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Some degree of quenched disorder is present in nearly all solids, and can have a marked impact on
their macroscopic properties. A manifestation of this effect is the Lifshitz tail of localized states that
then gets attached to the energy spectrum, resulting in the nonzero density of states in the band gap.
We present here a systematic approach for deriving the asymptotic behavior of the density of states
and of the typical shape of the disorder potentials in the Lifshitz tail. The analysis is carried out first
for the well-controlled case of noninteracting particles moving in a Gaussian random potential and
then for a broad class of disordered scale-invariant models—pertinent to a variety of systems ranging
from semiconductors to semimetals to quantum critical systems. For relevant Gaussian disorder, we
obtain the general expression for the density of states deep in the tail, with the rate of exponential
suppression governed by the dynamical exponent and spatial dimensions. For marginally relevant
disorder, however, we would expect a power-law scaling. We discuss the implications of these results
for understanding conduction in disordered materials.

I. INTRODUCTION

In forming solids, it is practically impossible to avoid
quenched disorder such as lattice vacancies or quenched
impurities. These microscopic imperfections effectively
act as randomly frozen degrees of freedom, which often
measurably affects the macroscopic properties of solids.
A dramatic example of such an effect is provided by An-
derson localization, where quenched disorder traps quasi-
particles and consequently turns a conducting metal into
an insulating Fermi glass1–4. Although the resulting ma-
terial is insulating at sufficiently low temperatures, the
temperature dependence of its direct current conductiv-
ity, σ (T ), can be very different from that of an intrinsic
insulator. When the chemical potential lies within the
band gap of very pure insulator with band gap energy
Eg, we naively expect

σ (T ) ∼ σ0exp

(

−
Eg

2kBT

)

, (1)

mediated by rarely-activated conduction quasiparticles5.
By contrast, for sufficiently disordered materials, we ex-
pect Mott’s law6,

σ (T ) ∼ σ0exp

{

−

(

E0

kBT

)1/(d+1)
}

, (2)

to hold in spatial dimension d.7 After accepting a few
physically reasonable assumptions and neglecting the role
of interactions, the estimation of the direct current con-
ductivity can indeed be mapped to a percolation prob-
lem8. In this picture, conduction is mediated by variable-
range hopping of localized quasiparticles that exist in the
band gap due to deep disorder potential wells that trap
them there. This tail of localized quasiparticles in the
energy spectrum is known as the Lifshitz tail9, and its
characterization is the main object of the present paper.
Various methods for obtaining an asymptotic expres-

sion of the Lifshitz tail exist. Building on the work of

Halperin and Lax10, Zittartz and Langer11 obtained an
asymptotic expression for the density of states deep in
the tail of the band,

ρ(E) ≈ A(E)e−B(E) , (3)

for noninteracting quasiparticles moving in a random po-
tential (see also Ref. [12]). Cardy derived the same result
through the replica trick13 and a supersymmetry-based
derivation also exists14,15. All these techniques and re-
sults, however, are confined to the noninteracting regime.
As usual, once interactions are included our theoretical
machinery and understanding remain rather primitive,
especially for strongly correlated systems. Because local-
ized states deep in the Lifshitz tail constitute the basis
from which to understand conduction in disordered ma-
terials, a method that is applicable for a class of systems
broader than a collection of simple noninteracting sys-
tems would be desirable.

In order to go beyond the noninteracting regime, we
develop a systematic approach that enables us to ana-
lyze the effect of quenched disorder deep in the Lifshitz
tail. The plan for the rest of this paper is as follows. In
Sec. II we first take the well-understood case of nonin-
teracting particles governed by the standard Schrödinger
equation and present the disorder saddle method, empha-
sizing that this approach is more generically applicable
than supersymmetric and replica methods (reviewed in
Appendix B). In particular, in Sec. III we use the disor-
der saddle approach to study a broad class of noninteract-
ing and interacting systems whose low-energy excitations
are governed by scale-invariant theories. We then derive
the form of the Lifshitz tail induced by relevant Gaus-
sian disorder, which generalizes the result for noninter-
acting systems to a host of quantum critical materials.
In Sec. IV, we conclude with a brief discussion of irrel-
evant and marginally relevant disorder, and the general
implications of our results for understanding conduction
in disordered materials.
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II. DISORDER SADDLE APPROACH

Let us consider a system of noninteracting quasipar-
ticles in spatial dimensions d < 4, governed by the
Schrödinger equation

