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The microscopic wave functions of the composite fermion theory can incorporate electron mass
anisotropy by a trivial rescaling of the coordinates. These wave functions are very likely adiabatically
connected to the actual wave functions of the anisotropic fractional quantum Hall states. We show
in this article that they possess the nice property that their energies can be analytically related
to the previously calculated energies for the isotropic states through a universal scale factor, thus
allowing an estimation of several observables in the thermodynamic limit for all fractional quantum
Hall states. The rather weak dependence of the scale factor on the anisotropy provides insight
into why fractional quantum Hall effect and composite fermions are quite robust to electron mass
anisotropy. We discuss how better, though still approximate, wave functions can be obtained by
introducing a variational parameter, following Haldane [Phys. Rev. Lett. 107, 116801 (2011)], but
the resulting wave functions are not readily amenable to calculations. Our considerations are also
applicable, with minimal modification, to the case where the dielectric function of the background
material is anisotropic.

PACS numbers: 73.43.Cd, 71.10.Pm

I. INTRODUCTION

Striking recent experiments from Princeton by Gok-
men et al.1, Kamburov et al.2,3 and Mueed et al.4,5

have investigated the role of electron mass anisotropy on
the composite fermion (CF) Fermi sea, which was pre-
dicted in the early 1990s by Halperin, Lee and Read6

and Kalmeyer and Zhang7 and has been studied exten-
sively8–16. Anisotropy in the mass for electrons (at zero
magnetic field) can occur due to the band structure, e.g.
in AlAs quantum wells17 where the Fermi pockets are
elliptical with the longitudinal and transverse electron
band masses that differ by a factor of ∼5, or can be
produced by application of an in-plane magnetic field in
finite width GaAs quantum wells5,18–20. Direct measure-
ments of the CF Fermi wave vectors in perpendicular
directions2,3 demonstrate that the CF Fermi sea also be-
comes anisotropic. These experiments also measure the
degree of anisotropy for the CF Fermi sea as a function
of the anisotropy of the electron Fermi sea. In isotropic
systems, the electron band mass mb is not a parameter
for the CF physics, to the extent one can neglect Lan-
dau level (LL) mixing, and the effective mass of com-
posite fermions is determined entirely by the interelec-
tron interactions6,21,22. The experiments thus raise a
fundamental question: How are composite fermions and
their compressible and incompressible states modified by
a mass anisotropy of the underlying electrons? How can
one incorporate the effect of mass anisotropy into the
CF theory? How robust are composite fermions to elec-
tron band mass anisotropy? What is the physics of the
state obtained at very large anisotropies when composite
fermions are destabilized?

Balagurov and Lozovik23 had already addressed this
issue theoretically many years ago for the CF Fermi sea
using the Chern-Simons theory6,24. Significant progress
has been made after a recent work by Haldane25, and

many recent articles26–34 have investigated FQHE states
and the Fermi sea in systems with anisotropy. Some-
what conflicting conclusions have been reached for the
CF Fermi sea: Ref.23 finds that the CF Fermi contour
is identical to the electron Fermi contour at zero mag-
netic field, whereas Yang30 and Murthy32 find a smaller
anisotropy for the former.

Most of the studies in this context have focused on the
Laughlin 1/3 state35, and numerical work has been re-
stricted to fairly small systems. We ask in this work how
the CF theory can be modified to include electron mass
anisotropy. That would shed light on a broad class of
FQHE states, their excitations, the CF Fermi sea6, and
many other phenomena, and will tell us how the vortex
structure of composite fermions is altered in the presence
of a mass anisotropy. We present in this work a step in
that direction. We begin by noting that the wave func-
tions of composite fermions36 can be readily generalized
to anisotropic systems by a redefinition of the coordi-
nates. These wave functions are expected to be adiabat-
ically connected to the actual ground state so long as
the system is in the gapped FQHE phase. We show that
for these wave functions, the energies for many quanti-
ties of interest are modified by an anisotropy-dependent
scale factor, which allows one to export many previ-
ously known results to anisotropic systems. These in-
clude ground state energies, transport gaps, spin polar-
ization phase diagram, etc. To further improve upon
these wave functions, we show how a variational param-
eter can be introduced for composite fermions, following
Haldane25. The form of the resulting wave functions,
however, is complex and not amenable to immediate cal-
culations. (This is the case even for the 1/3 state for
which only very small systems have been studied in the
literature.28,29) We note that our results are also appli-
cable to the case where the interaction is anisotropic (as
would be induced from an anisotropic dielectric function



