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We present thermal measurements of large area (over 1,000 ,um2) monolayer graphene samples at
cryogenic temperatures to study the electron-phonon thermal conductivity of graphene. By using
two large samples with areas which differ by a factor of 10, we are able to clearly show the area
dependence of the electron-phonon cooling. We find that, at temperatures far below the Bloch-
Gruneisen temperature Ta, the electron-phonon cooling power is accurately described by the 7%
temperature dependence predicted for clean samples. Using this model, we are able to extract a
value for the electron-phonon coupling constant as a function of gate voltage, and the graphene

electron-lattice deformation potential.
I. INTRODUCTION

The potential applications for graphene as a highly sen-
sitive photon detector have driven substantial interest in
determining the thermal conductance of graphene at low
temperatures [1, 2]. In addition to the scientific value
of a greater understanding of electron-phonon coupling
in graphene, knowledge of this important physical pro-
cess is critical to determining the theoretical performance
of highly sensitive graphene-based photon detectors. If
the thermal conductance of an ultra-sensitive graphene-
based photon detector is too large, the detector will cool
off too quickly to allow for accurate photon detection
[3, 4]. To date, thermal measurements of graphene have
used Johnson noise thermometry [1, 5-7], the temper-
ature dependent resistance of a superconducting tunnel
barrier [8] or supercurrent hysteresis [9] to measure the
thermal conductance of graphene as a function of dissi-
pated Joule power, which determines the electron tem-
perature. Other groups have studied the thermal behav-
ior by studying the response of the electron system to
optical excitation, considering the photocurrent response
[10] or the hot carrier dynamics which are measured far
from equilibrium using photoemission spectroscopy [11].
However, due to wide variability between samples, even
within a single study, it has been difficult to form gen-
eral conclusions about the phonon cooling pathway in
graphene. In addition, the measurements are challeng-
ing. Typically the sample resistance is large, the contacts
can add extra resistance and provide an additional cool-
ing pathway, and the signals in these measurements are
small. We discuss these issues below in detail.

In metallic thin films (film thickness ~ 10 nm to 1 pm),
the electron-phonon cooling power typically takes the
form P = VY (T° — 1), where V is the device volume,
¥ is a coefficient that describes the electron-phonon cou-
pling strength, and 0 is a parameter that varies from
4 —6, dependent upon the amount of disorder in the sys-
tem [12]. Similarly, in monolayer graphene the electron-
phonon cooling power and thermal conductance, Gep,, de-

pend on the level of disorder, screening, and the temper-
ature of the electron system. We discuss the phonon
cooling in the applicable theories, and then present our
experiments on two monolayer graphene samples.

By accounting for the microwave losses associated with
substrate electrons, we are able to accurately measure
the cooling of the samples. We find that, at low temper-
atures, the cooling in both samples can be described by
a combination of hot electron out-diffusion and phonon
emission. By tuning the carrier density of the samples
and measuring devices with areas that differ by an or-
der of magnitude, we are able to definitively identify
the phonon cooling pathway. We find G¢p, to be con-
sistent with the behavior expected for a pure monolayer
graphene sheet with little disorder.

II. THEORY OF PHONON COOLING
A. Clean limit

The cooling power in the limit of large electron-
impurity mean free path g, (taken to be infinite) fol-
lows a power law form

P=S(T° - 1) (1)

and is due to the emission of longitudinal acoustic (LA)
phonons into the graphene lattice [13]. In Eq. 1, T and
Ty are the temperatures of the electron system and the
lattice, respectively. The forms of the coefficient ¥ and
exponent ¢ depend on the temperature of the electron
system, with a crossover temperature of order the Bloch-
Gruneisen temperature Tpg = 2shy/mn/kp [13], where
s = 2 x 10* m/s is the speed of sound in graphene, n is
the carrier density in graphene, and kp is Boltzmann’s
constant. For n = 10'2 cm™2, as is typical for samples
on SiOs, T = 54 K. At temperatures T' < Tgq,

P =AY (T* - Ty), (2)
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Here, pyp is the mass density of graphene, vp = 10° m/s
is the Fermi velocity in graphene, Er = hupy/mn is
the Fermi energy, and D is the deformation potential
of graphene. The deformation potential is a measure of
the strength of electron-phonon coupling and has been
studied theoretically [14-16] and experimentally through
measurements of thermal conductance [5, 6, 17, 18] as
well as device resistance [19]. Calculations from exper-
imental studies find D ranges from 2 to 70 eV, with
theoretical predictions ranging from approximately 5 to
13 eV.