−
~
2

2m
∇2ψV

n (x) + V (x)ψV
n (x) = EV

n ψ
V
n (x) (4)

with a Gaussian random potential V (x). Intensive ob-
servables, when scanned over a macroscopic sample, typ-
ically self-average.16 In particular we can then legiti-
mately estimate the disorder-averaged density of states
as

[ρ(E)]d.a. =
1

Nγ

∫

[DV ] e−
1
2γ

∫
dxV 2(x)ρV (E) (5)

where

ρV (E) =
1

Vd

∑

n

δ(E − EV
n ) . (6)

Here, Nγ ≡
∫

[DV ] e−
1
2γ

∫
dxV 2(x) is the normalization

constant and γ characterizes the strength of the disorder.
We are interested in the asymptotic behavior of [ρ(E)]d.a.
in the limit of large negative E.
In the following we present a simple derivation that

focuses on disorder saddles, building upon classic work
by Lifshitz, Halperin, Lax, Zittartz, and Langer9–12.18

Namely we evaluate the disorder integral through the
saddle-point approximation, seeking a localizing disorder
saddle which minimizes the cost 1

2γ

∫

dxV 2 (x) with the

constraint that it holds an eigenfunction with the nega-
tive eigenenergy E. In order to ensure that the saddle
point is the absolute minimum of the cost, the corre-
sponding eigenfunction must have the lowest energy. To
see this, let us suppose that there exists an eigenfunc-
tion ψ̃ (x) with lower energy Ẽ < E < 0. Then, setting

s ≡
√

E/Ẽ < 1, we would be able to lower the cost

by replacing V (x) with s2V (sx), which holds ψ̃ (sx) as
an eigenfunction with energy E. Note that for d ≤ 4 a
square-integrable potential always has a unique normal-
izable ground state20. We henceforth seek a normalized
ground state wavefunction, which we further set to be
real without loss of generality.
To solve the constrained minimization problem at

hand, we introduce a Lagrange multiplier field λ (x) and
a Lagrange multiplier µ0. The problem then becomes
equivalent to the minimization of the cost action

I [V (x) , ψ (x) , λ (x) , µ0] (7)

≡ +
1

2γ

∫

dxV 2 (x)

−
1

γ

∫

dxλ (x)

{

E +
~
2

2m
∇2 − V (x)

}

ψ (x)

+µ0

{
∫

dxψ2 (x)− 1

}

.

Extremizing it yields

V (x) = −λ (x)ψ (x) , (8)

−
~
2

2m
∇2ψ (x) + V (x)ψ (x) = Eψ (x) , (9)

∫

dxψ2 (x) = 1, µ0 = 0, and

−
~
2

2m
∇2λ (x) + V (x) λ (x) = Eλ (x) . (10)

The last equality (10), combined with the uniqueness
of the ground state, dictates that λ (x) = λ0ψ (x) with a
constant λ0. Consequently, Eq. (8) tells us that V (x) =
−λ0ψ2 (x) and the Schrödinger equation (9) morphs into
the instanton problem with a single real scalar field,

−
~
2

2m
∇2ψ (x)− λ0ψ

3 (x) = Eψ (x) . (11)

From the study of the instanton problem, for d < 4, we
know that this equation has spherically symmetric solu-
tions which minimize the action among all the nontrivial
stationary points.21 We thus have the cost minimizing
solutions

V⋆ (x) = Ef2

(

√

−2mE

~2
|x− x0|

)

, (12)

ψ⋆ (x) =

√

−E

λ0
f

(

√

−2mE

~2
|x− x0|

)

(13)

where f(r̃) satisfies

d2f

dr̃2
+
d− 1

r̃

df

dr̃
− f + f3 = 0 (14)

with the regularity condition df
dr̃

∣

∣

∣

r̃=0
= 0 and the normal-

izability condition limr̃→∞ f (r̃) = 0. The normalization

condition on ψ⋆ fixes λ0 = cλ(−E)1−
d
2

(

2m
~2

)− d
2 with

cλ =
2π

d
2

Γ
(

d
2

)

∫ ∞

0

dr̃r̃d−1f2. (15)

Finally, evaluating the cost action for these solutions
yields the leading exponential factor

[ρ(E)]d.a. ∼ exp

{

−
ad
g(E)

}

(16)

with the dimensionless number

ad =
π

d
2

Γ
(

d
2

)