2

of the host material).
We find it convenient to formulate the generalization

of the CF theory in the disk geometry. The spherical
geometry37, in which electrons move on the surface of
a sphere subjected to a radial magnetic field, is not ap-
propriate for the issue of anisotropic mass. The torus
geometry38,39 appears most appropriate for this question
(and is indeed very convenient for numerical studies of
the anisotropy29,40), but the construction of Jain’s CF
wave functions in this geometry is nontrivial even for
a system with isotropic electron mass41,42 (because the
product of two LL wave functions is not a valid wave
function). We note that there has also been much exper-
imental and theoretical work on anisotropic stripe, liquid
crystal, and FQHE states (see, for example Refs.43–51) for
systems with isotropic electron mass.

The plan of the paper is as follows. In Section II, we
show that the wave functions for various FQHE states
can be modified straightforwardly to accommodate elec-
tron mass anisotropy. We show that for these wave
functions, many experimentally measurable quantities
for anisotropic systems are related to those for isotropic
systems by a simple scale factor. In Section III we intro-
duce a variational parameter, following Haldane, which
can produce a better quantitative approximation for the
actual anisotropic state. We find, however, that these
states are very complex and not amenable to computa-
tions. The paper is concluded in Section IV.

II. ANISOTROPIC COMPOSITE FERMIONS –
ZEROTH ORDER DESCRIPTION

To establish the notation, we begin with the single par-
ticle problem:

H0 =
1

2mx

(
px −

e

c
Ax

)2
+

1

2my

(
py −

e

c
Ay

)2
(1)

We use the symmetric gauage in which A =
(B/2)(−y, x, 0) and define l =

√
~c/eB, lx =

√
γ l,

ly = l/
√
γ, ωc = eB/[c(mxmy)1/2], xs = x/lx, ys = y/ly,

where the mass anisotropy parameter is

γ =
√
my/mx = lx/ly. (2)

We further define dimensionless complex coordinates

z = xs − iys =
x

lx
− i y

ly
, z = xs + iys =

x

lx
+ i

y

ly
(3)

where the scaled distances are denoted by the subscript
s, and introduce the standard ladder operators

a = (z/2 + 2∂)/
√

2, a† = (z/2− 2∂)/
√

2 (4)

b = (z/2 + 2∂)/
√

2, b† = (z/2− 2∂)/
√

2 (5)

where ∂ = ∂/∂z and ∂ = ∂/∂z. These have commutators
[a, a†] = 1, [b, b†] = 1, and all other commutators vanish.

The Hamiltonian can be recast (taking ~ωc = 1) as H0 =
a†a + 1/2, which has eigenstates given by |n,m〉 with
eigenvalues (n+ 1/2) and wave functions

φn,m =
1√
2π

(b†)m√
m!

(a†)n√
n!
e−

zz
4 (6)

where n = 0, 1, 2, · · · andm = 0, 1, 2, · · · . Even thoughm
loses its interpretation as the z-component of the angular
momentum, it can still be used as a label of the single
particle orbitals. In particular, the lowest LL (LLL) wave

functions are given by zme−zz/4l
2

, with maxima along
an elliptical contour enclosing an area 2mπl2, with radii
along the x and y axes given by

√
2mlx and

√
2mly. A

note regarding notation ought to be stressed: z and z̄ are
defined in terms of the scaled variables in what follows
below.

We now turn to FQHE, where electrons interact via the
isotropic Coulomb interaction e2/εr. The wave functions
of FQHE states at the fractions of the form ν = n/(2pn±
1) for an isotropic system are given by36:

Ψ n
2pn+1

= PLLLΦn(z, z)
∏
j<k

(zj − zk)2p (7)

Ψ n
2pn−1

= PLLL[Φn(z, z)]∗
∏
j<k

(zj − zk)2p (8)

where Φn is the wave function of n filled Landau levels
and the operator PLLL implements LLL projection, which
can be accomplished as explained in Refs.22,52–57. Wave
functions can be constructed analogously for the charged
and neutral excitations of the FQHE states58,59, and for
FQHE states involving spin and / or valley degree of
freedom22,60,61.

