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We analyze the three-point vertex function that describes the coupling of fermionic particle-hole
pairs in a metal to spin or charge fluctuations at non-zero momentum. We consider Ward identities,
which connect two-particle vertex functions to the self energy, in the framework of a Hubbard
model. These are derived using conservation laws following from local symmetries. The generators
considered are the spin density and particle density. It is shown that at certain antiferromagnetic
critical points, where the quasiparticle effective mass is diverging, the vertex function describing
the coupling of particle-hole pairs to the spin density Fourier component at the antiferromagnetic
wavevector is also divergent. Then we give an explicit calculation of the irreducible vertex function
for the case of three-dimensional antiferromagnetic fluctuations, and show that it is proportional to
the diverging quasiparticle effective mass .

I. INTRODUCTION

Over the past several decades the theoretical descrip-
tion of the paramagnetic to antiferromagnetic (AFM)
phase transition in metals has been an ever-growing chal-
lenge (for a review see Ref. 1). The theoretical descrip-
tion of systems for which the only critical degrees of
freedom are the (bosonic) spin fluctuations, while the
fermionic quasiparticles (quasiparticles) are not critical,
is well-developed.2–4 However, in cases where the quasi-
particles acquire critical behavior, e.g. a diverging ef-
fective mass, as indicated by an apparently diverging
specific heat coefficient (prominent examples of com-
pounds showing this behavior are CeCu5.9Au0.1

5 and
YbRh2Si2

6), recent theoretical attempts7–10 following
the conventional field-theoretical methodology have not
successfully explained experiment.

Recently a semi-phenomenological theory of correla-
tion functions χ(q, ν) near an AFM quantum-critical
point (QCP) has been proposed.11,12. Since the promi-
nent AFM fluctuations occur at a non-zero ordering
wavevector Q, the theory adopts a generalization, to non-
zero wavevector, of the usual Ward identity that relates
the three-point spin-density vertex function Λ(q, ν) in
the limit of zero wavevector to the quasiparticle effective
mass. Then, the usual weak-coupling form of the dynam-
ical spin response function χ(q, ν) acquires singular ver-
tex corrections Λ(Q, ν) to the Landau damping term; and
the coupling of bosons and fermions also gets enhanced
by Λ(Q). Moreover, it was shown that spin exchange en-
ergy fluctuations at small wavevector (a fluctuation com-
bining two spin fluctuation propagators) are highly sin-
gular, and may lead to critical quasiparticles all over the
Fermi surface, not only at “hot spots”.13 A central re-
sult of the theory11–13 is a self-consistent relation for the
quasiparticle effective mass, which allows for two very dif-
ferent solutions, depending on initial conditions at high
energy (or temperature): (1) a weak-coupling solution

similar to the conventional SDW scenario2,4 and (2) a
strong-coupling solution characterized by critical quasi-
particles with effective mass that diverges as a fractional
power law. The results of this theory are in quite detailed
agreement with experiments.5,14,15 It is therefore natural
to ask how the assumption of a singular vertex correction
as adopted in the phenomenological theory11–13 may be
derived from microscopic theory. In the present paper
we shall use two different approaches(Secs. III and IV)
to achieve that goal.

In Sec. II, we discuss generalized Ward identities,
which are based on conservation laws that follow from
symmetries of the Hamiltonian and which are important
in the context of a class of quantum-critical phenomena.

In Sec. III we show how spin-density conservation leads
to the required generalized Ward identity.

In Sec. IV, we explicitly calculate the particle-hole ir-
reducible spin-density vertex function Λ(Q) at non-zero
Q near an incommensurate antiferromagnetic QCP in
the framework of the strong-coupling theory developed
in Refs. 11–13 and show that the vertex diverges like the
effective mass, as assumed earlier in that theory. This
demonstrates that there is a closed self-consistent sys-
tem of equations connecting the two singular quantities,
effective mass m∗ and vertex function Λ(Q).

