The numerical results 

here confirm that for both the uniaxial and the biaxial wire media, the electrostatic 

properties of the structure is isotropic in spite of the strong anisotropy of the dielectric 

tensors. To summarize this section, the numerical results provide an excellent 

confirmation of the theoretical results as presented in Section III. 

VI. CONCLUSION 

In this paper, we have analyzed theoretically the electrostatic characteristics of 

two classes of metamaterials. The first class consists of a cubic array of metal cubes. 

We show that its electrostatic screening behavior can be described by a positive local 

dielectric function. In such a system, the electrostatic potential from a static charge 

scales as 1/(εrr), where the εr is the effective dielectric constant of the metamaterial, and 

r is the distance from the charge. The second class consists of a variety of wire media. 

In these systems, we show that the electrostatic potential from a static charge scales as 

exp(-κr)/r, where 1/κ is the screening length. We also show that such an exponential 

behavior is intrinsically related to the nonlocal nature of the effective dielectric model.  

The theoretical analysis is confirmed by direct numerical simulations of the metamaterial 

structures.  

In both classes the metamaterials, the properties of the electrostatic screening, 

such as the effective dielectric constant in the first class, and the screening length in the 

second class, are directly related to the geometrical parameters of the metamaterial 

structures. Therefore, we have shown that metamaterials offer geometrical control of 

the Coulomb interaction. Given the importance of the Coulomb interaction both in 

fundamental physics and in device applications, our work points to a new potential area 

of applications for metamaterials, which have not been extensively explored before.  
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