
This is the accepted manuscript made available via CHORUS. The article has been
published as:

High-frequency homogenization for layered hyperbolic
metamaterials

A. A. Krokhin, J. Arriaga, L. N. Gumen, and V. P. Drachev
Phys. Rev. B 93, 075418 — Published 10 February 2016

DOI: 10.1103/PhysRevB.93.075418

http://dx.doi.org/10.1103/PhysRevB.93.075418


High-frequency homogenization for layered hyperbolic metamaterials

A.A. Krokhin,1, ∗ J. Arriaga,2 L.N. Gumen,3 and V.P. Drachev1

1Department of Physics, University of North Texas, P.O. Box 311427, Denton, Texas 76203-1427
2Instituto de F́ısica, Universidad Autónoma de Puebla, Apartado Postal J-48, Puebla, 72570, Mexico

3Universidad Popular Autónoma del Estado de Puebla, 21 Sur, #1103, 72160, Mexico

We propose an analytical approach for calculation of the homogenized dielectric functions ǫ‖(ω)
and ǫ⊥(ω) of 1D periodic metal-dielectric structure. The obtained formulas are valid at high fre-
quencies near the points of topological transition from elliptic to hyperbolic regime. The proposed
method of high-frequency homogenization takes into account rapidly varying electromagnetic fields
within the metallic component of unit cell, in particular, the evanescent character of the plasmonic
mode and oscillatory behavior of the waveguide-like modes. Our results show good correspondence
to the exact solution of the Rytov’s dispersion equation and significant deviation from the widely
used quasi-static formulas obtained by spatial averaging along the direction of periodicity z of ǫ(z)
and 1/ǫ(z). The quasi-static approach ignores z- dependence of the fields that leads to its limited
applicability near the frequency of topological transition.

PACS numbers: 78.67.Pt, 78.20.Bh

I. INTRODUCTION

Uniaxial metamaterials with optical anisotropy going
beyond the difference in the absolute values of the com-
ponents of the dielectric tensor ǫik(ω) = diag(ǫ‖, ǫ‖, ǫ⊥)
and showing extreme birefringence when ǫ‖ ǫ⊥ < 0 are

known as hyperbolic metamaterials.1–4 Due to (formally)
infinite values of the wave vector allowed by hyperbolic
dispersion relation for propagating electromagnetic mode
these materials strongly modify the rate and direction of
spontaneous emission.5 The dielectric function of a pe-
riodic structure becomes negative at sufficiently low fre-
quencies when the contribution to polarization from the
metallic layers overcomes the contribution from the di-
electric constituent. Since polarizations along the layers
and perpendicular to them are different, the elements of
the dielectric tensor ǫ‖(ω) and ǫ⊥(ω) vanish at different
frequencies, giving rise to the frequency bands with either
elliptic (ǫ‖(ω) ǫ⊥(ω) > 0) or hyperbolic (ǫ‖(ω) ǫ⊥(ω) < 0)
dispersion. Here the sub-indices ‖ and ⊥ refer to the
propagation parallel or perpendicular to the optical axis,
respectively.
The most complete characterization of infinite periodic

layered structure is given by Rytov’s dispersion equation6

cos(Kzd) = cos(kzaa) cos(kzbb)−
1

2

(

ǫbkza
ǫakzb

+
ǫakzb
ǫbkza

)

sin(kzaa) sin(kzbb), (1)

which is an implicit relation between the frequency ω and
the Bloch vector K = (kx, ky,Kz) for the TM-eigenmode
(vector H parallel to the layers) propagating at some
angle with respect to the optical axis (axis z). Here

k2za = ω2

c2 ǫa − k2 and k2zb = ω2

c2 ǫb − k2 are the longitu-
dinal components of the wave vector inside the layers a
and b, respectively and a + b = d. The system is homo-
geneous along the xy plane, therefore the corresponding

projection of the transverse wave vector k =
√

k2x + k2y
conserves from layer to layer.

For any frequency ω the values of the dielectric func-
tions ǫ⊥(ω) and ǫ||(ω) can be calculated from the disper-
sion relation ω = ω(K) obtained from Eq. (1). In partic-
ular, the well-known quasi-static dielectric constants are
easily obtained in the limit ω,K → 0,

1

ǫ⊥
=

f

ǫa
+

1− f

ǫb
, (2)

ǫ|| = ǭ = fǫa + (1− f)ǫb. (3)

Here f = a/d is the portion occupied by material a in a
unit cell of length a+ b.
If the component a of a superlattice (SL) is a metal,

its dielectric function ǫa(ω) = 1 − ω2
p/ω

2 has a pole at
ω = 0 that leads to ǫ|| = −∞ and ǫ⊥ = ǫb/(1 − f).
Because of strong frequency dispersion in metals at low
frequencies, calculation of the effective dielectric tensor
for hyperbolic materials is not an easy problem. Several
homogenization theories have been recently proposed for
layered hyperbolic materials. At low (but finite) frequen-
cies Eq. (3) for ǫ|| can be formally rewritten in standard
Drude form

ǫ|| = ǭ

(

1− ω2
0

ω2

)

(4)

with effective plasma frequency

ω0 = ωp

√

f

ǭ
(5)

and average permittivity ǭ = f+(1−f)ǫb. This formula,
obtained in the static limit, ignores skin-effect, therefore
it becomes invalid if the metal layer thickness a becomes
comparable with the skin depth δ0 = c/ωp. Strong de-
cay of electromagnetic field in a thin metal layer and
its oscillatory behavior inside a thick dielectric layer al-
lows approximation when the field inside the unit cell is
replaced by the field in a Fabry-Perot resonator. This
leads to universal effective plasma frequency7

ω0 = πc/(b
√
ǫb), (6)
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which is independent of ωp and metal layer thickness a.
This result is in agreement with an idea8,9 that a metal-
dielectric structure with very low metal filling (f << 1)
can be considered as a ”diluted” metal with effective
plasma frequency which depends on geometry of the unit
cell but not on metal conductivity. The region of frequen-
cies where a SL exhibits hyperbolic behavior (ǫ||(ω) < 0)
is 0 < ω < ω0, assuming that within this interval the
homogenization conditions Kzd << 1 is satisfied.
In the region where spatial inhomogeneity of the fields

in metal becomes essential (δ0 ≤ a) a more advanced
approach proposed in Ref. [10] gives the following result:

ǫ||(ω) = ǫb



1− 1

1− (ωd/2c)
√
ǫb

tan [(ωd/2c)
√
ǫb]

− ǫb
f(ǫa(ω)−ǫb)



 .