It is evident that, with z defined as in Eq. 3, these
are all valid LLL wave functions even in the presence of
mass anisotropy and we call these “zeroth-order” wave
functions. The integer quantum Hall effect (IQHE)
states, the LLL projection, etc. all go through as for
the isotropic case. They also satisfy some of the prop-
erties that originally motivated these wave functions in
the absence of anisotropy36. Briefly: These establish a
mapping between the FQHE and the IQHE. Experiments
show that such a mapping must exist even in the pres-
ence of (at least sufficiently weak) anisotropy, given that
the prominent sequences n/(2n ± 1) and the 1/2 Fermi
sea are observed even in the presence of anisotropy. If we
neglect the LLL projection, these wave functions explic-
itly build very good correlations between electrons by en-
suring that the probability of electrons approaching one
another vanishes very rapidly as r4p+2, where r is the dis-
tance between them. Analogous to the isotropic case, the
amplitude outside of the LLL is small even without LLL
projection36,62,63, and therefore one may expect that the
LLL projection does not destroy these correlations.

Because these wave functions are adiabatically con-
nected to the exact FQHE states, it is worth asking what
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they imply for various measurable quantities. We show
the useful result that, for the 1/r interaction (which is
relevant for electrons in the LLL), many observable quan-
tities of the wave functions in Eqs. 7 and 8 are related
to those of the isotropic systems through an overall scale
factor, which allows one to borrow known results from
the extensive literature for the CF states in isotropic sys-
tems. We believe that our results give insight into the
qualitative effect of electron band mass anisotropy, and
also provide a first approximation for the quantitative
corrections to various quantities.

A. CF Fermi sea

We note, to begin with, that the above immediately al-
lows us to make a statement regarding the anisotropy of
the CF Fermi sea6. The pair correlation function of the
isotropic CF Fermi sea exhibits sin(2kF r+φ) Friedel os-
cillations64, where kF ≈

√
4πρ, as appropriate for a fully

spin polarized system65. For ν = 1/2 CF Fermi sea, with
ρ = ν/2πl2, the oscillations are given by sin(2r/l + φ).
This result carries over to the anisotropic case in scaled
units. Converting to laboratory units, the oscillations
behave as sin(2xs + φ) = sin(2k∗x,Fx + φ) along the x

direction and as sin(2ys + φ) = sin(2k∗y,F y + φ) for the y
direction where

k∗x,F =
1

lx
=
kF√
γ
, k∗y,F =

1

ly
=
√
γkF . (9)

The ratio of the CF Fermi wave vectors is given by

k∗x,F
k∗y,F

=
1

γ
=

(
mx

my

)1/2

(10)

This is the same ratio as that for electrons in zero mag-
netic field, indicating that the CF Fermi sea has the same
contour as the electron Fermi sea at zero magnetic field,
in agreement with Balagurov and Lozovik23.

This conclusion appears, at first, to be inconsistent
with the experiments of Kamburov et al.3, who find a
smaller anisotropy for the CF Fermi sea than for the
electron Fermi sea. In fact, they find that even when the
electron Fermi sea becomes peanut shaped or breaks into
two pieces (i.e., becomes bilayer like), the CF Fermi sea
remains elliptical, with much smaller anisotropy. How-
ever, a closer look shows that not necessarily to be the
case. Kamburov et al.3 have noted that the physics of
electrons at zero magnetic field and composite fermions
at ν = 1/2 differs in an important aspect. The elec-
tron band mass is very nearly the same in the directions
parallel and perpendicular to the 2D layer, whereas for
composite fermions the two masses are vastly different:
the CF mass parallel to the plane is a result of inter-
electron interactions, and has been determined3,66,67 to
be approximately equal to the electron mass in vacuum
(me), whereas the physics in the transverse direction is
determined by the electron band mass mb. The Fermi sea

anisotropy induced by application of a parallel magnetic
depends sensitively on the ratio of the perpendicular and
parallel masses. Kamburov et al.3 have considered a sys-
tem of auxiliary fermions at zero magnetic field that have

different m‖ and m⊥, and obtained
kx,F
ky,F

as a function of

an in-plane field Bx in a perturbative calculation to be
(1−ζB2

xmz/m‖)
1/2 where ζ depends on the quantum well

width. They find this to be in good quantitative agree-

ment with the observed
k∗x,F
k∗y,F

for composite fermions if

they take m‖ = me and m⊥ = mb = 0.067me. The

observations of Kamburov et al.3 are thus not inconsis-
tent with Eq. 10, provided one accounts for different m‖
and m⊥. An experimental measurement of CF Fermi
contour in a material such as AlAs quantum well, where
the anisotropy of the electron band mass does not derive
from a parallel field, would provide a more direct test of
the relation between the anisotropies of the electron and
the CF Fermi contours.

