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A mechanism is proposed for the tantalizing evidence of polar Kerr effect in a class of high temperature
superconductors–the signs of the Kerr angle from two opposite faces of the same sample are identical and
magnetic field training is non-existent. The mechanism does not break global time reversal symmetry, as in an
antiferromagnet, and results in zero Faraday effect. It is best understood in a phenomenological model of bilayer
cuprates, such as YBa2Cu3O6+δ , in which intra-bilayer tunneling nucleates a chiral d-density wave such that
the individual layers have opposite chirality. Although specific to the chiral d-density wave, the mechanism
may be more general to any quasi-two-dimensional orbital antiferromagnet in which time reversal symmetry is
broken in each plane, but not when averaged macroscopically.

I. INTRODUCTION.

The origin and nature of the pseudogap phase in the high-
Tc cuprate superconductors still remains an unresolved prob-
lem 1,2. The pseudogap phase, which occurs in the under-
doped regime of hole doping, and at temperature range T ∗ >
T > Tc, displays many interesting properties including vari-
ous charge, spin, electron nematic, or current ordered states
competing with superconductivity1–12. Recently a nonzero
polar Kerr effect (PKE) has been observed in the pseudogap
phase in a number of recent experiments13–17, but with un-
usual characteristics. The effect measures the angle of rotation
of linearly polarized light reflected from a medium at normal
incidence and typically signals time reversal symmetry (TRS)
breaking in the reflecting medium18. In a ferromagnetic ma-
terial, the signs of the polar Kerr angle from two opposite sur-
faces of the same sample are expected to be different. This
is because the net magnetic moment points in the same direc-
tion throughout the sample and hence if it points away from
the sample on the top surface, it points into the sample on the
bottom surface, see Fig. 1. Moreover, It should be possible to
choose (or ‘train’) the direction of the net magnetic moment,
and, in turn, the sign of the polar Kerr angle, by cooling the
sample in the presence of a magnetic field.

In contrast, in high-Tc superconductors it has been observed
that the signs of PKE from the two opposite surfaces of the
same sample are identical, and, moreover, the signal cannot be
trained by magnetic field. To account for these puzzling ex-
perimental observations, time-reversal invariant models with
gyrotropic order were employed recently19–22. However, the
concept of gyrotropic order as an explanation for non-zero
PKE in the cuprates were subsequently retracted23–25 because
it does not satisfy Onsager’s reciprocity principle in normal
reflection that forbids a non-zero PKE in the absence of TRS
breaking26–29.

Here we show that the observations in high-Tc can be un-
derstood in the framework of a chiral d-density wave state30

in the presence of interlayer tunneling, which is invariant un-
der TRS in the bulk, but can still have a non zero PKE be-
cause it is a property of the light reflected from the top surface
which breaks TRS locally. Therefore PKE in this mechanism
would be insensitive to the changing skin depth of the incom-

FIG. 1. Left panel: Ferromagnetic (FM) ordering where magnetic
moments point in the same direction at each plane, thus resulting in
the opposite signs of the Kerr angle from the top and bottom surfaces.
Right panel: Orbital antiferromagnetic (OAF) ordering, where mag-
netic moments switch sign on each plane, so the Kerr angle has the
same sign from both surfaces. In contrast to FM, magnetic moments
in OAF point out of the sample at the top and the bottom surfaces,
provided the sample is cleaved between the bilayers.

ing light at the top surface, while PKE from a bulk order pa-
rameter based description would yield a stronger effect for a
longer skin depth. The chiral d-density wave state is defined
by adding a small dxy component to the dominant idx2−y2 ,
i.e. with the combined order parameter dxy + idx2−y2 . The
net order parameter breaks TRS at each CuO plane and results
in a non-zero Hall conductivity σxy30. The addition of a possi-
ble dxy component could be a result of microscopic electronic
interactions31, or a structural transition that breaks the symme-
try between the neighboring plaquettes. In the idx2−y2 state,
by itself, spontaneous currents alternatingly circulate around
plaquettes of the two-dimensional square lattice, thus preserv-
ing the macroscopic TRS, but not any associated chirality.

We establish that, for our present model, the angle of ro-
tation due to one layer is cancelled by its neighbor, result-
ing in zero Faraday rotation of the polarization plane of the
transmitted light. However, since PKE is primarily a sur-
face phenomenon, where the light reflected from the top (or
bottom) surface at normal incidence changes its plane of po-
larization, there can be a non-zero PKE. Furthermore, since
bilayer cuprates usually cleave through the reservoir layers
separating the CuO bilayers, the magnetizations at the top
and bottom surfaces should point opposite to each other (see
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FIG. 2. (Color online) Left: Band dispersion as a function of k =
(kx, π) for the two states in a bilayer: d + id/d + id (blue) and
d + id/d − id (red). We utilized t′ = 0.33t,W0 = .33t,∆0 =
0.01W0/2, and t⊥ = 0.5t all energies measured in the unit of t.
Right: The ground state energy versus hole doping (from 0.08 to
0.18) indicating that the d+ id/d− id state (in red) has lower energy
in a bilayer for any given value of hole doping.