For T > Tpg, the cooling power for typical devices,
with Er > kT, is given by

P = glA(TfTO)v (4>

where
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For very low carrier densities or operation at high T,
where Fp < kT,
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This is not a regime we access in our measurements, as
Er is approximately equal to kg7 at T = 1000 K at
a carrier density of n = 10'2 cm™2. On the disordered
SiOq substrates which are used here, much lower carrier
densities are difficult to achieve [20] and temperatures
above 1000 K are inaccessible.

B. Disorder-assisted scattering

The introduction of disorder (by means of a finite mean
free path) has ramifications at both low temperatures
and high temperatures. Theoretical calculations [21] find
a different form of electron-phonon cooling power than
given by Eq. 2 at low temperatures. It is predicted that
at temperatures below a crossover temperature Ty, the
electron-phonon coupling is enhanced and is larger than
the value given by Eq. 2:

P = ASy(T3 - TY), (7)
where
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and ((n) is the Reimann zeta function; ((3) ~ 1.2. The
crossover temperature Ty is the temperature for which

the expressions in Eqgs. 2 and 7 are equal. This temper-
ature is given by
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Using a Drude model, we find a lower bound of {n,q, =
50 nm for our samples, which sets an upper bound of
T, ~1K.

At higher temperatures, above Tpq, a different form of
electron-phonon scattering is predicted [22] in which dis-
order in the graphene allows large momentum phonons
to be emitted from the electron system. These large
momentum scattering events dissipate energy of or-
der kT and are coined “supercollisions.” In typi-
cal momentum-conserving scattering, the momentum of
scattered phonons is constrained by the Fermi surface
of the graphene (a circle in k-space of radius |Er|/fivr).
However, supercollisions allow phonons with much larger
momenta to be emitted, with an accompanying recoil
phonon which allows the net energy exchange to be
momentum-conserving. The result is that the cooling
power due to supercollisions for T' > Tgq is predicted
to be exactly half the cooling power predicted for low
temperature disorder-assisted scattering:

P= %A(T?’ —T3). (10)

In order to predict the electron-phonon thermal con-
ductance in graphene, it is critical to clearly state the
assumptions made about the presence of disorder and
the temperature regime in which the device is operating.
Moreover, measurement of G, is nontrivial. Though
several groups have made measurements of graphene’s
thermal properties at cryogenic temperatures [1, 6, 9],
there is considerable disagreement between experiments
about the functional form of G, as well as the mag-
nitude of D [13]. In our measurements, we study very
large area graphene samples to emphasize Gep, which
is proportional to the graphene area. This enables
us to clearly separate the electron-phonon cooling in
our samples from other cooling pathways (notably, hot-
electron out-diffusion). In addition, by looking at similar
graphene samples with substantially different area, we
are able to accurately probe the area dependence of the
electron-phonon cooling channel.

III. DEVICE FABRICATION

The samples used in our measurements are prepared
from CVD-grown graphene purchased from ACS Mate-
rial [23]. The graphene is grown using copper foil as
a catalyst. Prior to purchase, the graphene was trans-
ferred to an oxidized doped silicon substrate by coat-
ing the graphene sample with PMMA and etching away
the copper foil. It has been shown that this process can
leave PMMA residue on the surface of the graphene [24].



However, we found that the ability to lithograph large
graphene areas to emphasize G, and reduce contact re-
sistance outweighed the negative aspects of having pos-
sible contaminants. The doped Si substrate with a room
temperature resistivity of p = 1 €2 cm allows for the car-
rier density of the graphene to be controlled in situ by
using an electrostatic gate voltage to capacitively induce
either electrons or holes. However, the doped substrate
can complicate the measurement of device temperature
(discussed in Section IV).