II. SYMMETRY, WARD IDENTITY AND
QUANTUM CRITICALITY

Symmetry properties are among the most important
pieces of knowledge characterizing a system. The stan-
dard symmetries, related to invariance under translation
in space and time, rotation in position space, spin space
or other internal spaces are well-known and are used to
develop methods of calculating the system’s properties.
In the realm of quantum many-body physics and quan-
tum field theory, symmetry properties may be shown to
give rise to useful relations among the two-particle and
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the one-particle Green’s functions, the Ward-Takahashi
identities.16,17 These identities are usually derived by
considering global symmetry transformations effected by
the application of unitary operators (gauge transforma-
tions, rotations, etc.). Typically, a Ward identity relates
the structure of the single-particle Green’s function to a
three-point vertex function Λ(k;q, ν). A standard way18

of constructing a Ward identity is to identify a conserva-
tion law that follows from a symmetry of the Hamiltonian
and then using it to simplify the equation of motion for
a two-particle Green’s function that contains the three-
point vertex. Since we are primarily interested in an in-
commensurate antiferromagnetic QCP in the framework
of the strong-coupling theory developed in Refs. 11–13,
in what follows, we shall concentrate on the consequences
of spin-rotational invariance.

The Ward identities are usually applied for the limit
of vanishing wavevector and frequency of an applied test
field. They are therefore of limited use in characterizing
fluctuations at non-zero wave vector, such as antiferro-
magnetic fluctuations or charge density wave fluctuations
in a metal.

However, the local conservation laws are valid on all
spatial and temporal scales and give rise to generalized
Ward identities even at non-zero wavevector. This has
already been recognized and implemented by U. Behn,19

who used the procedure described above and which we
elaborate in Sec. III. Although these identities may be
less stringent because, as we shall see, they could involve
two vertex functions, one of a density type, the other of
a current-density type, they nonetheless may be used to
infer qualitative information. This is of particular inter-
est if single-particle properties, such as the quasiparticle
effective mass at the Fermi surface, are singular. This
may happen at a quantum critical point. In metallic
compounds, quantum critical points are often found to
be of antiferromagnetic or charge-density wave character,
which involve fluctuations of spin or charge at non-zero
wave vector. Specific heat data in the neighborhood of
such critical points often indicate a divergent quasipar-
ticle effective mass. Examples are many of the heavy-
fermion compounds, some of the iron-based supercon-
ductors and possibly the cuprate superconductors. The
question becomes: How does a singularity in the single-
particle properties affect the two-particle vertex functions
at non-zero wavevector? Here the generalized Ward iden-
tities may be useful. In the present paper, the answer will
be given as

Λ(k;Q, ν → 0) ∼ Z−1(k+) + Z−1(k−), (1)

where Z−1 = 1− ∂Σ/∂ω is proportional to the quasipar-
ticle effective mass and k± = k±Q/2 are the momenta of
the incoming and outgoing legs of the three-point vertex
describing momentum transfer Q and energy transfer ν

III. CONSERVATION LAW AND CONTINUITY
EQUATION: VERTEX FUNCTION IN LINEAR

RESPONSE

We consider systems of identical fermions interacting
via spin-conserving density-density interactions, either
on a lattice or in the continuum, e.g. the Hubbard model.
To be concrete, we may take the interaction term in the
form

Hint = U

∫
drΨ†↑(r)Ψ↑(r)Ψ

†
↓(r)Ψ↓(r) (2)

where Ψ†α(r),Ψα(r) creates or annihilates an electron of
spin α =↑, ↓ at location r. Later, the following deriva-
tions will be taken over for the case of electrons on a
lattice within a one-band model, for which the spin is to
be understood as a conserved “pseudospin”, correspond-
ing to the two-level ground-state doublet that is deter-
mined by the crystal field and the spin-orbit interaction.
As a practical example, we consider the response of the

system to an external magnetic field ~H(r) that couples
to the spin density ~ρs(r) =

∑
α,β Ψ†α(r)~σαβΨβ(r) via an

interaction term

H′ = λ

∫
dr ~H(r) · ~ρs(r). (3)