(7)
It is obtained from earlier developed comprehensive
theory of homogenization of bianisotropic periodic
medium.11 Within this approach the result for ǫ⊥ given
by Eq. (2) remains unchanged. Analytically Eq. (7)
does not look like the result of Drude model Eq. (4).
However, it is reduced to Eq. (4) in the homogenization
limit d << c/ω. If the last term in the denominator
plays the principal role, i.e. f << (δ0/a)

2 << 1 the
effective plasma frequency ω0 is given by Eq. (4). In
the opposite case when skin-effect is strongly manifested,
(δ0/a)

2 << f << 1, the second term in the denomina-
tor is expanded up to quadratic term and the effective
plasma frequency can be introduced as follows:

ω0 = (c/d)
√

12/ǫb. (8)

While numerically this formula is close to the result (6)
of Ref. [7], there is a systematic deviation by approxi-
mately 10%. The source of this discrepancy is the ratio√
12/π ≈ 1.103, which is not exactly one. This discrep-

ancy is reflected in Fig. 3a of Ref. [10], showing that
neither Eqs. (4)-(6) nor Eq. (7) give appropriate fre-
quency dependence for the effective permittivity ǫ||(ω).
It is important to note that the quasi-static approxi-

mation (2) and (3) can be used only within its range of
validity and with appropriate justification. While valid-
ity of this approximation for metal-dielectric composites
has been criticized for a long time,12 it is still widely used.
This approximation becomes invalid if the angle of inci-
dence is close to the angle of total internal reflection.13

Breakdown of the quasi-static approach for this special
case has been recently demonstrated experimentally for
all-dielectric SL.14 Applicability of the quasi-static ap-
proximation for calculation of the rate of spontaneous
emission was analyzed in Refs. [15,16]. It was shown
that this approximation usually overestimates the rate.
At the same time, the quasi-static approximation may be
successfully applied, provided that rigorous justification
and range of validity are given.17

Apart from frequency dispersion a layered (or wired)
medium exhibits spatial dispersion which gives rise to k-
dependence of the effective permittivity.3,4,9,18–21 Com-

parison of the exact dispersion relation (1) with the equa-
tion of crystal optics in an uniaxial crystal shows that the
effective dielectric tensor enquires off-diagonal elements,
if the wave propagates under some angle to the opti-
cal axis.19 However, these off-diagonal elements, vanish
for propagation parallel and perpendicular to the optical
axis. In the diagonal elements the non-local terms ap-
pear as k-dependent corrections to the quasi-static val-
ues (2) and (3). Here we show that in general case the
quasi-static approximation is not valid since skin-effect in
metal cannot be neglected at finite frequencies. There-
fore, Eqs. (2) and (3) can be used as zero approximation
in very limited situations as well as the non-local correc-
tions to these quasi-static values. This conclusion is in
agreement with the well-known fact that at room tem-
peratures under the conditions of normal skin-effect tem-
poral dispersion in metals is much more important than
spatial dispersion.22 Domination of temporal dispersion
also follows from identity of the wave equation in layered
hyperbolic metamaterial to the Klein-Gordon equation
for a massless field.23

In order to clarify the problem of frequency depen-
dence of the tensor of effective permittivity of a layered
hyperbolic material we propose a simple homogenization
scheme which takes into account the effects of frequency
and spatial dispersion directly from Rytov’s equation (1).
We calculate analytically the effective dielectric functions
ǫ||(ω) and ǫ⊥(ω) and establish the limits of applicability
of the Drude model with effective plasma frequencies (5)
and (6) and of the result given by Eq. (7). Propagation
in plane of periodicity and parallel to the layers are con-
sidered separately. In the latter case the bands originated
from the evanescent surface plasmon-like mode and from
the oscillating waveguide-like mode lead to different re-
sults for the effective dielectric function. The proposed
method of homogenization is quite general. It is valid
not only for 1D SL but for any periodic structure. Un-
like the quasi-static approach (2) and (3), our method
accounts for spatial variation of the fields within the unit
cell and, thus, may be valid at high frequencies. For
elastic periodic medium a homogenization theory valid
at high frequencies was proposed in Ref. [24]. It gives
the parameters of the effective medium for the parts of
the dispersion curve close to the edge of the Brillouin zone
where group velocity vanishes and each Bloch eigenmode
becomes a standing wave with the maximum value of the
Bloch vector. The term ’high-frequency homogenization’
is borrowed from Ref. [24]. Here we are interested in the
long-wavelength part of the spectrum, where the Bloch
vector is small but the frequency can be arbitrary high,
i.e. our approach is valid close to the center of the Bril-
louin zone (gamma-point). Note that small value of the
Bloch vector does not exclude spatial oscillations of the
fields in the metallic component of the SL.
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II. HOMOGENIZATION OF PERIODIC

DISPERSIVE MEDIUM

Homogenization procedures for static fields are well-
developed for 2D and 3D periodic structures25–31. At
finite frequencies local resonances as well as the effects
of dispersion may lead to strong gradients in the distri-
bution of electric (or magnetic) field within a unit cell.
Homogenization procedure in this case requires more so-
phisticated methods. Current progress in fabrication and
application of optical metamaterials gave rise to more ad-
vanced approaches to the problem of calculation of effec-
tive medium parameters, see, e.g., Refs. [9,11,32–39]. As
a rule calculations of the effective parameters based on
these advanced approaches require extensive numerical
efforts, which not always can be justified for 1D periodic
superlattices. Here we propose relatively simple new an-
alytical method of calculation of ǫ||(ω) and ǫ⊥(ω). It is
based on well-known formulas for phase and group veloc-
ities