After purchase, the samples are fabricated in a multi-
step process. Using electron-beam lithography, we define
areas of the graphene sheet which we then remove with
an oxygen etch. What remains are graphene sheets of
width 100 pm and lengths ranging from 10 to 200 pm.
Then, we again use the electron beam patterning, this
time to define the contact and lead structure. We de-
posit a Pd/Al bilayer with thicknesses 5 nm/50 nm to
contact the graphene. Palladium is used to form Ohmic
contact to the graphene [25, 26] and aluminum was used
to realize superconducting contacts with a T, ~ 1.2 K.
Superconducting contacts were desired to suppress the
out-diffusion of hot electrons, another potential source of
thermal conductance to the bath.

IV. MEASUREMENTS

The measurements for this study were performed in
an Oxford Triton 200 cryogen-free dilution refrigerator.
With no cabling, this refrigerator can achieve a base tem-
perature of 8 mK.

Metallic
Contact

Substrate
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Graphene

FIG. 1. Scanning electron microscope image of a typical
graphene sample. The metallic leads are false colored in yel-
low. The dark regions are areas of graphene which were not
etched away and the remaining light area is the SiOs sub-
strate. Note that the channel length L for the sample in the
image is 20 pm. For the samples measured, L is 10 or 100 pgm.
For both the sample shown in this figure and those measured,
the channel width W is 100 pm.

We present the thermal measurements of the two sam-
ples(typical geometry shown in Fig. 1) with device prop-
erties given in Table I from the same graphene growth,
both with channel width W = 100 pm. The first has
length L = 10 pum between contacts (sample G1) and
the other has a channel length of 100 pm (sample G2).
Measuring these two devices in a single cool down of

Sample L (um) W (um) R () Rp () D (eV)
G1 10 100 90 900 12.0
G2 100 100 840 840 10.5

TABLE I. Comparison between the shorter and longer
graphene samples (G1 and G2, respectively) at a gate voltage
of Vg ® —32 V. The values of D were obtained by individ-
ual fitting the thermal conductance as a function of T using
Eq. 14 for T' < Tpa /4 at each gate voltage, Fig. 6 below.

the refrigerator allowed us to establish how much con-
tact resistance is present and study the area-dependence
of thermal conductance. In Fig. 2 we plot the resistance
per square (R) of both devices as a function of gate volt-
age. We define R = R(W/L) where R is the measured
resistance. The measured resistance can have a contri-
bution due to the series contact resistance if present, but
none due to the Al/Pd leads for T < T.. At negligible
contact resistance, R should scale with length for fixed
W. Indeed, we find that Ry is approximately the same
for the two samples. At gate voltages |Vg| > 10 V, far
from the charge neutrality point (CNP), we calculate a
mobility of approximately 3500 cm/s? for both electrons
and holes, which is consistent with high quality CVD-
grown graphene on SiOy [27]. We find that the resis-
tance is relatively insensitive to bias current over several
orders of magnitude of current. The comparison of R
at Vz = —32 V for samples G1 and sample G2 indicates
that the contact resistance is small compared to the total
device resistance. In addition, analysis of the conductivi-
ties as a function of gate voltage [28] yields residual root-
mean-square carrier densities of n =~ 2.5 x 101! em ™2 and
3 x 10 ¢cm™2 at the resistance peak for samples G1 and
G2, respectively. This is due to carrier puddling arising
from external electric fields [29].

To study the thermal properties of the graphene, a
constant power is applied to the electron system and the
emitted Johnson noise of the system is measured to deter-
mine the resulting change in electron temperature. These
steady state measurements allow us to probe the cool-
ing pathways of the device. We use a Yokagawa 7651
voltage source and a large bias resistor to apply a dc
or low frequency on/off current of amplitude I to the
graphene (see Fig. 3). The current heats the electrons
in the graphene with power P = I?R. This heating
power raises the steady state electron temperature of the
graphene above the stage temperature Ty. This change in
electron temperature results in a change in emitted John-
son noise power into a matched load equal to kg BAT,
where AT =T —Tj and B = 330 MHz is the coupled mi-
crowave bandwidth. This result assumes that the emitted
noise is measured at a sufficiently low frequency f so that
hf < kT, as is the case in our study with f = 1.3 GHz,
and that the electron temperature is constant across the
device. In the case of finite thermal conductance from
charges and heat diffusing out the leads, the electron
temperature as a function of position T'(x) is not con-
stant, so the measurement of Johnson noise probes the
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FIG. 2. Resistance per square, R, as a function of gate