Fig. 1), giving rise to the same sign of the Kerr angle. Fi-
nally, since the system as a whole is an OAF, coupling to a
small external magnetic field should be small, resulting, most
likely, in a small or non-existent magnetic field ‘training’ ef-
fect. Importantly, to the best of our knowledge, the scenario
presented here is the only one consistent with all the puz-
zling phenomenology seen in the recent PKE experiments in
cuprates.

It has been argued that much of the phenomenology of the
cuprates in the underdoped regime can be unified4,31–34 by
making a single assumption that the ordered idx2−y2 -density
wave (DDW) state is responsible for the pseudogap. More-
over, an extensive Hartree-Fock calculation for idx2−y2 state
has recently been carried out35. So far, evidence of mag-
netism arising from d-density wave in neutron or NMR mea-
surements has been controversial. However, the success of
the present phenomenological model in explaining PKE must
speak in favor of the suggested order parameter.

This paper is divided as follows: in Section II, we introduce
the chiral d-density wave state order parameter, and calculate
the anomalous Hall conductivity of a single layer. In Sec-
tion III, we discuss the problem of light propagation through
a single cuprate layer, and then calculate the Kerr and Fara-
day responses through the bilayer system in Section IV. We
conclude in Section V.

II. CHIRAL DDW WITH INTERLAYER TUNNELING.

Consider a combination of the density waves, dxy +
idx2−y2 , such that the net order parameter is

〈c†k+Q,αc
†
k,β〉 ∝ [iWk −∆k]δαβ , (1)

where c†k,σ is the electron creation operator of momentum k

and spin σ, and Q = (π, π) is the density wave vector. Wk

and ∆k correspond to idx2−y2 and dxy respectively, defined
as Wk = W0

2 (cos kx − cos ky), ∆k = ∆0 sin kx sin ky . We

consider a bilayer system where the idx2−y2 component of the
order parameter, i.e.,Wk may or may not switch sign between
the two layers. The four component mean field Hamiltonian
for the system in the basis ψ†k = (c†1k , c

†1
k+Q, c

†2
k , c

†2
k+Q) takes

the following form

H(k) =

 εk g1k t⊥k 0
g∗1k εk+Q 0 t⊥k+Q

t⊥k 0 εk g2k
0 t⊥k+Q g∗2k εk+Q

 , (2)

where εk is the energy dispersion for a two-dimensional
square lattice.

εk = −2t(cos kx + cos ky) + 4t′ cos kx cos ky, (3)

where t and t′ are the nearest and next-nearest hopping inte-
grals in the tight-binding Hamiltonian, g1k = iWk −∆k and
t⊥k = t⊥(cos kx − cos ky)2/4 describes the tunneling be-
tween the two layers32 appropriate for tetragonal systems. The
superscript (1,2) on the electron operator in ψ†k is the layer in-
dex. Note that g1k = g2k represents a d + id/d + id bilayer
configuration and g∗1k = g2k is a d+ id/d− id configuration.
We find that when g∗1k = g2k the system is energetically more
favorable than the case when g1k = g2k. This is observed
by diagonalizing the Hamiltonian and obtaining the ground
state energy for a given doping concentration, as displayed in
Fig. 2. The d + id state spontaneously breaks time-reversal
symmetry (T ) as well as the in-plane reflection symmetry
about the principal axes and exhibits anomalous Hall effect
with a non-zero value of the Hall conductivity σxy . However,
the value of σxy reverses sign for the d − id state. Thus the
ground state of the bilayer breaks TRS in each plane, but since
the inversion symmetry (P ) about the mid point between the
planes is also broken, the product PT is conserved, allowing
the system to have a nonzero polar Kerr effect despite conserv-
ing the global TRS and being an OAF 36,37. The magnetoelec-
tric effect and PKE in another antiferromagnet Cr2O3 were
predicted theoretically in 38,39, and subsequently observed in
experiments40–44.