Vph =
ω

k
=

c

n
, (9)

Vg =
dω

dk
=

c

n(ω) + ω dn(ω)
dω

. (10)

Combining these formulas a simple differential equation
for the effective dielectric function ǫeff = n2(ω) can be
obtained

c2

VphVg
= n(n+ ω

dn

dω
) = ǫeff +

1

2
ω
dǫeff
dω

= F (ω). (11)

Solution of this equation gives frequency-dependent di-
electric function of the equivalent homogeneous medium

ǫeff (ω) =
2

ω2

∫ ω

ωn

ω′F (ω′)dω′. (12)

Here ωn is the constant of integration, which is the fre-
quency where the effective dielectric function vanishes,
i.e. ǫeff (ωn) = 0. Thus, Eq. (12) defines exactly the
effective dielectric function if the group and the phase
velocities are known within some interval of frequen-
cies. In what follows we calculate the function F (ω) for
metal-dielectric SL, obtain two dielectric functions ǫ||(ω)
and ǫ⊥(ω) and apply these results for different metal-
dielectric SL.

III. PROPAGATION PERPENDICULAR TO

THE LAYERS

For the wave propagating along axis z the Bloch vec-
tor K = (0, 0,K) and kx = ky = 0. The component
a of the superlattice is a metal with ǫa = − | ǫ(ω) |
and the component b is a dielectric. The local wavevec-
tor in metal is kza = i(ω/c)

√

| ǫ(ω) | = i/δ, where

δ(ω) = c/(ω
√

| ǫ(ω) |) is the skin-depth. In the limit
of frequencies well-below ωp the skin-depth approaches
its lowest limiting value δ0 = c/ωp. Taking into account
that kza is pure imaginary, the dispersion equation (1) is
rewritten in the following form:

D||(ω) = cos(Kd), (13)

where

D||(ω) = cosh

(

a

δ(ω)

)

cos

(

ωb

c

√
ǫb

)

+
1

2





√

| ǫ(ω) |
ǫb

−
√

ǫb
| ǫ(ω) |

)

sinh

(

a

δ(ω)

)

sin

(

ωb

c

√
ǫb

)

. (14)

Calculating the derivative dω/dK and the ratio ω/K
from Eq. (13) we obtain

F (ω) = c2
K

ω

dK

dω
= − c2

d2
Kd

sin(Kd)

1

ω

dD(ω)

dω
. (15)

In the homogenization limit Kd ≪ 1 the ratio
Kd/ sin(Kd) can be replaced by one. Substitution of Eq.
(15) into Eq. (12) gives the final result for the effective
dielectric function

ǫ||(ω) ≈
2c2

ω2d2
[

D||(ωn)−D||(ω)
]

=
2c2

ω2d2
[

1−D||(ω)
]

.

(16)
Here we used that D||(ωn) = 1. This property origi-
nates from Eq. (12) where ωn is defined as a frequency
separating the region of transparency (ǫeff > 0) from
the region where propagation is prohibited (ǫeff < 0).
Spectrum of metal-dielectric SL has a gap which starts
at ω = 0. The gap appears because D||(ω = 0) =
cosh(a/δ0) + (b/2δ0) sinh(a/δ0) > 1, i.e. the dispersion
equation (13) does not have real solution for K. How-
ever, the function D||(ω) decreases and oscillates with
ω. A series of frequencies ωn, giving rise to a series of
allowed zones starting at K = 0 are obtained from the
equation

D||(ωn) = 1. (17)

This equation has infinite number of solutions, ω1 < ω2 <
ω3 < . . . .
For frequencies higher than ωn the SL is transpar-

ent, i.e. each ωn plays the role of the effective plasma
frequency. Spectrum of metal-dielectric SL has infinite
number of allowed bands separated by gaps. Thus, it is a
metamaterial which exhibits plasma-like behavior within
several intervals of frequencies. Each frequency ωn is a
point of an optical topological transition.40 The lowest
frequency ω1 is the most interesting point of transition
since the gap below it and the allowed zone above it are
usually the widest in the spectrum of the SL.
Note, that unlike the formulas (5), (6), and (8) which

are valid within some approximations, the solutions of
Eq. (17) give the exact values for the effective plasma
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frequency. The effective plasma frequency ωn depends
in general on the properties of the metal and the dielec-
tric and on the geometry of the unit cell. In the case
of small filling fractions, f << 1, the effective plasma
frequency ω1 lies well below ωp. At these frequencies
| ǫ(ω1) |>> ǫb and the second term in Eq. (14) gives
the principal contribution. The solutions of Eq. (17) are
close to the solutions of the equation sin(ωb

√
ǫb/c) = 0,

i.e. the lowest solution ω1 is close to ω0 given by Eq.
(6). In previous studies7,41 one more condition, δ0 ∼ a,
is usually required for the effective plasma frequency to
be given by Eq. (6). However, it is easy to see that even
if a >> δ0 the effective plasma frequency ω1 still can be
approximated by Eq. (6), provided that ω0 << ωp.
The quasi-static result (5) is obtained from Eq. (17)

in the low-frequency limit (ωb/c)
√
ǫb << 1 when skin-

effect is negligible, a << δ(ω). While the result given
by Eq. (8) cannot be obtained from the exact equation
D(ωi) = 1, numerically ω0 becomes close to ω1 in the
limit of small filling, f << 1.
The formula (16) for the effective dielectric function

is valid not only within the first gap and first transmis-
sion band but for any frequency in the vicinity of the
Γ-point. It is also valid not only for a metal-dielectric SL
but for a SL of any constituents if D(ω) is replaced by
the right-hand side of Rytov’s equation (1). The only ap-
proximation used in derivation of the effective dielectric
function is Kd/ sin(Kd) = 1 + O(K2d2), i.e. Eq. (16) is
valid in a linear approximation over the homogenization
parameter Kd << 1. Nonlocal quadratic corrections can
be calculated but they do not lead to new effects and can
be neglected.21