∫ ∞

0

dr̃r̃d−1f4 (17)

and the dimensionless coupling

g(E) = γ(−E)
d
2−2

(

2m

~2

)
d
2

. (18)
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We can further obtain the subleading prefactor
through the fluctuation analysis (Appendix A). The re-
sult is that

[ρ(E)]d.a. ≈ A(E)e−
ad

g(E) (19)

with the prefactor

A(E) = c

(

2m

~2

)
d
2

(−E)
d
2−1 {g(E)}−

(d+1)
2 , (20)

where c is another dimensionless constant. This expres-
sion is asymptotically valid for d < 4 in the regime

E ≪ −γ
2

4−d

(

2m
~2

)
d

4−d where the disorder coupling g(E)
is small, akin to the dilute instanton gas limit.
The same result can also be derived through supersym-

metric and replica methods (Appendix B). The above
derivation clearly shows that the saddle point appearing
in these two methods corresponds to the most likely form
of a localized wavefuction of large negative negative en-
ergy E, dilutely distributed; the disorder saddle depicts
the shape of the associated trapping potential. As we
shall see next, the approach taken here generalizes to a
broad class of systems where supersymmetric and replica
methods are not readily applicable.

III. DISORDERED SCALE-INVARIANT

MODELS

The noninteracting model considered above, relevant
in the vicinity of a band edge for conventional semincon-
ductors, is a special case of scale-invariant models. Other
examples of scale invariant models include noninteract-
ing models with more general scaling relation E ∝ |k|z,
as in semimetals, and interacting models in the vicinity
of quantum critical points25. Taking the disorder sad-
dle approach laid out in the last section, we compute the
Lifshtiz tails for disordered scale-invariant models.
A clean scale-invariant model possesses a dilatation op-

erator D̂ along with a time-translation operator Ĥ0 and
space-translation operators P̂i for i = 1, ..., d. These op-
erators obey commutation relations

[Ĥ0, P̂i] = 0, [P̂i, P̂j ] = 0, [D̂, P̂i] = iP̂i , (21)

and

[D̂, Ĥ0] = izĤ0 (22)

where z is a dynamical exponent. We suppose that the
model has a conserved current with a local density opera-

tor Ĵ t(x) = e−iP̂·xĴ t(0)e+iP̂·x obeying [Ĵ t(x), Ĵ t(y)] = 0
and

[D̂, Ĵ t(0)] = idĴ t(0) . (23)

A number operator Q̂ ≡
∫

dxĴ t(x) in particular satisfies

[Ĥ0, Q̂] = [D̂, Q̂] = 0. We also suppose that there is a

local operator Ô†
pro(x) = e−iP̂·xÔ†

pro(0)e
+iP̂·x with scal-

ing dimension ∆pro and unit, minimal, number qunit. In
other words,

[D̂, Ô†
pro(0)] = i∆proÔ

†
pro(0) (24)

and

[Q̂, Ô†
pro(0)] = qunitÔ

†
pro(0) . (25)

We set ~ = 1 and qunit ≡ 1 henceforth.
Let us now sprinkle impurities into the clean system,

deforming the Hamiltonian to

ĤV = Ĥ0 +

∫

dxV (x)Ĵ t(x) (26)

where for now we suppose that a random potential V (x)
again obeys Gaussian statistics. We probe this dirty sys-
tem by injecting a unit-number excitation through Ô†

pro

and observing how it propagates. Specifically we look at
a local density of states defined via

ρVÔ†
pro

(E,x) ≡ −
1

π
Im
{

GV
Ô†

pro
(x,x;E)

}

(27)

where

GV
Ô†

pro
(x,y;E) ≡ −i

∫

dteiEtθ(t) (28)

× V 〈0; 0|Ô
V
pro(t,x)Ô

V †
pro (0,y)|0; 0〉V

with ÔV †
pro (t,x) ≡ e+iĤV tÔ†

pro(x)e
−iĤV t.26 Here, |0; 0〉V

denotes a state of the lowest energy among states with
zero total number. In general we label eigenstates as

Q̂|Q;n〉V = Q|Q;n〉V (29)

and

ĤV |Q;n〉V = EV
Q;n|Q;n〉V (30)

for each realization of V (x). The density of states de-
fined above generalizes the standard definition for non-
interacting systems and in general admits the spectral
representation27

∑

n

|V 〈1;n|Ô
†
pro(x)|0; 0〉V |

2δ(E − EV
1;n + EV

0;0) . (31)