voltage for sample G1 (L = 10 pm) and sample G2 (L =
100 pm) at a bias current of I = 1 pA. The gate voltages
of each curve are offset so that the resistance peak occurs at
Vg = 0. The offsets are —1.5 V and —8 V for samples G1 and
G2, respectively. Inset: Resistance per square as a function of
bias current at V; =~ —32 V. Data were taken at Tp < 100 mK.
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FIG. 3. Apparatus for Johnson noise measurements. The
metallic leads contacting the device are represented by the
hatched regions. The low-pass and band-pass filters are in-
dicated by LP and BP (with center frequency f = 1.3 GHz
and bandwidth B = 330 MHz), respectively. The bias-T at
base is represented by a capacitor and inductor. The rf sig-
nal from the spectrum analyzer is attenuated by 40 dB before
coupling to the device and is necessary for the reflectometry
measurement described in the text.

average electron temperature of the graphene T

T:

==

L
/ T(z)dz (11)
0

and AT = T — To.

The Johnson noise signal is rectified to produce a dc
voltage using a zero bias Schottky diode. The change in
diode voltage is given by

AVdiode = HAT, (12)

where k is a coupling constant representing the ampli-
fication of the 50 Q microwave output system. In order
to accurately measure the average temperature change of

the electron system, it is thus critical to determine the
value of k. This is one of the important calibration proce-
dures necessitated by the use of a commercially-supplied
doped Si substrate, which is weakly electrically conduct-
ing.

A. Device calibration

To better understand the microwave coupling to the
device, we performed reflectometry measurements using
a spectrum analyzer. In Fig. 4a the normalized reflected
power as a function of gate voltage is plotted for sample
G1. For comparison, the expected normalized reflected
power is also plotted. Here we consider the impedance
mismatch between the 50 Q2 microwave line and an equiv-
alent resistor with the dc resistance of the graphene sam-
ple. Although the rf impedance at 1 GHz of the graphene
itself is approximately equal to its dc resistance [30],
the data deviates substantially from the calculation seen
in Fig. 4a, where the dc resistance is used to calculate
the circuit rf impedance. We believe the discrepancy is
not due to the graphene, but instead arises from charge
carriers in the doped Si substrate capacitively coupling
through the large contact pads. Using the very simple
circuit model shown in Fig. 4c where the carriers in the
substrate provide a parallel resistance, we can approxi-
mately replicate the observed microwave behavior, with
the values of the lumped circuit elements given in the fig-
ure caption. With this configuration, some of the power
is lost into the substrate. The substrate is macroscopic,
so its temperature rise due to this power is negligible.
This loss of emitted sample power is due to the use of
the doped Si substrate, which is used to allow us to vary
the carrier density.

In addition to absorbing some of the power emitted
by the sample, the conducting substrate also emits some
microwave power into the leads, which is sensed by the
amplifier. This second effect needs to be considered to
obtain an accurate calibration of the experiment, specifi-
cally of the parameter k. This calibration is more subtle
than for the case of an insulating substrate. First, con-
sider an insulating substrate, which does not absorb any
power emitted by the sample. Here, k is determined by
measurement the detected diode voltage change, AVgiode,
directly comparing the result for heating the sample to
heating the substrate. The substrate temperature T} is
measured and thus the sample temperature is directly
determined.