The exact result for ǫ‖(ω) is calculated directly from
Eq. (13)

ǫ||(ω) =

(

kc

ω

)2

=
[ c

dω
arccosD‖(ω)

]2

. (18)

This formula gives negative values for ǫ||(ω) since func-
tion arccosD‖(ω) is pure imaginary within the band gaps
where D(ω) > 1. The proposed dielectric function in Eq.
(16) also becomes negative if D(ω) > 1. For D(ω) < −1
the function arccosD‖(ω) takes complex values, there-
fore the effective permittivity cannot be introduced us-
ing definition (18). The points where D(ω) = −1 belong
to the edge of the Brillouin zone, Kd = π, i.e. here
the long-wavelength approximation is irrelevant. The
method of homogenization valid at the edge of Brillouin
zone was proposed in Ref. [24]. The same result (16)
for the effective dielectric function can be obtained di-
rectly from Eq. (18) using the asymptotical expansion

arccosx ≈
√

2(1− x), which is valid if 1− x << 1.
First we consider a SL with the parameters that were

used in Refs. [7,10]. The thickness of the metal layer is
a = δ0/2 and of the dielectric layer is b = 10δ0. The filling
fraction of this SL is quite small, f = a/(a+ b) = 1/21.
The dielectric function of the metal is given by Drude
model, ǫ(ω) = 1−ω2

p/ω
2 and for the dielectric ǫb = 2.25.

FIG. 1: Permittivity ǫ‖ vs normalized frequency ω/ωp for a SL
with small filling fraction f = 1/21 and width of the layers a =
δ0/2, b = 10δ0. Red line (stars) is the exact result given by Eq.
(18), blue line (circles) is the effective permittivity obtained
from Eq. (16), green line (squares) plots Eq. (7), and brown
line (triangles) is the dependence obtained in the quasi-static
limit (3). Insert shows a narrow region of frequencies near the
point of topological transition ω/ωp = 0.123.

FIG. 2: The same as Fig. 1 but for a wider interval of fre-
quences.

Fig. 1 demonstrates the dependence ǫ‖(ω) obtained using
Eqs. (3), (7), (16), and (18).

Looking at Fig. 1 one may conclude that for small
filling fractions all three homogenization schemes repre-
sented by Eqs. (3), (7), and (16) give very similar results
for ǫ||(ω). This impression, however, is due to the scale
along the horizontal axis where frequency is measured in
units of ωp. Since for the noble metals ωp ≈ 9 eV, even a
small difference in the position of topological transition
measured in ω/ωp becomes quite large in the units of
wavelength (nm). For small filling the topological tran-
sition occurs at relatively low frequencies where the er-
ror measured in the units of wavelength is emphasized
by small denominator in the formula ∆λ = −hc∆ω/ω2.
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FIG. 3: The same as in Fig. 1 but for a SL with filling
f = 1/2.

Here ∆ω is an error in the frequency (eV) and ∆λ is
an error in the wavelength (cm). For example, the ex-
act position of the topological transition in Fig. 1 is
ω/ωp = 0.123, that corresponds to the wavelength of
1120 nm. The point of transition obtained from Eq. (7)
is red shifted by 0.002ω/ωp, that is about 20 nm in the
units of wavelength. The quasi-static approach Eq. (3)
gives a blue shift by 0.024ω/ωp for the transition fre-
quency, that is about 180 nm. If the error of 20 nm can be
considered as acceptable for some optical measurement,
it is absolutely unacceptable if ∆λ = 180 nm. Thus, the
widely used quasi-static limit (3) gives too large error in
the frequency of topological transition. Inapplicability
of the quasi-static approach and Eq. (7) becomes more
evident at higher frequencies. In Fig. 2 we plot the same
functions as in Fig. 1 but for much wider interval of
frequencies. The spectrum of the SL contains two more
band gaps near the Γ-point. They are quite narrow and
the corresponding values of ǫ||(ω) are only slightly nega-
tive, as it is shown in insert to Fig. 2. Within these bands
the SL behaves as a metamaterial with epsilon-near-zero.
Here a periodic layered structure may provide the band-
width comparable with the bandwidth of the structures
proposed in Ref. [42].

The approximation (16) is in excellent agreement with
the exact result near every point of topological transition.
Moreover, it can be used even away from these points.
The only regions where this approximation fails are those
where D‖(ω) ≤ −1 and the dielectric function cannot
be defined in a standard form of Eq. (18) because of
complex values of arccosD‖(ω). Unlike this, the quasi-
static approximation and Eq. (7) do not follow at all the
behavior of the dielectric function at frequencies higher
than the first topological transition at ω/ωp = 0.123.

The situation with larger fillings also demonstrates
that the validity of the homogenization approaches (3)
and (7) may be questionable. When the metal filling
increases the effective medium becomes more dispersive

FIG. 4: Permittivity of a gold-alumina SL fabricated in Ref.
[43]. The width of the layers is equal, a = b = 19 nm. The
permittivity of the gold layer is modeled by Eq. (19) and the
permittivity of alumina is ǫb = 3.24. The labels for the curves
are the same as in Fig. 1.