Contributions for negative energy E, if any, come from
bound states with EV

1;n − EV
0;0 = E < 0 and a nonzero

overlap V 〈1;n|Ô†
pro(x)|0; 0〉V 6= 0. When disorder-

averaged, they give rise to a smooth Lifshitz tail. We are

interested in the asymptotic behavior of
[

ρÔ†
pro

(E)
]

d.a.
in the limit of large negative energy E, which we obtain
through the disorder saddle approach.
At this point we make two hypotheses, both of which

can be rigorously established for a noninteracting scale-
invariant theory with z = 2 considered in the last section.
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First we assume that for any square-integrable potential
V (x) 6= 0, when d ≤ 2z, there exists a state of the low-
est energy EV

1;0 among states with a unit number excited

by Ô†
pro (and similarly the existence of the vacuum state

|0; 0〉V ). Then, as emphasized in the last section, the
game is to seek a localizing potential saddle which min-
imizes the cost

∫

dxV 2 (x) while still holding a bound
state with EV

1;0−E
V
0;0 = E for a fixed negative energy E.

Generically we expect that the competition between the
cost, preferring narrower and shallower potential wells,
and the demand for trapping a bound state with a large
negative energy, preferring broader and deeper wells, set-
tles into such minimizers. Hence we expect the follow-
ing, second, hypothesis to hold: there exists a family
of square-integrable potentials V E

⋆ (x) which minimizes
the cost among all the square-integrable potentials with
EV

1;0 −EV
0;0 = E for d < 2z. In the saddle-point approxi-

mation,

[

ρÔ†
pro

(E)
]

d.a.
∼ exp

[

−
1

2γ

∫

dx
{

V E
⋆ (x)

}2
]

(32)

then yields the leading exponential factor.
Accepting these two hypotheses, we can obtain the

asymptotic expression for the density of states in the tail
via simple dimensional analysis. Let us be as pedantic
as possible, however. First we can use commutation re-
lations to show that

e−iλD̂ĤV e
+iλD̂ = ezλĤV (λ) (33)

with

V (λ)(x) = e−zλV (e−λx) , (34)

from which we deduce that

e−iλD̂|Q;n〉V = |Q;n〉V (λ) (35)

with the scaling relation of the spectra

EV (λ)

Q;n = e−zλEV
Q;n . (36)

Combined with the scaling relation of the cost

∫

dx
{

V (λ)(x)
}2

= e(d−2z)λ

[
∫

dx {V (x)}2
]

, (37)

we conclude that for E(λ) = e−zλE

V E(λ)

⋆ (x) =
{

V E
⋆ (x)

}(λ)
= e−zλV E

⋆ (e−λx) . (38)

From Eqs. (37) and (38) it then follows that

1

2γ

∫

dx
{

V E
⋆ (x)

}2
=

a0
g(E)

(39)

with the dimensionless constant a0 and the dimensionless
disorder coupling

g(E) = γ(−E)
d
z
−2. (40)

Thus in the saddle-point approximation

[

ρÔ†
pro

(E)
]

d.a.
∼ exp

{

−
a0
g(E)

}

(41)

for d < 2z, valid in the regime E ≪ −γ
z

2z−d .
We see that the asymptotic scaling of the Lifshitz tail

is dictated by the spatial dimensions and the dynamical
exponent, ordaining the dispersion relation of the low-
energy excitations. The scaling dimension ∆pro enters
only into the subleading prefactor. Our result conforms
with the result for noninteracting scale-invariant systems
with z = 2. It is also in accord with the Harris criterion28

which stipulates that the disorder is relevant for d <
2z. Further insight can be obtained through the use of a
Lagrange multiplier (Appendix C).
In passing we note that the same derivation can be

repeated for non-Gaussian disorder distributions, for ex-
ample those governed by the cost functional of the form

1

2γ

∫

dx|V (x)|p , (42)

as long as we restrict ourselves to the square-integrable
potentials. Such a disorder is relevant for d < pz.
We also point out limitations of the current approach.

First, it does not provide a systematic way of analyz-
ing fluctuations around the saddle and thus a prefactor
in front of the exponential is beyond its scope in gen-
eral. Another notable restriction is that the method
does not apply to the class of strictly bounded disor-
ders for which there exists no obvious large negative en-
ergy regime. For example for the disorder uniformly dis-
tributed in bounded interval, our second hypothesis is
not justified as there is no apparent penalty for creating
broad potential wells. Viewing such disorder as the suit-
able p = ∞ limit of the above non-Gaussian disorder, the
interesting essential singularity near the band edge29–31

sits right at the border of the applicability of the dilute
saddle regime.