For the conducting substrate used in our experiments,
the coupling of substrate charges to the Al/Pd leads
means that the carriers in the substrate also emit John-
son noise which is measured at the output. The detector
receives power from both the sample and from substrate
emission when Tj is varied. As a result, a calibration
based on the diode output voltage as a function of Ty
yields a value for AVgjoqe that is larger than would be
obtained from the sample temperature alone.
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FIG. 4. Characterization and calibration of Sample G1. (a)
Reflected power from Sample G1 as a function of gate voltage.
The DC model gives the reflected power that would be ex-
pected from calculating the reflection coefficient using the de-
vice resistance. The LCR model instead calculates reflection
using the circuit model of (c), with L = 2.5 nH, Csu, = 10 pF,
Reub = 290 Q, and R, equal to the internal graphene resis-
tance. The capacitance was calculated from the area of the
lead structure, the inductance was estimated from wirebond
length, and the substrate resistance was adjusted to provide
a good fit to the data. At V; = —32 V, the circuit model
yield a power reflection of T2 = 0.15, while the DC model
predicts T? = 0.09. Thus, the device is well matched when
gated far from the CNP. (b) Calculated thermal conductance
as a function of average electron temperature for several base
temperatures. To determine the coupling, x is chosen (ex-
plained in the text) to align the thermal conductance curves
(so that G(T) is independent of Tj).

To account for the substrate emission, we determine
the coupling parameter s by requiring that

G(T) = dp/dT (13)

be independent of stage temperature, with 7 from
Egs. 11 and 12. Specifically, we measured AVgyioqe as
a function of input power at several fixed base tempera-
tures. We then solve for x such that G(T), as calculated
from Egs. 12 and 13, is independent of Tj.

The method just described assumes a uniform temper-
ature distribution along the graphene sample. In that
case, the thermal conductance we deduce will be inde-
pendent of the temperature of the substrate, Ty. How-
ever, in our system, we have the further complication
that there is a non-uniform temperature distribution in
the shorter sample due to carrier (and heat) out-diffusion

to the contacts, as discussed later. From further simula-
tions we determined that the calibration technique can
understate the value of x by 10-15%. We account for
this non-uniformity, and we use that best value of x in
the data analysis and results we present in Figs. 5 and 6.

B. Thermal measurements

In analyzing the thermal properties of the samples, the
heat diffusion equation is used to model to cooling power
of the system:

Pr=py) - - (905 ).

where r is the resistance per unit length, pe,(z) is
the electron-phonon cooling power per unit length, and
g(x) = LT/Rp is the thermal conductance from carrier
diffusion. The appropriate form of pe,(z) depends both
on the electron temperature and on te level of disorder
in the system (i.e., fmgp). For example, in the low tem-
perature, clean limit, pep(2) = Wy (T(z)* — Ty). After
solving for T'(x) at a given current, the average electron
temperature of the system 7', can be found by integrating
over the entire length, as per Eq. 11.

This average temperature is what is measured using
the Johnson noise method. Note that this calculation is
correct only if the resistance is approximately tempera-
ture independent, which is very close to correct for our
samples (Fig. 2).

The boundary condition used to solve Eq. 14 is that
T(xz) = Tp at both ends of the device, as there was strong
evidence of diffusion cooling of hot electrons in sample
G1. Because sample G2 has a resistance and area that
is approximately 10 times larger than that of sample G1,
diffusion cooling is not evident in our experiments. The
measurements of T were performed over a large range
of excitation powers (I = 0.1 — 1000 pA), so we access
electron temperatures above and below Tgg in our mea-
surement. We model these two regimes separately, first
focusing on low temperatures, below Tpg/4.

In Fig. 5, we plot the thermal conductance of sam-
ple G1 for T < 20 K as a function of the average elec-
tron temperature T' for multiple gate voltages (in the hole
doped region). The solid lines are plotted for T' < T /4
for each density. These plots are a calculation of the effec-
tive thermal conductance, G = dP/dT, using the temper-
ature distribution determined by Eq. 14. At low temper-
atures, for each gate voltage, the thermal conductance of
this sample is approximately equal to the value predicted
for the out-diffusion of hot electrons to the contacts a
one-dimensional wire: Gaig ~ 13LT /R, where L is the
Lorentz number [31, 32]. In our measurements, we find
L = 1.18 X Lineory, where Lipeory = 2.45 x 1078 WQK 2.