and the topological transition occurs at higher frequen-
cies. Fig. 3 shows the dispersion of the effective di-
electric functions for a SL of the same constituents but
with equal fillings, a = b = 2δ0. Since the thickness of
the metal layer exceeds the skin-depth, electromagnetic
field is strongly inhomogeneous inside it. The quasi-static
approach completely ignores this fact, therefore it un-
derestimates the value of the effective permittivity. The
approach proposed in Ref. [10] takes into account skin-
effect, however the values of ǫ||(ω) obtained from Eq. (7)
exceed much the exact result. Also this approach gives
the position of the topological transition red shifted by
90 nm from the exact result of 290 nm (this wavelength
corresponds to ω/ωp = 0.478). The quasi-static approach
gives too small values for ǫ||(ω) and the frequency of the
transition is blue shifted by 35 nm. Thus, the accuracy
of both these approximations is not sufficient for modern
optical studies. Unlike this, Eq. (16) exhibits frequency
dispersion which is practically undistinguishable from the
exact result within a wide interval of frequencies near the
topological transition.
The accuracy of the quasi-static approach, which ig-

nores spatial variations of the fields, becomes much bet-
ter for a SL with narrower layers. Here the fields change
smoothly and they can be approximated by constant
(electrostatic) values. Since in a metal layer the fields
oscillate at a shorter distance than in a dielectric, the
width of the metal layer a should not exceed the skin-
depth δ0 in order the quasi-static approach to be valid.
Now we consider a SL which was fabricated to study an

increase of radiative decay rate of rhodamine molecules
placed in the vicinity of a hyperbolic metamaterial.43 The
SL consists of 16 alternating layers of gold and alumina.
The thickness of each layer is a = b = 19 nm, i.e. for
optical frequencies this is deeply subwavelength region.
The permittivity of alumina for optical frequencies is ǫb =
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3.24. The frequency dispersion for gold is taken in the
following form:

Re ǫ(ω) = 1−
ω2
p

ω2 + α2Γ2
p

+
F1ω

2
1(ω

2
1 − ω2)

(ω2
1 − ω2)2 + Γ2

1ω
2

+
F2ω

2
2(ω

2
2 − ω2)

(ω2
2 − ω2)2 + Γ2

2ω
2
, (19)

with Drude parameters from Johnson and Christy data44

ωp = 9 eV and Γp = 0.07 eV, and with two Lorentzian
oscillators with F1 = 0.3, ω1 = 2.7 eV, Γ1 = 0.3 eV, and
F2 = 0.8, ω2 = 3.05 eV, Γ2 = 0.5 eV. The loss factor
α = 1.35 is introduced to modify the bulk value of gold
damping term Γp. The optical skin-depth for these metal
parameters is δ0 = c/ωp = 22 nm that is slightly longer
than the SL period. The rate of spontaneous emission
near this hyperbolic metamaterial was evaluated by the
authors of Ref. [43] using the quasi-static approach and
a reasonable agreement with experimental data has been
achieved. In order to evaluate the accuracy of the quasi-
static approach we plot in Fig. 4 the dielectric function
ǫ‖(ω) for this SL. The quasi-static approximation (dotted
orange line) (3) turns out to be close to the exact result
(red thick solid line) for all frequencies. It is seen in the
insert to Fig. 4 that the position of the topological tran-
sition is blue-shifted by 10 nm. Relatively good accuracy
of the quasi-static approximation in this particular case
is due to very narrow layer widths, which is less than
the skin-depth, and also due to high filling of metal that
shifts the topological transition to ultraviolet region. Un-
like this, the accuracy of Eq. (7) is reduced as compared
to the case of small filling fractions. It gives an error of
30 nm in the position of the topological transition and
the values of ǫ‖(ω) are considerably overestimated.

IV. PROPAGATION PARALLEL TO THE

LAYERS

The Bloch vector for parallel propagation vanishes,
Kz = 0. Let the wave propagates along the x-axis with
wave vector kx = k. The dispersion equation Eq. (1) can
be written as follows:

D⊥(ω, k) = cosh[ap(ω, k)] cos[b q(ω, k)] (20)

+
1

2

( |ǫ(ω)|q
ǫbp

− ǫbp

|ǫ(ω)|q

)

sinh[ap(ω, k] sin[b q(ω, k] = 1.

Here

p(ω, k) =
√

k2 + δ−2(ω), q(ω, k) =
√

(ω/c)2ǫb − k2

(21)
Unlike the dispersion equation (13) where frequency

and wave vector are separated, these variables cannot
be separated in general case in Eq. (20). The reason
is lack of periodicity along the direction of propagation.
One more principal physical difference between these two

geometries is a possibility of propagation of surface plas-
mons along the layers. Depending on the sign of q2(ω, q)
the fields in the dielectric layer exhibit either oscillating

q2 = (ω/c)2ǫb − k2 > 0 (22)

or evanescent

q2 = (ω/c)2ǫb − k2 < 0 (23)

behavior along z. In the former case an eigenmode prop-
agates due to partial reflection from the metal layers and
partial penetration through them. In the latter case the
trigonometric functions in Eq. (20) become evanescent
that is a signature of surface plasmon field in dielectric.
It is known that waveguide propagation is not allowed

below some cut-off frequency ωc. Unlike this, the spec-
trum of surface plasmon starts from zero frequency. Also
the phase velocity of a waveguide mode (surface plas-
mon) is greater (less) than c/

√
ǫb. These facts mean that

the lowest allowed mode which propagates parallel to the
layers is of plasmonic nature.

A. Plasmonic-like mode

It follows from Eq. (23) that the parameter q(ω, k)
is pure imaginary, q = iQ. Having in mind the long-
wavelength limit, we assume that

kδ0 =
kc

ωp
≈ ω

√
ǫb

ωp
<< 1. (24)

This inequality defines the frequencies where the con-
ducting component of the SL exhibits metallic behavior.
For typical metals this range extends up to near UV re-
gion. Due to this inequality the k-dependence in the pa-
rameter p(ω, k) can be neglected, i.e. p ≈ 1/δ(ω). Now
the dispersion equation (20) is reduced to

cosh[
a

δ(ω)
] cosh(bQ)− 1

2

( |ǫ(ω)|Qδ

ǫb

+
ǫb

|ǫ(ω)|Qδ

)

sinh[
a

δ(ω)
] sinh(bQ) = 1. (25)

In the low-frequency limit the dispersion of surface
plasmon is linear. Substituting the linear dependence
ω = kc/ǫ⊥ into Eq. (25) and expanding the hyperbolic
functions in the limit ω, k → 0 the low-frequency effective
dielectric constant of the SL is easily calculated

ǫ⊥(ω → 0) = ǫb

[

1 + 2
δ0
b
tanh

(

a

2δ0

)]

. (26)

This formula defines the slope of the plasmonic-like mode
in the low-frequency limit. It is reduced to the well-
known result ǫ⊥ = ǫb if the neighboring unit cells are
electromagnetically uncoupled, δ0 << a + b. The static
result (2), which for metal-dielectric SL is reduced to
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ǫ⊥ = ǫb/(1− f), is obtained from Eq. (26) if the screen-
ing effect from the skin layer vanishes, i.e. δ0 >> a.
Note that ǫ⊥ > ǫb that means that in a multi-layered
metal-dielectric structure plasmonic-like mode propa-
gates slower than surface plasmon. It also becomes ev-
ident from Eq. (23) which is true only for the waves
propagating slower than light.