B. Ground state energies

For electrons in the presence of a background charge,
the total energy is the sum of the electron-electron,
electron-background and background-background inter-
action terms68:

〈V̂ee〉 =
e2

2

∫
dr1

∫
dr2 ρ(r1)ρ(r2)g(r1, r2)V (r1, r2)

(11)

〈V̂eb〉 = −e2
∫
dr1

∫
dr2 ρ(r1)ρb(r2)V (r1, r2) (12)

〈V̂bb〉 =
e2

2

∫
dr1

∫
dr2 ρb(r1)ρb(r2)V (r1, r2) (13)

where −eρ(r) and eρb(r) are the electron and back-
ground charge densities and g(r1, r2) is the pair correla-
tion function defined as:

g(r1, r2) =
〈Ψ̂†(r1)Ψ̂†(r2)Ψ̂(r2)Ψ̂(r1)〉

ρ(r1)ρ(r2)
(14)

where Ψ̂†(r) is the electron field creation operator.
We next transform to the scaled variables rs =

(xs, ys). In the scaled frame, the incompressible ground
state wave function has both translational and rotational
invariance and the pair correlation function depends only
on |r1s − r2s| = rs. (In the scaled variables, the mass
anisotropy reflects through a direction dependent inter-
action.) The total energy obtained by adding the above
three terms assuming uniform density ρ(r) = ρb(r) = ρ0
as is relevant for an infinite system simplifies to

〈V̂ 〉 = 〈V̂ee〉+ 〈V̂eb〉+ 〈V̂bb〉 (15)

=
ρ20e

2

2

∫
dr1s

∫
dr2s [g(rs)− 1]V (r1s, r2s)
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FIG. 1. The scale factor α as a function of the anisotropy
parameter γ = lx/ly =

√
my/mx. We only show the region

0 < γ ≤ 1 since α(γ) = α(1/γ).

We will now specialize to the Coulomb interaction
1/ε|r1 − r2|, which in the scaled coordinates is given
by:

V (r1s, r2s) =
1

ε
√

(
√
γrs cos θ)2 + ( rs sin θ√

γ )2
(16)

where rs and θ are the polar coordinates of r1s − r2s.
By switching to center of mass and relative coordinates

in the scaled variables we obtain:

〈V̂ 〉
N

=
e2ρ0
2ε

∫
drs

[g(rs)− 1]√
(
√
γrs cos θ)2 + ( rs sin θ√

γ )2
(17)

Performing the angular integrals, this reduces to

〈V̂ 〉
N

= α(γ)

[
〈V̂ 〉
N

]
γ=1

(18)

with the scale factor

α(γ) =
1

π
√
γ

[
K
(

1− 1

γ2

)
+ γK

(
1− γ2

)]
(19)

where K(m) is the complete elliptic integral of the first
kind. The scale factor α(γ) is plotted in Fig. 1. We
note that the scale factor α changes very little from unity
even when the electron mass anisotropy my/mx becomes
very large, which gives insight into the robustness of the
various states of composite fermions to the electron mass
anisotropy.

In the above analysis we have assumed an infinite sys-
tem with the wave function satisfying translational and
rotational invariance in the scaled variables. In the Ap-
pendix A we show that the scaling of Eq. 18 holds even
for a finite droplet so long as the system has rotation
symmetry in the scaled variables.

C. Excitations gaps

The excitation gaps measured in transport experi-
ments are interpreted as the energy required to create
a far separated pair of particle hole excitation of com-
posite fermions. For the state at ν = n/(2pn + 1)
[ν = n/(2pn − 1)], the particle [hole] excitation consists
of adding a composite fermion to the empty (n+1)th CF
Landau-like level (termed ΛL), and the hole [particle] ex-
citation consists of removing a CF from the topmost filled
nth ΛL. In the scaled frame, these excitations have the
same density profile as those for the isotropic system. In
the laboratory frame, they are elongated in one direction
while shrunk in the other. One can evaluate the energy
gap by considering states containing a single particle, a
single hole, and the ground state:

∆ n
2pn±1

(γ) = Eqhn
2pn±1

+ Eqpn
2pn±1

− 2Egsn
2pn±1

(20)

Because the states do not have uniform density, we must
work with the general expressions in Eqs. 11, 12 and 13
for the evaluation of the terms on the right hand side.