At temperatures above a few Kelvin, the cooling is in-
creasingly dominated by the emission of phonons, and we
use the clean limit form of pe, to calculate the electron
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FIG. 5. Thermal conductance, G = dP/dT of sample G1.
The solid line is a calculation of thermal conductance for
T < Tpc/4 using the device parameters given in Table IT and
Eqgs. 2 and 14. The same calculation is shown by a dashed
line for T' > Tsg/4. Inset: calculation of ¥ using n calcu-
lated from V; and measured values of D (given in Table II).
The dashed line shows the value X1 as a function of n for
D = 11.5 eV, demonstrating the expected X1 o /n depen-
dence. The uncertainty at each of the data points for ¥, arises
from the calibration procedure at each gate voltage. There
is an additional overall uncertainty of scale for 31 (of £20%)
due to uncertainty in the stage thermometer calibration.

Ve (V) n (10" cm™?) Tee (K) R (©) D (eV)
-33.5 24.1 84 90 12.0
-25.5 18.4 73 110 11.0
-17.5 12.6 60 150 11.0
-9.5 6.8 45 250 11.5
-3.5 2.5 27 580 11.5

TABLE II. Device properties of sample G1 (L = 10 um). The
values of D were obtained by individually fitting the thermal
conductance as a function of T using Eq. 14 for T < Tpg/4
at each gate voltage, Fig. 5.

temperature. This determines ¥;. The only free pa-
rameter in determining the thermal conductance is the
deformation potential D, which appears in Eq. 2. For
each gate voltage, the value of D was independently de-
termined from ¥; by fitting to the relevant data points,
and the plotted lines represent the best fit. The values
of D found range from 11 to 12 4+ 2.0 eV and are pre-
sented along with other relevant physical parameters in
Table II. With these values of D, we have calculated X
as a function of n and have plotted these results in the
inset of Fig. 5. The dashed line in the inset represents the
anticipated n dependence of X1 o< 4/n for a deformation
potential of D = 11.5 eV.

We also tested the disorder-assisted scattering model,
with pep given by Eq. 7, in solving Eq. 14. We found that
this model did not agree with the data. We conclude

that the data do not exhibit an electron-phonon cooling
power with a T2 dependence at temperatures below 20 K.
This conclusion is consistent with measurements of device
resistance, which indicate a disorder-limited mean free
path of over 50 nm. For this value of /¢, the crossover
temperature Ty, below which disorder-assisted scatter-
ing would be expected to play a role, is Tx ~ 1 K. For
all gate voltages measured, the thermal conductance at
these lowest temperatures (7' < 1) is dominated by elec-
tron out-diffusion. Thus, we could not test the disordered
limit in the present experiments

The clean limit calculation ceases to agree with the
measured data at large temperatures, and the temper-
ature at which this occurs is dependent upon the gate
voltage. This is to be expected, as Tgg o /n so that
Tpc/4 =~ 11 K at V; = —9.5, for example, whereas
Tpg/4 =~ 21 K for V; = —33.5. Thus, the tempera-
ture range in which the low-temperature clean limit ac-
curately describes pep, is smaller for lower carrier densi-
ties.
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FIG. 6. Plot of thermal conductance for samples G1 and G2.
The solid lines are calculations of thermal conductance using
Eq. 14 in the low temperature clean limit, with D = 12 eV
and D = 10.5 eV for samples G1 and G2, respectively. The
dashed vertical line indicates Tsa /4 =~ 21 K. The temperature
ranges over which either Gaig or Gep is the dominant source
of thermal conductance in sample G1 are indicated by the
arrows in the figure. For sample G2, Gep > Gain for all
temperatures measured.