B. Waveguide-like modes

At higher frequencies (and small k) the condition (22)
becomes true and propagation of the modes with phase
velocities greater than c/

√
ǫb is allowed. The spectrum

consists of infinite number of waveguide-like modes. Each
mode starts with finite cut-off frequency Ωn at k = 0 and
at k → ∞ it approaches the light line. The series of cut-
off frequencies, ω = Ωn, n = 1, 2, . . . are obtained from
the equation

cosh

(

a

δ(ω)

)

cos

(

b ω

c

√
ǫb

)

+
1

2





√

|ǫ(ω)|
ǫb

−
√

ǫb
|ǫ(ω)|

)

sinh

(

a

δ(ω)

)

sin

(

b ω

c

√
ǫb

)

= 1 (27)

The effective dielectric constant ǫ⊥(ω) must change its
sign from negative to positive when frequency ω passes

through any of the cut-off frequencies Ωn. The asymptot-
ical dependence ǫ⊥(ω) near Ωn can be easily calculated
from the exact dispersion equation (20). Explicit dis-
persion relation near the Γ-point is obtained from Eq.
(20) by expanding the function D⊥(ω, k) at k = 0 and
ω = Ωn,

D⊥(Ωn, k = 0) +

[

∂D⊥
∂ω

+
∂D⊥
∂q

∂q

∂ω

]

(ω − Ωn)

+
∂D⊥
∂q

∂q

∂k
k = 1. (28)

The derivatives in this equation are taken at ω = Ωn

and k = 0. According to Eq. (27) the first term equals
one. The derivatives ∂q/∂ω =

√
ǫb/c and ∂q/∂k =

−kc/(Ωn
√
ǫb) are calculated from Eq. (22). Then the

dispersion relation near a cut-off frequency turns out to
be quadratic, i.e. ω − Ωn ∝ k2. Similar quadratic dis-
persion is known from the theory of metallic waveguides.
Quadratic dispersion relation gives rise to dielectric per-
mittivity linearly vanishing near the cut-off frequency
ω = Ωn

ǫ⊥(ω) =

(

kc

Ωn

)2

= ǫb

(

1 +
c√
ǫb

∂D⊥/∂ω

∂D⊥/∂q

)

ω − Ωn

Ωn
.

(29)
Here the derivatives of D⊥(ω, q) can be easily calculated
directly from Eq. (20)

∂D⊥
∂ω

∣

∣

∣

∣ ω = Ωn

k = 0

=
a

c

[

√

|ǫ(Ωn)|+
Ωn

2
√

|ǫ(Ωn)|
d|ǫ(Ωn)|
dΩn

][

sinh

(

a

δ(Ωn)

)

cos

(

bΩn

c

√
ǫb

)

+
|ǫ(Ωn)| − ǫb

2
√

ǫb|ǫ(Ωn)|

cosh

(

a

δ(Ωn)

)

sin

(

bΩn

c

√
ǫb

)]

+
|ǫ(Ωn)|+ ǫb

4
√

ǫb|ǫ(Ωn)|

(

1

|ǫ(Ωn)|
d|ǫ(Ωn)|
dΩn

− 2

Ωn

)

sinh

(

a

δ(Ωn)

)

sin

(

bΩn

c

√
ǫb

)

, (30)

∂D⊥
∂q

∣

∣

∣

∣ ω = Ωn

k = 0

= −b cosh

(

a

δ(Ωn)

)

sin

(

bΩn

c

√
ǫb

)

+ δ(Ωn)
|ǫ(Ωn)|+ ǫb

2ǫb
sinh

(

a

δ(Ωn)

)

sin

(

bΩn

c

√
ǫb

)

+b
|ǫ(Ωn)| − ǫb

2
√

ǫb|ǫ(Ωn)|
sinh

(

a

δ(Ωn)

)

cos

(

bΩn

c

√
ǫb

)

. (31)

While these formulas look quite cumbersome they serve
to calculate only the numerical coefficient in the disper-
sion of the effective dielectric function (29).

C. Results and discussion

A typical band structure for propagation parallel to
the layers is shown in Fig. 5. It is calculated from the
dispersion relation (20) for a SL with low filling frac-
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tion f = 1/21. At low frequencies the spectrum starts
from plasmonic-like mode and above it there are several
waveguide-like modes, depending on the number of real
roots of Eq. (27) lying below ωp.

41 The exact dispersion
relations are shown by solid lines. The plots obtained
in the effective medium approximation ω = kc/

√

ǫ⊥(ω)
are shown by dotted lines. The long-wavelength effec-
tive dielectric function ǫ⊥ is approximated by the con-
stant value (26) for the plasmonic mode and by the lin-
ear function (29) for each of the waveguide-like modes. A
piecewise continuous behavior of the effective dielectric
function is shown in the right panel in Fig. 5. It can
be seen that the proposed linear approximation gives the
results which are very close to the exact ones. Moreover,
the region where the effective medium approximation is
valid turns out to be much wider than one may expect
from the long-wavelength limit kd << 1.