The Hall conductance of a single layer described by a
d + id mean field Hamiltonian can be calculated using the
formalism of linear response theory and Kubo formula30. The
two-component mean field Hamiltonian describing a d + id

density-wave state in the ψ†k = (c†k, c
†
k+Q) basis is given by:

Hs(k) =

(
εk gk
g∗k εk+Q

)
. (4)

At a finite frequency ω and in the limit q→ 0, the anomalous
Hall conductivity at any finite temperature is given by30:

σxy(ω) =
2e2

~

∫
dk2

(2π)2
B(k)f(E+(k))− f(E−(k))

w(k)[z − 2w(k)][z + 2w(k)]
, (5)

where B(k) = 4t∆0W0(sin2 ky + cos2 ky sin2 kx) is the
Berry curvature, w(k) is the modulus of a three compo-
nent vector w(k) = [−∆k,−Wk, (εk − εk+Q)/2], f is the
Fermi distribution function, µ is the chemical potential, and
z = ω + iδ, with δ a positive infinitesimal. E±(k) =
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(εk + εk+Q)/2 ± w(k) − µ describe the two energy bands
obtained by diagonalizing the Hamiltonian in Eq. (4). The
sign of σxy is determined by the sign of the product ∆0W0,
so the d± id states have opposite signs of σxy .

III. TRANSMISSION AND REFLECTION OF LIGHT
FROM A SINGLE LAYER.

We now study propagation of an electromagnetic wave
through a layered system with chiral DDW using standard
electrodynamics formalism36,37,45,46. First we consider an
electromagnetic wave incident normally on a single two-
dimensional layer of a material in the xy plane. The electric
field components of the wave in a medium are given by

Ē = eikz
[
Et+
Et−

]
+ e−ikz

[
Er+
Er−

]
(6)

Et+ and Et− are the transmitted components of right and left
circularly polarized (CP) light respectively and similarly Er+
and Er− are the reflected components, and k is the wavevec-
tor. The corresponding magnetic field components can be
found using Maxwell’s equation, k̄ × Ē = ωH̄ . The com-
ponents of the electromagnetic field satisfy standard electro-
dynamic boundary conditions at the material layer, which we
assume is located at z = h: Ē>h = Ē<h, (H>h −H<h)y =
−4π(σ̄Ē)x, (H>h−H<h)x = 4π(σ̄Ē)y . Note that σ̄ is a ten-
sor, but Ē is a two component vector. We consider only the
Hall components of the surface current and neglect the pres-
ence of σxx; however, we have confirmed that the presence
of a finite σxx due to the chiral DDW Fermi pockets does not
change our results qualitatively. We define the scattering ma-
trix which relates the incoming and the outgoing electric field
components, O = SI, where the outgoing wave O and the
incoming wave I are given by,

O =


Er+,<h
Er−,<h
Et+,>h
Et−,>h

 and I =


Et+,<h
Et−,<h
Er+,>h
Er−,>h

 , (7)

and the scattering matrix S is,

S =

[
R T ′
T R′

]
=

 R++ R+− T ′++ T ′+−
R−+ R−− T ′−+ T ′−−
T++ T+− R′++ R′+−
T−+ T−− R′−+ R′−−

 (8)

This scattering matrix S describes reflection and transmission
of electric field components from the top surface of the slab.
We have also defined in Eq. (8) two-component matrices R,
T ′, T and R′, whose components are given by the corre-
sponding block entries. Matching the boundary conditions at

FIG. 3. (Color online) Schematic diagram showing multiple reflec-
tions and transmissions through the top and bottom layers, which we
use to calculate the Kerr and Faraday angles. Note that we have as-
sumed normal incidence for the incoming light in our calculations.

z = h, we find that

R++ =
eik>h

(
1− n2 − (4πσxy)2 + i8πσxy

)
(1 + n)

2
+ (4πσxy)2

R−− =
eik>h

(
1− n2 − (4πσxy)2 − i8πσxy

)
(1 + n)

2
+ (4πσxy)2

T++ =
ei(k>−k<)h

(
2
(
1 + n2

)
+ i8πσxy

)
(1 + n)

2
+ (4πσxy)2

T−− =
ei(k>−k<)h

(
2
(
1 + n2

)
− i8πσxy

)
(1 + n)

2
+ (4πσxy)2

,

where n is the refractive index of the medium. R′++, R′−−,
T ′++,and T ′−− can be obtained in a similar fashion. The other
components of S which couple right and left CP components
i.e. R+−, T

′
−+ and so on, all vanish. We note that when σxy 6=

0, R++ 6= R−− and T++ 6= T−− which is a signature of
broken time-reversal symmetry.