Before showing how the spin-density vertex function, the
expectation value of ~ρs(r, t) (in Heisenberg representa-
tion), controls the response to H′, we remind that when
a density operator commutes with the interaction term
in the Hamiltonian, then it obeys a continuity equation,
derived from ∂Ψ/∂t = i[H,Ψ]. Since the spin density
operator commutes with Eq. (2), only the kinetic energy
enters the commutator and we have the familiar local
conservation law (repeated greek indices are summed):

∂~ρs(r, t)

∂t
− i

2m
[~∇· (~∇Ψ†α~σαβΨβ −Ψ†α~σαβ ~∇Ψβ ] = 0. (4)

The spatial derivatives in Eq. (4) come from the commu-
tator of ρs with the kinetic energy, which in momentum

space is
∑
k,α εkc

†
k,αck,α For later convenience, it is useful

to reexpress the continuity equation in momentum space:

i∂~ρq/∂t =
∑
k

(εkq)c
†
k+,α

~σαβck−,β , (5)

where ~ρq =
∑
k c
†
k+,α

~σαβck−,β , with k± = k ± q/2 and

εkq = εk+ − εk− In compact form, it is∑
k

D(k, q; t) c†k+α~σαβck−,β = 0, (6)

where the operator D(k, q; t) is

D(k, q; t) =
∂

∂t
− (εkq) (7)
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The considerations above apply also to the charge re-
sponse and lead to the usual charge continuity equa-
tion. For our general purposes, we want to discuss the
vertex function that describes the coupling of an elec-
tron (spin or charge) density to an external perturba-
tion such as a charge or spin density fluctuation boson
field or a magnetic field. For example, in linear re-
sponse, the magnetic field perturbation H′ of Eq. (3)
gives rise to a correction to the single-particle Green’s

function Gαβ(1, 2) = −〈TΨα(1)Ψ†β(2)〉, where T is the
time-ordering operator.

δGαβ(1, 2) =

∫
d3 G

(2)
αβδγ(1, 2; 3, 3+)λ ~H(3) · ~σγδ. (8)

Here, the two-particle Green’s function is

G
(2)
αβγδ(1, 2; 3, 4) = −〈TΨα(1)Ψ†β(2)Ψγ(3)Ψ†δ(4)〉 (9)

and in Eq. (8), 3+ means (r3, t3 +0+). It is seen that the
RHS of Eq. (8) contains ~ρs(3);

δGαβ(1, 2) =

∫
d3〈TΨα(1)Ψ†β(2)~ρs(3)〉 · λ ~H(3). (10)

This shows how the vertex function controls the response.
Making use of the conservation law we may now derive

identities relating the response function to the single-
particle Green’s function or its self energy. To achieve
this we re-express the two-particle Green’s function in
the integrand of Eq, 10 in momentum space. It becomes∑

p

G
(2)
αβδγ(k, p; q)~σγδ, (11)

where

G
(2)
αβδγ(k, p; q) = −〈Tck+α(t1)c†k−β(t2)cp−δ(t3)c†p+γ(t+3 )〉.

(12)
Here, k± = k± q/2, p± = p± q/2 are the momenta of the
particle-hole pairs entering and leaving the two-particle
Green’s function.

The next step is to let the operator D(k, q; t3) that
appears in the conservation law, Eq. (6) act on this G(2).
The action of the operator on the ρq part of G(2) gives
zero because of the conservation law, whereas the time
derivative in D acts on the step functions defined by the
time ordering. The result is∑

p

[ν − εpq]G(2)(k, p; q) = G(k−)−G(k+). (13)

Here we have Fourier transformed in time (t3) and on
the RHS of Eq. (13), k and q mean (k, ω) and (q, ν)
respectively. That is, k± → (k± q/2, ω ± ν/2) and here
the sum on p includes

∫
dω. For the charge response,

Eq. (13) holds, as the spin indices are irrelevant. We
shall restore them later, when necessary.

The next steps involve the use of well-known relations
among the Green’s fs and associated amplitudes.