While the wave functions for excitations do not satisfy
translational invariance, they do satisfy rotational invari-
ance in the scaled frame of reference, for states in which
the additional composite fermion in the (n + 1)th ΛL is
taken to be located at the origin (with no loss of general-
ity), or, similarly, the missing CF in the nth ΛL is taken
to be located at the origin. This leads to a simplification
in our calculations. We show in the Appendix A that
the energy of any wave function that satisfies rotational
invariance in the scaled frame is related to the energy of
the corresponding isotropic state by the same scale factor

〈V̂ 〉γ = α(γ)〈V̂ 〉γ=1 (21)

In particular, we have

∆ n
2pn±1

(γ) = α(γ)∆ n
2pn±1

(γ = 1) (22)

and therefore gaps go down with increasing anisotropy.
Very recent experiments by Mueed et al.5 have re-

ported a study of the gap of the fully spin polarized 2/3
fractional Hall state as a function of the anisotropy pa-
rameter. They find that for up to γ = 0.80 there is es-
sentially no change in the gap, as expected from theory.
However, for γ = 0.66 the gap is reduced by 40% from
its isotropic value. This is unexpected from our theory
or from previous calculations40, and might be indicative
of proximity to an instability.

D. CF mass

The “activation” mass m∗a of composite fermions
has been defined by interpreting the activation gap as
an effective cyclotron energy ~eB∗/m∗ac, of composite
fermions in an effective magnetic field B∗6,66,67,69,70.
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Since the gaps are reduced by anisotropy, the activa-
tion mass of composite fermions increases with increasing
anisotropy as

m∗a(γ) = [α(γ)]−1m∗a(γ = 1) (23)

Note that the CF activation mass has no directional de-
pendence.

E. Neutral collective mode

The neutral excitations are excitons of composite
fermions58,59,71,72. The wave vector of the excitation is
proportional to the distance between the excited com-
posite fermion and the hole left behind. For large wave
vectors the energy of the neutral modes is not expected to
depend on the relative orientation of the constituent CF
particle and CF hole and is simply given by Eq. 20, and
thus depends only on the magnitude of k. In this limit,
the energy of the neutral mode also scales by the factor
α(γ) in the presence of anisotropy. For small wave vec-
tors, when the particle and the hole excitations overlap,
the energy of the collective mode is expected to depend
on the direction. In particular, the energies at the roton
minima73 will have directional dependence. We believe
that some features of the small wave vector dispersion can
be captured by scaling the wave vector appropriate, but
we have not calculated the dispersion explicitly. Apalkov
and Chakraborty33 have calculated the collective exci-
tations of the Laughlin state in the n = 0 and n = 1
Landau levels of graphene in the presence of anisotropic
interactions, and the calculated dispersion indeed shows
directional dependence at small wave vectors, but none
at large wave vectors. Yang et. al have also calculated
the dispersion of the collective mode in the presence of
the effective mass anisotropy for the 1/3 state29.

F. Spin phase transition

We next ask how the spin phase diagram of compos-
ite fermions is affected by anisotropy. Transitions be-
tween differently spin polarized CF states can be caused
by changing the Zeeman energy, and the critical Zeeman
energies have been determined for many fractions for an
isotropic system74–84. (These results also apply to sys-
tems with valley splitting85,86.) These are generally con-
sistent with theoretical results56,60,61,87–91. The above
considerations lead to the prediction that the critical Zee-
man energies for a system with anisotropic electron mass
are given by

Ecritical
Z (γ) = α(γ) Ecritical

Z (γ = 1) (24)

The study of the critical Zeeman energy as a function
of anisotropy can in principle allow a direct test of the
validity of our approach, and in particular, of how far the
wave functions in Eqs. 7 and 8 remain valid.

III. VARIATIONAL PARAMETER

The wave functions in Eqs. 7 and 8 do not contain
any adjustable parameter. They can be improved by in-
troducing a variational degree of freedom η, following
Haldane25. The essential idea is to introduce the ladder
operators

bη =
1√

1− |η|2
(b+ηb†), b†η =

1√
1− |η|2

(η∗b+b†) (25)

which also satisfy the commutator [bη, b
†
η] = 1. These

create single particle eigenorbitals that are distorted rel-
ative to those created by the b†’s. The single particle
orbitals created by b†η are given by:

φηn,m =
1√
2π

(b†η)m
√
m!

(a†)n√
n!

(1− |η|2)
1
4 e−

1
4 zz−

η
4 z

2

(26)

where e−
1
4 zz−

η
4 z

2

is annihilated by a and bη.
The next question is: How do we generalize the wave

functions in Eqs. 7 and 8? We first note that for the
IQHE states, the wave function is given by

Φηn = (1− |η|2)
N
4 e−

η
4

∑
i z

2
i Φn (27)

where Φn is the state in the absence of anisotropy and N
is the number of particles. This relies on the property of
Φn that if any orbital φq,m is occupied, then all orbitals
φq′,m with q′ < q are also occupied.