For the SL with small filling, f = 1/21, the plasmonic
mode exhibits linear dispersion up to kd ≈ 3. The slope
of this mode is indistinguishable from that given by Eq.
(26) (shown by dashed red line). Due to very low fill-
ing the slope of the plasmonic mode is practically the
same as that for the light line ω/k =

√
ǫb. This occurs

because the correction to ǫb = 2.25 given by Eq. (26)
in this case is small, 2(δ0/b) tanh (a/2δ0) ≈ 0.11. Sub-
linear dispersion of the plasmonic mode can be seen for
much larger values of the wavevector, at kd > 10. The
dispersion of the waveguide-like modes is very well ap-
proximated by the proposed parabolic dependence Eq.
(29). There are 5 waveguide-like modes with cut-off fre-
quencies Ω1 = 0.12ωp, Ω2 = 0.399ωp, Ω3 = 0.456ωp,
Ω4 = 0.799ωp, and Ω5 = 0.845ωp. For the lowest band
the parabolic approximation is valid up to kd ≈ 3, i.e.
the region of validity is the same as that for the plas-
monic mode. The dispersion curves for these two modes
cross at kd ≈ 2.7. This region is shown in the insert. For
the higher waveguide-like modes the region of validity of
parabolic approximation is even wider. It extends up to
kd = 4 for the second mode, to kd = 5 for the third and
forth modes, and to kd = 7 for the highest fifth mode.

The graph for the effective dielectric function ǫ⊥(ω)
consists of several straight lines with different slopes,
shown in Fig. 5 (right panel). In the region of low
frequencies only the plasmonic mode exists for which
ǫ⊥(ω) is a positive constant given by Eq. (26). Pass-
ing through any of the cut-off frequencies Ωn the effec-
tive dielectric function ǫ⊥(ω) changes its sign. All the
transitions occur linearly. However, the rates of the
transitions are different. The fastest transition takes
place near Ω1 where ǫ⊥(ω) = 123.5(ω/ωp − 0.12). For
higher modes the rate of transition gradually decreases.
The slowest transition occurs for the fifth mode where
ǫ⊥(ω) = 5.66(ω/ωp − 0.845), i.e. the rate is decreased
by 20 times. Dashed red line in Fig. 5 shows the dis-
persion of the effective permittivity obtained from the
quasi-static limit (2). It is clear that the quasi-static ap-
proximation is valid only at low frequencies where the
plasmonic mode exists. Because of very low filling frac-

tion the effective dielectric constant for plasmonic mode
is close to ǫb. In this case Eqs. (2) and (26) give the
values close to ǫb. However, for higher frequencies the
quasi-static approximation is not valid at all. It predicts
sign change at ω = 0.95ωp, which is not close to any of
the cut-off frequencies obtained from the exact equation
(27). Thus, in a SL with low filling fraction the quasi-
static approximation is not valid above the first cut-off
frequency. In Fig. 6 we plot the band structure and
the results of the effective medium theory for a SL with
f = 1/2 and a = b = 2δ0. Here the eigenfrequency of
the plasmonic mode has a clear tendency to saturation if
kd > 7. For kd < 32 the dispersion is close to linear with
the slope given by Eq. (26). In this case the effective di-
electric constant ǫ⊥ = 2.25(1 + tanh 1) ≈ 3.96 is greater
than ǫb = 2.25, therefore the plasmonic mode in this SL
propagates essentially slower than surface plasmon along
a metal-dielectric boundary with the same dielectric pa-
rameters. Due to higher filling fraction this SL exhibits
much stronger ”metallic” behavior than the previous one
with f = 1/21. In particular, there is only a single
waveguide-like mode with cut-off frequency at Ω1 = 0.48.
The dispersion of this mode is well-approximated (for
kd < 3) by a parabola ω/ωp − 0.48 = 1.95 · 10−3(kd)2

shown in Fig. 6 by dashed orange line. The correspond-
ing effective dielectric function is approximated by a lin-
ear dependence ǫ⊥(ω) = 139(ω/ωp − 0.48). It is shown
by black solid line (right panel of Fig. 6). For this SL
the quasi-static approximation (dashed red line) does not
give satisfactory results. Even at very low frequencies it
gives ǫ⊥ = 4.5 that exceeds the result of the effective
medium approximation ǫ⊥ = 3.96. For higher frequen-
cies the discrepancy is even bigger.

Numerical results for the gold-alumina SL [43] are plot-
ted in Fig. 7. Like in the previous case with the same
filling fraction f = 1/2, the spectrum contains only a
single waveguide-like mode. It starts at the cut-off fre-
quency Ω1 = 0.58 and exhibits very weak dependence
on the wave vector k. This dependence is given by the
parabola ω/ωp = 0.58 + 5.5 · 10−3(kd)2. Due to very
small curvature this parabola can be approximately con-
sidered as an example of a flat band. Periodic systems
with macroscopically degenerated flat bands attract a lot
of attention. Due to dispersionless character of the cor-
responding mode, the Bloch functions are represented by
strongly localized states. It was shown that the basis
formed by localized states may led to existence of new
topological phases and anomalous Anderson transition,
appearance of Fano resonances and many other interest-
ing effects.45–50 While the band in Fig. 7 is not exactly
flat – weak dependence on kd is seen in the insert – the
gold-alumina SL may be considered as a good approx-
imation of a real system with approximately flat band.
Because of flatness of the waveguide-like band the topo-
logical transition at Ω1 is very sharp, see black solid line
in the right panel of Fig. 7. It is described by a linear
dependence ǫ⊥(ω) = 197(ω/ωp − 0.58). The rate of this
transition is the highest among the others that we con-
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FIG. 5: Propagation parallel to the layers in a SL with low filling, f = 1/21. Left panel: Band structure (blue solid lines)
calculated from the exact equation (20). It consists of a single plasmonic mode which starts at ω = 0 and five waveguide-
like modes starting at cut-off frequencies Ωn calculated from Eq. (27). The results of the effective medium approximation

ω = kc/
√

ǫ⊥(ω) with ǫ⊥(ω) given by Eq. (29) are shown by dashed orange lines. The dispersion of the plasmonic mode is
almost linear, therefore the exact curve practically coincides with the straight line of the effective medium approximation shown
by dashed red line. For all the waveguide-like modes the proposed parabolic approximation are in excellent agreement with
the exact results. Insert: Blowup of the region of crossing of the plasmonic mode and the lowest waveguide-like mode. Even
on this scale the exact and approximate lines for the plasmonic mode are undistinguishable. Right panel: Effective dielectric
function vs frequency (solid lines). For the plasmonic mode the effective dielectric function (26) is frequency independent. Near
each cut-off frequency Ωn the effective dielectric function ǫ⊥(ω) exhibits linear behavior with different slopes. The quasi-static
approximation (2) is shown by dashed red line.

sider. For perfectly flat band the rate becomes infinite,
i.e. the transition occurs along a vertical line.