G−1(k, ω) = ω−εk−Σ(k, ω) = G−10 (k, ω)−Σ(k, ω) (14)

G(2)(k, p; q) = G(k+)G(k−)∆(k, p; q) (15)

∆(k, p; q) = δ(k, p) + Γ(k, p; q)G(p−)G(p+) (16)

Λ(k, q) = 1 +
∑
p

Γ(k, p; q)G(p−)G(p+) (17)

In the above, Γ(k, p; q) is the four-point vertex (without
external legs) and Λ(k, q) is the three-point vertex am-
plitude that enters the Ward identity, We use Eq. (15) in
Eq. (13), divide out G(k+)G(k−) and find∑

p

(ν − εpq)∆(k, p; q)

= ν − εkq − Σ(k+) + Σ(k−), (18)

where Σ(k) is the self energy part as in Eq. (14). This
result has already been anticipated in Ref. 19; we make
use of it in what follows.

We take the derivative of Eq. (18) with respect to ν
and as we are interested in the behavior of Λ(k, ω;q, ν)
for ν → 0 and arbitrary q, we then take ν = 0 and obtain

Λ(k;q, 0)−
∑
p

εpq

[
∂

∂ν
Γ(k, p; q)G(p−)G(p+)

]
ν=0

=
1

2
[Z−1(k+, ω) + Z−1(k−, ω)], (19)

where we used the quasiparticle weight factor at (k, ω)
defined as

Z−1(k, ω) = 1− ∂

∂ω
Σ(k, ω) (20)

The second term on the LHS of the key result Eq. (19)
is the ν = 0 derivative of the spin-current density vertex.

A situation of particular interest arises if the quasi-
particle weight factor Z(k, ω) happens to be small, or
even tends to vanish, implying that the effective quasi-
particle mass m∗/m = Z−1(k, ω) is large either in cer-
tain regions on the Fermi surface (so-called hot spots)
or all over the Fermi surface. This will be the case in
the critical regime near a quantum phase transition to
e.g. an antiferromagnetic phase. We may then conclude
from the key equation (19) that the three-point vertex
is enhanced approximately proportional to the effective
mass enhancement. This follows from the fact that both
the spin density and the spin-current density vertices are
given by integrals of Γ G(p+)G(p−) multiplied by two dif-
ferent weight factors, 1 and εpq(∂/∂ν), respectively. Al-
though the effective mass enhancement occurs for a state
near the Fermi surface, we emphasize the new result that
the vertex enhancement takes place if at least one of the
partners of the particle-hole pair, with momenta k+ or
k−, is on the Fermi surface. In order to demonstrate
that Eq. (19) does indeed imply a proportionality of Λ to
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Z−1 we consider the limit of small, but non-zero q and
ν = 0, when Fermi liquid theory applies. In this case the
vertex function is given as Λ = Z−1/(1 + Fa), where Fa
is the Landau parameter in the spin channel. In order
for the Ward identity Eq. (19) to be satisfied, the current
density term has to amount to Z−1Fa/(1+Fa). The two
contributions add up to Z−1, as required by the Ward
identity. In other words, for any non-zero Fermi liquid
interaction Fa both terms on the l.h.s. of Eq. (19) are
proportional to Z−1, and will therefore diverge whenever
Z−1 diverges.

IV. VERTEX FUNCTION AT LARGE Q

We now calculate the irreducible spin-density vertex
function Λ(k, ω;Q, ν = 0) (called λQ in Ref. 13) in
the framework of the theory of critical quasiparticles
near an antiferromagnetic critical point as developed in
Refs. 11–13. There it was shown that for the case of
three-dimensional AFM spin fluctuations, when conven-
tional spin density wave theory is supposed to work, a
new strong-coupling regime may be accessible under cer-
tain conditions. This regime is characterized by a power-
law divergence of the effective mass as a function of en-
ergy, and hyperscaling with critical exponents z = 4
and ν = 1/3. The theory requires the particle-hole ir-
reducible spin density vertex function at wavevector Q
to diverge like the effective mass. As shown in Sec. III,
this can be a consequence of the Ward identities. How-
ever, since the Ward identities relate the full vertex func-
tions Λ to the effective mass (or the inverse quasiparticle
weight factor 1/Z), one may ask how the irreducible ver-
tex, which is the quantity needed in the strong coupling
theory11–13depends on Z. We therefore show in the fol-
lowing that a certain diagram contributing to the irre-
ducible vertex correction is indeed proportional to 1/Z,
provided one assumes that this very vertex correction
renormalizes the spectrum of spin fluctuations and their
the coupling to quasiparticles in just the way that was
assumed in the theory of critical quasiparticles.