Let us now write the CF wave function in Eqs. 7 and
8 in a slightly different form, which is amenable to gen-
eralization. Noting that z = 2(a + b†), we can write the
composite fermionization factor as∏

j<k

(zj − zk)2p ∝
∏
j<k

(
aj + b†j − ak − b

†
k

)2p
(28)

Eqs. 7 and 8 can be recast as

Ψ n
2pn+1

= PLLL

∏
j<k

(
aj + b†j − ak − b

†
k

)2p
Φn(z, z) (29)

Ψ n
2pn−1

= PLLL

∏
j<k

(
aj + b†j − ak − b

†
k

)2p
[Φn(z, z)]∗

(30)
For n = 1, i.e. ν = 1/(2p + 1) the expression simplifies
to

Ψ 1
2p+1

=
∏
j<k

(
b†j − b

†
k

)2p
Φ1(z, z) =

∏
j<k

(
b†j − b

†
k

)2p+1

e−
1
4

∑
i zizi

(31)
One can now introduce a variational parameter by

making the replacement:

b→ bη, b
† → b†η, Φn → Φηn = (1− |η|2)

1
4 e−

η
4

∑
i z

2
i Φn

(32)
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which gives:

Ψ n
2pn+1

= PLLL

∏
j<k

(
aj + b†η,j − ak − b

†
η,k

)2p
Φηn(z, z)

(33)

Ψ n
2pn−1

= PLLL

∏
j<k

(
aj + b†η,j − ak − b

†
η,k

)2p
[Φηn(z, z)]∗

(34)
In particular, Laughlin’s wave function35 generalizes to

Ψη
1
m

=
∏
j<k

(
b†η,j − b

†
η,k

)m
(1− |η|2)

1
4 e−

1
4

∑
i zizi−

η
4

∑
i z

2
i

(35)
which is identical to the form previously considered29.
In principle, the lowest Landau level projection can be
performed by the method52 of bringing all the factors
of z̄ to the left of the z’s in each term and replacing z̄
by 2∂/∂z which acts on all terms except the gaussian

factor e−
1
4

∑
i zizi . An explicit evaluation of these wave

functions has been possible only for very small system
sizes. These wave functions are also not amenable to the
Jain-Kamilla projection method53,54, which has proved
very useful for isotropic FQHE states.

IV. DISCUSSION

The wave functions in Eqs. 7 and 8 are expected to be
adiabatically connected to the actual wave functions so
long as the system remains in an incompressible FQHE
phase. For small anisotropies, one can obtain the depen-
dence of energies on the anisotropy by writing γ = 1− ε
(ε� 1) and Taylor expanding the interaction:

V (xs, ys; ε) =
1

ε
√
γx2s +

y2s
γ

=
1

ε
√

(1− ε)x2s +
y2s

(1−ε)

=
1

ε
√
x2s + y2s

+
x2s − y2s

ε(x2s + y2s)
3
2

ε+O(ε2)(36)

Given that the eigenfunctions {|Ψ〉} of the “unper-
turbed” Hamiltonian (the first term on the right) are
symmetric in the scaled coordinates xs and ys, we have
〈Ψ|x2s|Ψ〉 = 〈Ψ|y2s |Ψ〉, indicating that the correction to
the energy is of order O(ε2). This is consistent with the
above since the Taylor expansion of the scale factor gives:

α(ε) = 1− ε2

16
+O(ε3) (37)

Ref. 26 also argued that the Coulomb energies for the
Laughlin state with and without the variational param-
eter differ only at second order in the anisotropy.

A detailed test of the accuracy of these wave functions
would require comparing their energies to those obtained
from exact diagonalization. In Fig. 2 we show the “ex-
act” scale factor αED(γ) = 〈V̂ 〉γ/〈V̂ 〉γ=1 where the ener-
gies are obtained from exact diagonalization by Yang et.