IV. CONCLUSION

We have presented the systematic approach for analyz-
ing observables deep in the Lifshitz tail, focusing on dis-
order saddles rather than integrating them out at the on-
set. This approach clearly illuminates the physical origin
of the Lifshitz tail, attributing it to rare regions of deep
potential wells that trap and localize wavefunctions. We
have further obtained the form of Lifshitz tails for gen-
eral scale-invariantmodels deformed by relevant disorder,
including conventional semiconductors and some quan-
tum critical materials. For marginal disorder – for ex-
ample Gaussian-disordered semimetal such as graphene
with z = 1 in d = 2 dimensions – the answer depends on
whether the disorder is marginally relevant or marginally
irrelevant. For the former, positing the existence of sad-
dle points in appropriate disorder integrals, the loga-
rithmic running of the disorder coupling would result in
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the power-law behavior of the tails and weakly localized
states. It is worth carrying out detailed analysis of the
tail within the disorder saddle framework for concrete
models with marginally relevant disorder. For marginally
irrelevant – or, more generally, irrelevant – disorders,
there instead exists no clean ultraviolet fixed point and
thus the form of the Lifshitz tail sensitively depends on
microscopic details of the disorder distribution. This is
indeed what happens in the case of Gaussian-disordered
semimetals with z = 1 in d = 3 dimensions32 and, more
generally, Gaussian-disordered systems in higher dimen-
sions d > 2z33. Even in such cases, the disorder saddle
approach nonetheless seems to provide a good starting
point32.
More wildly, it would be interesting to seek the gen-

eralized Mott’s law for generic disordered scale-invariant
models. When the disorder is relevant and exponentially-
localized states are only dilutely populated, we would ex-
pect the variable-range hopping picture to roughly hold
with insulation at sufficiently low temperature. A sys-
tematic derivation of this picture is nonetheless desirable
in order to put the theory of conduction in disordered ma-
terials on the same footing as that for the Lifshitz tail. It
would then be particularly interesting to ponder how the
effect of interaction could possibly halt the percolation at
finite temperature, resulting in many-body localization.
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Appendix A: Fluctuation analysis

To evaluate the subleading prefactor, let us first ex-
pand around each saddle V⋆ (x) as

V − V⋆ =

∞
∑

l=0

ξlvl (A1)

where vl’s are a set of orthonormal functions. We choose

v0 = AEf
2

(

√

−2mE

~2
|x− x0|

)

(A2)

with AE = (2ad)
− 1

2 (−E)
d
4

(

2m
~2

)
d
4 so that all the other

modes will not change the ground state energy to first
order in ξl. Integration over ξ0, hitting the energy delta
function in the density of states, leaves us with the factor

(

√

2πγ
∂E

∂ξ0

)−1

=

(

√

2πγ

∫

dxψ2
⋆v0

)−1

=

(

cλ

2π
1
2 a

1
2

d

)

g−
1
2

1

(−E)
(A3)

where we also took care of the factor coming from Nγ .
Next for i = 1, ..., d we choose

vi = AT∂iV⋆ (A4)

where AT = cT(−E)
d
4− 3

2

(

2m
~2

)
d
4− 1

2 with

cT =

{

8π
d
2

d× Γ
(

d
2

)

∫ ∞

0

dr̃r̃d−1f2

(

df

dr̃

)2
}− 1

2

. (A5)

They are d translational zero modes and integration over
these modes should be traded for integration over the
collective coordinates x0, sweeping along the saddle sub-
manifold in the field space. The Jacobian involved in
this coordinate transformation is A−1

T for each mode as
can be seen by comparing changes in the field induced by
(δx0)i and by δξi. After dividing by the volume Vd and
again taking Nγ into account, we receive