There are two ways in which the vertex function λQ
enters the theory: first, the spin-fluctuation spectrum is
affected in the Landau damping term; it acquires a factor
λ2Q, from the renormalization of the particle-hole bubble
diagram of Landau damping at each end. Thus, for the
spin fluctuations

Imχ(q, ν) =
N0λ

2
Qν

(r + (q−Q)2)2 + (λ2Qν)2

Here N0 is the bare density of states, r is the dimension-
less tuning parameter (r → 0 at the QCP) and wavevec-
tor q and frequency ν are in units of kF and εF , respec-
tively. Second, since the coupling of the spin fluctuations
to the quasiparticles also involves a factor λQ, each end

of a spin fluctuation line receives a factor λQN
−1
0 .

The large momentum transfer involved in a scatter-
ing process of quasiparticles off AFM spin fluctuations

usually takes quasiparticles into final states far from the
Fermi surface, except for momenta at “hot spots” on the
Fermi surface. The consequences of these limitations of
critical scattering are often not compatible with what is
observed experimentally. It was therefore suggested in
Ref. 13 that simultaneous scattering off two spin fluc-
tuations with opposite momenta, leading to small total
momentum transfer would be a more relevant process.21

Two spin fluctuations may be thought of as an (exchange)
energy fluctuation χE(q, ν). Schematically, the energy
fluctuation propagator is constructed from GGχχ (χ
is the spin fluctuation propagator) as in the diagram of
Fig. 1, in which the vertex corrections are shown.

�E
k+

k� p�

p+

�

�

�Q

�v=

FIG. 1. Structure of the energy fluctuation. The spin fluctua-
tions χ carry momentum Q. The black dots denote the vertex
function λQ and the grey vertex corrections denote the small
q vertex λv. The black diamonds on each end of χE denote
the combination λ2

Qλv

.

In Fig. 1, the vertex function λv is shown at each end
of χE . Since χE carries a small momentum transfer,
λv ∝ 1/Z; it is governed by by the usual Ward identity
at (q ≈ 0, ν → 0).

The spectrum of χE was calculated in Ref. 13,
Eqs. (2,3) to be

Im χE(q, ν) =
(N0)3λ3Qν

5/2

(r + q2)2 + (λ2Qν)2
(21)

The corresponding self energy due to energy fluctua-
tion exchange is given by

Σ(k, ω) = λ2Qu
2

∫
dq G(k + q, ω + ν) χE(q, ν) (22)

and leads to Σ ∝ ω3/4; hence Z(ω) ∝ ω1/4. In Eq. (22),
u ∝ N−10 .

The first vertex correction diagram that corresponds
to the dressing of the spin-density vertex λQ by energy
fluctuations is shown in Fig 2. It has has one energy
fluctuation that bridges the vertex:

λ
(1)
Q = λ4Qλ

2
vu

4

∫
dq G(k+ + q)G(k− + q)χE(q). (23)

For generic p, one of the momenta, p + q + Q will be
far from the Fermi momentum, while the other, p + q, is
close to it (or vice versa). We may then put G(p + q +
Q) ≈ 1/εF . What remains is the self-energy expression,
Eq. (22), so that

λ
(1)
Q (k,ω;Q, ν = 0) ≈ Σ(k, ω)

εF
(24)
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�E(q)
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q
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+
q

FIG. 2. Structure of the first energy fluctuation contribution
to the spin-density vertex. The energy fluctuation χE car-
ries (small) momentum q. The black diamonds denote the
combination λ2

Qλv, as in Fig. 1

We see that λ
(1)
Q → 0 as ω → 0 and is not singular.