IV. POLAR KERR AND FARADAY EFFECTS IN BILAYER
CHIRAL DDW.

To discuss scattering from the bilayer, we consider two such
interfaces at z = +h and z = −h as depicted in Fig. 3. Since
even in the presence of the interlayer coupling t⊥(k) the sys-
tem breaks P and T while PT is conserved, allowing a non-
zero PKE36,37, in the following we will ignore t⊥(k) for sim-
plicity, expecting it to modify our results only quantitatively.
The Hall conductivity σxy reverses it sign at the bottom layer
at z = −h. One can then appropriately define the scatter-
ing matrix elements for the bottom layer taking into account
the opposite sign of the Hall conductivity and the position of
the bottom plane to be −h instead of h. We denote the two-
component matrices defined in Eq. (8) for the top layer by the
subscript T and by subscript B for the bottom layer. Thus
reflection and transmission through the bilayer as whole are
described by tensors R and T given by,

R = RT + T ′TRB(1−R′TRB)−1TT
T = TB(1−R′TRB)−1TT (9)

We now switch basis from CP light to linearly polarized (LP)
light for convenience of the following discussion. Denoting
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the electric field of the light incident on the sample by ĒI ,
ĒR = RĒi and ĒT = TĒi give the reflected and the trans-
mitted electric fields. When linearly polarized light is incident
on the sample, the Kerr and Faraday angles are determined by
the difference between right and left CP light:

θF =
1

2
(arg[E+

T ]− arg[E−T ])

θK =
1

2
(arg[E+

R ]− arg[E−R ]), (10)

whereE±R,T = ExR,T±iE
y
R,T , for ĒR,T = [ExR,T , E

y
R,T ]. For

the bilayer system discussed above, the R has non-zero off
diagonal elements (in LP basis) and T is diagonal, which is a
clear signature of a non-zero Kerr response and the absence of
the Faraday effect. (We do not state the analytic expressions
for these matrices here, as they are too cumbersome.)

We now make a rough estimate for the polar Kerr angle
for a bilayer system using Eqs. (9) and (10). Measuring all
the energies in units of t we use t′ = 0.3, µ = −.9, n ≈
1.6947, the interlayer distance 2h = 3.2 Å, the strength of the
idx2−y2 component of the order parameter W0(p) = 0.1(1−
p/pc), where p is the hole doping concentration and pc =
0.17, ∆0 = 0.01W0/2 and the frequency of measurement
ω = 1500 nm. In Fig. 4, we have plotted the polar Kerr angle
θK as a function of hole doping and we obtain a non-zero Kerr
angle of the order of 100 nrad. The estimated Faraday angle
from our formalism turns out to be zero, again from Eqs. (9)
and (10). Since the chiral DDW with interlayer tunneling is an
OAF, the angle of rotation of the plane of polarization of light
due to one layer is cancelled by its neighbor, resulting in zero
Faraday rotation of the transmitted light. However, since PKE
is primarily a surface phenomenon, where the light reflected
from the top surface changes its plane of polarization, there
is a non-zero PKE. Further, since the magnetizations at the
top and bottom surfaces should point opposite to each other
(see Fig. 1), the two surfaces give rise to the same sign of
the Kerr angle. Finally, since the system as a whole is an
OAF, coupling to a small external magnetic field should be
small, leading to small or non-existent ‘training’ effect. It is
important to note that all of these conclusions are consistent
with the phenomenology of the recent PKE measurements in
the cuprates.

V. CONCLUSIONS.

To conclude we considered the chiral DDW state in a bi-
layer where the sign of the idx2−y2 component of the order
parameter changes between the layers which is an energeti-

cally more favorable configuration. This also leads to the re-
versal of sign of σxy in the bottom layer, thus breaking inver-
sion symmetry. The calculations presented here are consis-
tent with the unusual PKE observed in high-Tc materials. Our
calculations, although applied here specifically to the chiral
DDW state, are more generally valid for any OAF with TRS
broken at each plane. In Ref.48 similar ideas were applied to
a tilted loop current model. In addition, the ideas presented
here also apply to the bi-axial density wave recently seen in

FIG. 4. Estimated Kerr angle in nrad as function of hole doping
p. The strength of the idx2−y2 is assumed to vary with doping as
W (p) = 0.1(1 − p/pc) eV, where pc is chosen to be 0.17. The am-
plitude ∆0 of the dxy component is assumed to be 1% of W0. While
a non-zero PKE is a robust consequence of our model the precise
values ofW0, ∆0, θK in this figure are for illustrative purposes only.

the pseudogap phase11,12 if they are accompanied by sponta-
neous currents49–52. However, the theories49–52 are currently
formulated for a single layer, and it remains to be seen whether
they can be generalized to a multilayer model with alternating
sign of σxy similar to the present work.

Another important class of high-Tc materials is single layer
compounds, such as Bi-2201 (Bi2+xSr2−xCuO8+δ) and Hg-
1201 (HgBa2CuO4+δ). Although the detailed results are not
yet published, it is known that such materials also show simi-
lar PKE, as discussed here53. At the level of order parameter
symmetry, there is no difference, in the sense that one can eas-
ily envision CuO-layers alternating between d+ id and d− id.
In addition, recent X-ray measurements indicate that the unit
cell in the c-direction is doubled, bringing it closer to the bi-
layer problem. Until PKE measurements in single layer ma-
terials are published in detail, it is probably prudent to refrain
from further speculations.
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