The quasi-static approximation Eq. (2) for gold-
alumina SL can be used only at low frequencies where
plasmonic mode exhibits linear dispersion. Even here
it gives an error ∼ 5%, see the insert to Fig. 7, right
panel. For higher frequencies the static approximation
becomes invalid. In the experiment [43] the measure-
ments were performed at the wavelengths exceeding 630
nm. This region corresponds to the interval ω/ωp < 0.2
in Fig. 7, where the quasi-static approximation is still
valid, therefore the authors of Ref. [43] reported a good
agreement between their experimental results and theo-
retical predictions made on the basis of the quasi-static
approximation.

Since the proposed approach for calculation of the ef-
fective dielectric tensor of a layered medium is valid not
only near the frequencies of topological transitions but
within a wide range of frequencies where the dielectric
function is not close to zero, it can be used for engineer-
ing of a layered samples with dielectric constants match-
ing some prescribed values. Such a sample may exhibit
anomalously weak scattering of electromagnetic waves if
its dielectric constants match those of the environment.51

V. CONCLUSIONS

In conclusion, we have proposed analytical approach
for calculation of the effective dielectric functions ǫ‖(ω)
and ǫ⊥(ω) of metal-dielectric superlattices which gives
asymptotically correct results in the long-wavelength
limit. It gives the exact positions for all frequencies of the
topological transitions where one of the dielectric func-
tions changes its sign. Near any of the frequencies of the
topological transition the accuracy of the proposed the-
ory exceed that of any other known approaches. In par-
ticular, it is shown that the widely-used formulas Eqs.
(2) and (3) obtained by Rytov6 in the quasi-static ap-
proach may be not applicable at all, or their accuracy
turns out to be not sufficient for modern optical stud-
ies. The accuracy of the quasi-static approach becomes
low if the width of the metallic layer exceeds the skin-
depth. Applications of hyperbolic metamaterials are due
to their ability to increase the rate of spontaneous emis-
sion. The rate increase depends on the both components
of the dielectric tensor52 and if even one of these compo-
nents gives a considerable error as a result of quasi-static
approximation, the frequency dependence of the rate of
spontaneous emission may be incorrect as it is shown in



10

FIG. 6: Propagation parallel to the layers for a SL with high filling, f = 1/2 and a = b = 2δ. Left panel: Band structure
(blue solid lines) calculated from the exact equation (20). It consists the plasmonic mode which starts at ω = 0 and of single
waveguide-like mode starting at cut-off frequency Ω1 = 0.48 calculated from Eq. (27). The result of the effective medium

approximation ω = kc/
√

ǫ⊥(ω) with ǫ⊥(ω) given by Eq. (29) is shown by dashed orange line. Unlike the plasmonic mode
in Fig. 5, here the dispersion of the plasmonic mode is strongly nonlinear. Therefore, the effective medium approximation
(straight red dashed line)is close to the exact curve only for kd < 2, that is still wider that is expected for the long-wavelength
limit. For the waveguide-like mode the proposed parabolic approximation are in excellent agreement with the exact results
for kd < 3. Right panel: Effective dielectric function vs frequency (black solid lines). For the plasmonic mode the effective
dielectric function (26) is frequency independent, ǫ⊥ = 3.96. Near the cut-off frequency Ω1 the effective dielectric function
ǫ⊥(ω) exhibits linear behavior. The quasi-static approximation (2) is plot by dashed red line. It shows quite different results
within the whole range of frequencies.

Ref. [15,16]. This is of particular importance for the type
1 hyperbolic metamaterials when the component ǫ⊥(ω)
changes its sign, since the quasi-static approach is not
applicable near the frequency where ǫ⊥(ω) = 0.
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FIG. 7: Propagation parallel to the layers for gold-alumina SL fabricated in Ref. [43]. The layers are of equal width, a = b = 19
nm. The permittivity of gold layer is modeled by Eq. (19) and the permittivity of alumina is ǫb = 3.24. Left panel: Band
structure (blue solid lines) calculated from the exact equation (20). It consists of the plasmonic mode, which starts at ω = 0,
and of the waveguide-like mode starting at cut-off frequency Ω1 = 0.58 calculated from Eq. (27). The result of the effective

medium approximation ω = kc/
√

ǫ⊥(ω) with ǫ⊥(ω) calculated from Eq. (29) is shown by dashed orange line. Unlike the
plasmonic mode in Fig. 5, here the dispersion of the plasmonic mode is strongly nonlinear. Therefore, the effective medium
approximation (straight red dashed line)is close to the exact curve only for kd < 1. The waveguide-like mode exhibits very weak
dependence on the parameter kd. In accordance with this, the proposed parabolic approximation has very small curvature and
it is in excellent agreement with the exact results for kd < 4. The insert shows blowup of the flat waveguide-like band. Right
panel: Effective dielectric function vs frequency (black solid lines). For the plasmonic mode the effective dielectric function
(26) is frequency independent, ǫ⊥ = 6.29. Near the cut-off frequency Ω1 the effective dielectric function ǫ⊥(ω) exhibits sharp
topological transition. The quasi-static approximation (2) is plot by dashed red line. It is valid at low frequencies only. This
region is shown in the insert.
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