However, singular diagrams do occur if at least three spin
fluctuation lines in parallel are internal in a contribution
to λQ(p,ω;Q, ν = 0) (any odd number will do). Two of
these combine into an energy fluctuation. The resulting
diagram, shown in Fig. 3, has a spin fluctuation and an
energy fluctuation in the intermediate state, similar to
the Azlamasov-Larkin diagram in the theory of super-
conducting fluctuations.

�

k�

k+

�E

Q

FIG. 3. Structure of the singular energy fluctuation contri-
bution to the spin-density vertex. The energy fluctuation χE

carries (small) momentum q. The black diamonds denote the
combination λ2

Qλv, as in Fig. 1. The black dots denote the
vertex function λQ.

λ
(3)
Q = A

∫
dq G(p− q)T (q;Q)χ(Q+ q)χE(q),

where A = λ6Qλ
2
vu

6 and we defined the triangle loop

T (q;Q) =

∫
dp′′ + q)G(p′)G(p′ + q +Q)

The quantity T (q;Q) is noncritical and may be replaced
by T (q;Q) ≈ N0/εF . It is convenient to first calculate

the imaginary part of λ
(3)
Q at temperature T << ω:

Imλ
(3)
Q ≈ A1

∫ ω

0

dν

∫
d~q Imχ(Q+ q)ImχE(q)ImG(p− q)

(25)
Here A1 = λ6Qλ

2
vu

6(N0/εF ). The result of the integration

over the solid angle of ~q is ∝ 1/q. We restrict ourselves

to the critical regime, r = 0 in χE . The q-integration
may then be performed for λ2Q|ν| < q2 <∞

Imλ
(3)
Q ∝

k3F
N0εF

λ11Q λ
2
v

∫ ω

0

dν|ν|7/2
∫
qdq

1

[q4 + (λ2Q|ν|)2]2

∝ λ5QZ−2|ω|3/2

where we used λv ∝ Z−1 as stated above. We now iden-

tify λ
(3)
Q = λQ , and solve the resulting equation for λQ:

λQ ∝ Z1/2|ω|−3/8 (26)

This result may be combined with the result for Z in the
strong-coupling regime which was obtained in Ref. 13,
Eq. (4):

Z ∝ λ5Q|ω|3/2 (27)

Combining Eqs. (26,27), we find

λQ ∝ Z−1 ∝ |ω|−1/4,

which is precisely what has been postulated in Ref. 13 on
the basis of phenomenological arguments.

V. CONCLUSION

We investigated the Ward-Takahashi identity for the
spin or charge density vertex amplitude that describes
the response to an external probe and/or coupling to a
collective mode. We showed that even when the momen-
tum transfer entering the vertex ~q is non-zero, the vertex
amplitude λq may be related to the quasiparticle weight
factor Z; it therefore acquires singular behavior when Z
does. Thus, our results are of use in analyzing behavior
of metals near quantum critical points, where Z → 0.

In particular, the result is of importance for the case of
an antiferromagnetic quantum critical point, where the

relevant momentum transfer ~Q is the ordering vector and
is not small. This situation is the setting for the re-
cent development of critical quasiparticle theory12,13, in
which the singular behavior of λq=Q was proposed. A
new feature of the present work is that it is sufficient
that (at least) one of the external lines to the (three-
point) vertex is on the Fermi surface, rather than requir-
ing both to be. Therefore, the identity holds even when
~q does not connect two points on the Fermi surface (“hot
spots”). This was essential in the critical quasiparticle
theory to achieve good agreement with experiments on
YbRh2Si2 (resistivity, specific heat, thermopower, mag-
netic susceptibility, magnetic Grüneisen ratio)11,12 and
CeCu5.9Au0.1 (neutron scattering, specific heat, resistiv-
ity, magnetization)13.
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(2013).
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