0.0 0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

anisotropy, γ = ℓx/ℓy

〈V̂
〉

N
/
[

〈V̂
〉

N

]

γ
=
1

α(γ)
α
ED(γ)

FIG. 2. A comparison of the “exact” scale factor αED(γ) =

〈V̂ 〉γ/〈V̂ 〉γ=1 (open circles) with the scale factor α(γ) (filled
dots) for the “zeroth-order” model wave functions as a func-
tion of the anisotropy parameter γ = lx/ly. The exact diag-
onalization data is reproduced from Fig. 1 of Yang et al.29,
and corresponds to N = 7 electrons at filling factor ν = 1/3
in the torus geometry.

al.29 in the torus geometry at ν = 1/3 for N = 7 elec-
trons. Although the exact αED(γ) does not correspond
to the thermodynamic limit, a comparison shows that
our model wave functions capture the fact that the en-
ergy is very insensitive to effective mass anisotropy. We
stress that these model wave functions do not capture the
physics of the eventual instability of composite fermions
with increasing anisotropy40.

V. SUMMARY

In summary, we have shown that wave functions for
composite fermions can be modified straightforwardly
to accommodate an anisotropic electron band mass.
These “zeroth-order” wave functions are adiabatically
connected to the actual wave functions for the incom-
pressible FQHE states, and thus provide a starting point
for further investigation. One of the nice features of these
wave functions is that their Coulomb energies are re-
lated to those of the isotropic systems by an anisotropy-
dependent scale factor, and consequently, many results
known for the isotropic system can thus be transported
straightforwardly to the system with anisotropy. The
scale factor has very weak dependence on anisotropy
for up to fairly large values of mx/my, which gives in-
sight into the robustness of compressible and incom-
pressible states of composite fermions to electron mass
anisotropy. It is possible to further improve upon these
wave functions by introducing a variational parameter
following Haldane25, but the resulting wave functions are
less amenable to explicit evaluations.
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Appendix A ENERGY SCALING OF WAVE FUNCTIONS RELATED TO ROTATIONALLY
INVARIANT STATES

In this appendix we show that the relation in Eq. 21:

〈V̂ 〉γ = α(γ)〈V̂ 〉γ=1

is valid for the Coulomb energy of any state which is rotationally invariant about the origin in the scaled coordinates,
and does not require either homogenous density or translational invariance. (Note: In this section all coordinates
stand for the scaled coordinates, but we drop the subscript s for ease of notation.) Examples of such a state include
a CF hole or a CF particle located at the origin, or even the ground state for a finite system. We use the following
notations to denote the coordinates: r1 and r2 are used to denote the coordinates (x1, y1) and (x2, y2) of a pair of
particles in the scaled frame. The center of mass and relative coordinates are defined as R = (r1 + r2)/2 ≡ (R, δ)
and r = r1 − r2 ≡ (r, θ) respectively. We also use complex coordinates in this section defined as z1 = x1 − iy1,
z2 = x2 − iy2, z = z1 − z2 and Z = (z1 + z2)/2.

Since the state is rotationally invariant about the origin (in the scaled frame), the densities ρ(r) and ρb(r) only
depend on the absolute value of r , i.e ρ(r) = ρ(r) and ρb(r) = ρb(r). Let us first look at the background-background
interaction:

〈V̂bb〉 =
e2

2ε

∫
dR

∫
dr

ρb(|2R + r |/2)ρb(|2R − r |/2)√
(
√
γr cos θ)2 + ( r sin θ√

γ )2

where we have used the fact that the quantities r1 and r2 are given by:

2r1 = |2R + r | =
√

4R2 + r2 + 4Rr cos(δ − θ)
2r2 = |2R − r | =

√
4R2 + r2 − 4Rr cos(δ − θ) (38)

Defining ηbb(R, r) = ρb(r1)ρb(r2) ≡ ηbb(R, r, cos(δ − θ)) we have

〈V̂bb〉 =
e2

2ε

∫
dR

∫
dr

ηbb(R, r, cos(δ − θ))√
(
√
γr cos θ)2 + ( r sin θ√

γ )2
(39)

Substituting δ − θ = β gives:

〈V̂bb〉 =
e2

2ε

∫ ∞
0

RdR

∫ ∞
0

rdr

∫ 2π

0

dθ
1√

(
√
γr cos θ)2 + ( r sin θ√

γ )2

{∫ 2π−θ

−θ
dβ ηbb(R, r, cos(β))

}
(40)

Since ηbb only depends on cosβ it is a periodic function of β with period 2π. We then make the reasonable assumption
that the background density profile is such that ηbb is a continuous function of β which allows us to change the limits
of the integral to 0 to 2π. The term in the curly parentheses thus depends only on R and r and not on θ. Calling this
term h(R, r), we get

〈V̂bb〉 =
e2

2ε

∫ ∞
0

RdR

∫ ∞
0

dr h(R, r)