We tested the predicted area dependence of Eq. 2 by
comparing the thermal conductance of the shorter and
longer samples (Gl and G2, respectively). In Fig. 6,
we plot the thermal conductance at high density, V,; ~
—32 V, for both sample G1 and sample G2. At low tem-
peratures, the total thermal conductance of sample G2
is less than that of sample G1 due to the approximately
10 times larger internal resistance of sample G2 (see Ta-
ble I). The increased length of G2 suppresses Gair by a
factor of 10, resulting in a much lower total thermal con-
ductance below 1 K. However, at high temperatures, the



Study Regime Substrate A (um?) R (k) D (eV)
Betz et al. [6] Supercollisions BN 6.2 1.5 70
Betz et al. [7]  Clean limit BN 6,13 1,3 4,2
Fong et al. [1]  Clean limit  SiO2/Si 102 30 33
Fong et al. [5] Low-T disorder SiO2/Si 25,55 1.5,5 51,23
Theory [14-16] - - - - 5-13

This study Clean limit  SiO2/Si  10*,10°  0.09,0.84 12,11

TABLE III. Summary of experimental results which studied the low-temperature electron-phonon coupling in graphene using
Johnson noise thermometry. Individual samples within a study are separated by commas.

thermal conductance of sample G2 is approximately 10
times larger than that of sample G1 as expected. The fits
for samples G1 and G2 yield D = 12eV and D = 10.5eV,
respectively, in good agreement and consistent within the
measurement uncertainty.

At high bias currents, the electron temperature can
exceed T /4 so that the electron-phonon cooling of the
graphene can no longer be described by its low temper-
ature limit. However, at these large biases, it is difficult
to ensure that the phonon temperature remains near to
Ty. As a result, for this manuscript, we restrict ourselves
only to considering the low-bias electron temperatures
presented above. Investigation of this temperature range
may provide a greater understanding of the roles that su-
percollisions and optical phonon emission into the SiO9
substrate [16, 33, 34] play in the electron system energy
relaxation, and should be the subject of future work.

V. DISCUSSION

The Johnson noise emission measurements reported in
the previous section probed the cooling processes of two
graphene samples with areas which differed by a factor
of 10. This made it possible to observe the dependence
of cooling power on the device area which is consistent
with theory and, in the case of the longer device, remove
the effects of electron out-diffusion. The measurements
of both the 10 pum long and of the 100 pym long sam-
ple found similar results for the deformation potential
D, with measured values ranging from 10.5—12 eV. Due
to systematic uncertainties (primarily arising from the
calibration and thermometry), there is an overall uncer-
tainty in D of approximately +£20%. As a result, the
bound that can reasonably be placed on the deforma-
tion potential from these measurements is 8.5 — 13.5 eV
(see Table II). In Table III, we compare this result to
the extracted values of D obtained from other studies,
which show wide variation from sample to sample and
little agreement with the theoretical predictions.

At low temperatures, the electron-phonon cooling is
consistent with the clean limit for low electron temper-
atures (T < 20 K for n = 2.4 x 10'2/cm?), for which

G x T? is predicted. We did not observe any behavior
consistent with low temperature disorder-assisted scat-
tering [21] in the shorter samples, but the cooling path-
way of hot electrons diffusing out the leads might obscure
a deviation from the clean limit in the shorter sample,
G1, at low temperatures if one were present. For the
much longer sample, G2, a small deviation from G oc T3
was observed at very low temperatures for all gate volt-
ages (see Fig. 6). However, there is greater relative uncer-
tainty in the graphene electron temperature below 1 K,
which precludes drawing any quantitative conclusions for
the electron-phonon cooling processes at these very low
temperatures.

A interesting future study would be thermal measure-
ments of a graphene sample with low electrical resis-
tance, which was contacted with high 7. metallic con-
tacts (T, > 9 K) that were able to confine hot electrons
and suppress Gqig. A low sample resistance would be
desirable to achieve good microwave coupling to the out-
put lines and to significantly mitigate the effects of free
carriers in the substrate. Clearly, an insulating substrate
would be desirable for these measurements, with a sepa-
rate gate electrode which couples to the sample at dc, but
not at microwave frequencies. In addition, if the sample
were suspended [28, 35], thermal conductance measure-
ments at high dc bias would provide a useful test of ther-
mal conductance far from equilibrium, at temperature
above Tgg. However, care must be taken to ensure that
suspending the device does not generate a bottleneck for
removal of excess phonons from the graphene lattice as
this could complicate the interpretation of the data.
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