∫ 2π

0

dθ
1√

(
√
γ cos θ)2 + ( sin θ√

γ )2
= α(γ)〈V̂bb〉γ=1 (41)

Exactly in the same fashion, it can be shown that the electron-background term:

〈V̂eb〉 = −e2
∫
dr1

∫
dr2 ρ(r1) ρb(r2)V (r1, r2) (42)

also satisfies

〈V̂eb〉 = α(γ)〈V̂eb〉γ=1 (43)
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Finally we look at the electron-electron interaction term:

〈V̂ee〉 = e2
∫
dr1

∫
dr2 ρ(r1)ρ(r2)g(r1, r2)V (r1, r2) (44)

The pair-correlation function is closely related to the off-diagonal density matrix which is defined as:

〈Ψ̂†(r1)Ψ̂†(r2)Ψ̂(r ′2)Ψ̂(r ′1)〉 = N(N − 1)

∫
d2r3 . . . d

2rN Φ∗(z1, z2, z3, . . . , zN )Φ(z′1, z
′
2, z3, . . . , zN )

≡ f1(z∗1 , z
∗
2) f2(z′1, z

′
2) exp

(
−|z1|

2

4l2
− |z2|

2

4l2
− |z

′
1|2

4l2
− |z

′
2|2

4l2

)
(45)

where Φ is the N electron wave function. The last step follows from the analytic form of LLL wave functions. The
functional form of f1 and f2 is the same. Noting that the functions f1 and f2 are antisymmetric functions of their
arguments, we can write the power series expansion:

〈Ψ̂†(r1)Ψ̂†(r2)Ψ̂(r ′2)Ψ̂(r ′1)〉 =
∑

m1,n1,m2,n2

cm1,n1,m2,n2
(z∗1 − z∗2)m1(z′1 − z′2)m2(z∗1 + z∗2)n1(z′1 + z′2)n2

× exp

[
−|z1|

2

4l2
− |z2|

2

4l2
− |z

′
1|2

4l2
− |z

′
2|2

4l2

]
where m1 and m2 are odd positive integers and n1 and n2 are non-negative integers. Now we set z1 = z′1 and z2 = z′2
to obtain

〈Ψ̂†(r1)Ψ̂†(r2)Ψ̂(r2)Ψ̂(r1)〉 =
∑

m1,n1,m2,n2

cm1,n1,m2,n2
[(z∗)m1(z)m2(Z∗)n1(Z)n2 + c.c.]F (R, r)

(46)

where we have made use of the reality of the expectation value and defined F (R, r) = exp[−(4R2 + r2)/(4l2)].
So far the discussion is general for any wave function in the lowest LL. Now we ask what simplification is produced

by global rotational symmetry of the wave functions, which implies that the pair correlation function be invariant
under the transformation: z → zeiψ, Z → Zeiψ in the scaled coordinates. This implies that

m1 + n1 = m2 + n2 (47)

Defining η(r ,R) = ρ(r1)ρ(r2) ≡ η(R, r, cos(δ − θ)) we find:

〈V̂ee〉 =
e2

2

∫
dR dr V (r)η(r ,R)g(r ,R)

=
e2

2

∑
m1,m2,n1,n2

cm1,m2,n1,n2

∫
dr V (r)

∫ ∞
0

RdR

∫ 2π

0

dδ

× rm1+m2Rn1+n2 2 cos[(m2 −m1)θ + (n2 − n1)δ]η(r,R, cos(δ − θ))F (R, r)

With the substitution β = δ − θ we get

〈V̂ee〉 = e2

2

∑
m1,m2,n1,n2

cm1,m2,n1,n2

∫
dr V (r)

∫ ∞
0

RdR F (R, r)rm1+m2Rn1+n2

{
×
∫ 2π−θ

−θ
dβ 2 cos[(m2 −m1 + n2 − n1)θ + (n2 − n1)β]η(r,R, cos(β))

}
Using the constraint given in Eq. 47 and making the reasonable assumption that η is a continuous function of β we
change the limits of the integral inside the curly brackets as before to 0 to 2π. The expression on the right hand side
then takes the form

〈V̂ee〉 =
e2

2

∑
m1,m2,n1,n2

cm1,m2,n1,n2

∫ ∞
0

RdR

∫
dr V (r)H(R, r) (48)

which implies

〈V̂ee〉 = α(γ)〈V̂ee〉γ=1 (49)



9

Combining Eqs. 41, 43 and 49 gives Eq. 21. We reiterate the fact that this result is true for a finite system, and only
assumes rotational invariance in the scaled reference frame.
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