(

AT

√

2πγ
)−d

= g−
d
2

(

−2mE

~2

)
d
2
(

2πc2T
)− d

2 (A6)

from these modes.
For l ≥ d+ 1, we have the ground state energy shift

∞
∑

l=d+1

∞
∑

l′=d+1

ξlξl′
∑

n

〈0|vl|n〉〈n|vl′ |0〉

EV⋆

0 − EV⋆
n

(A7)

to second order in ξl’s. We compensate it by setting

ξ0 = −
1

〈0|v0|0〉

∞
∑

l=d+1

∞
∑

l′=d+1

ξlξl′
∑

n

〈0|vl|n〉〈n|vl′ |0〉

EV⋆

0 − EV⋆
n

(A8)
so as to keep the ground state energy intact to this order.
The resulting disorder cost is

1

2γ

∞
∑

l=d+1

∞
∑

l′=d+1

ξlξl′

(

δl,l′ − 2λ0
∑

n

〈0|vl|n〉〈n|vl′ |0〉

EV⋆
n − E

)

.

(A9)
Imitating Ref. [11], we proceed by choosing vl = ful with

[

−
~
2

2m
∇2 − E + (1 + cl)V⋆

]

ul = 0 . (A10)

(Corresponding to v0 and vi, we have u0 ∝ f and ui ∝
∂if with c0 = 0 and ci = 2, respectively.) With this trick
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we evaluate the cost to be

1

2γ

∞
∑

l=d+1

ξ2l

(

1−
2

cl

)

. (A11)

Performing Gaussian integrals over ξl’s for l ≥ d+ 1 and
taking Nγ into account yields their contributions.
All in all we find the prefactor

A(E) = c

(

2m

~2

)
d
2

(−E)
d
2−1 {g(E)}−

(d+1)
2 (A12)

with

c =

(

cλ

2π
1
2 a

1
2

d

)

(

2πc2T
)−d

2

∞
∏

l=d+1

(

1−
2

cl

)− 1
2

. (A13)

Another expression for c is given in Ref. [19].

For d = 1, we get ad = 8
3 , cλ = 4, cT =

√
15
8 , and

cl =
l(l+3)

2 , the last of which can be obtained through the

use of Gegenbauer polynomials of order 3
2
11. Thus c = 4

π ,

conforming with the exact result obtained by Halperin34.
For d = 2, 3, the product is actually divergent and needs
to be regularized35.

Appendix B: Supersymmetric and replica methods

Here we review the supersymmetric and replica deriva-
tions of Lifshitz tails. Before doing so, let us mention
the original motivation for this study. A decade after
the work by Zittartz and Langer11, Cardy revisited the
Lifshitz tail problem using the replica trick13. An in-
stanton yielded the same exponential factor e−B(E), but
zero-mode counting showed that the way the prefactor
A(E) scales with E is different from the one presented in
Ref. [11]. To confirm our understanding of these meth-
ods, it is important to reconcile the dispute. The su-
persymmetric method was brought into this study as a
judge. It turns out that the source of the disagreement
lies in a minor algebraic mistake. Correcting Eq.(5.24)
of Ref. [11] to

∣

∣

∣
det (∇∇D)

∣

∣

∣
=
∣

∣

∣
det

{

2

∫

dxV (x)∇∇V̄ (x)

}

∣

∣

∣
(B1)

≈
∣

∣

∣
det

{

2

∫

dxV̄ (x)∇∇V̄ (x)

}

∣

∣

∣
≡ c,

the apparent discrepancy between Refs. [11] and [13] is
resolved. The eventual agreement adds confidence to the
use of the replica trick in the nonperturbative regime.
Without further ado, let us present the supersymmet-

ric derivation14,15,36. First we express the density of state
as

ρV (E) = −
1

π
lim

δ→+0
Im

[

1

Vd

∫

dxGV
R (x,x;E + iδ)

]

.

(B2)

The retarded one-particle Green function GV
R (x,x

′;E +
iδ) can be represented as

(−i)

∫

[Dφ] φ(x)φ(x′)eiSV [φ]

∫

[Dφ] eiSV [φ]
(B3)

with

SV [φ] =
1

2

∫

dxφ

{

E + iδ +
~
2

2m
∇2 − V

}

φ . (B4)

The supersymmetric method proceeds by rewriting the
expression (B3) as

(

−i

2

)
∫

[

D~φDχ1Dχ2

]

~φ(x)·~φ(x′)e
∑2

a=1 iSV [φa]+iSV [χ1,χ2]

(B5)
with

SV [χ1, χ2] =
1

2

∫

dxχ2

{

E + iδ +
~
2

2m
∇2 − V

}

χ1

(B6)

where we doubled the bosonic field φ to ~φ = (φ1, φ2) and
introduced fermionic fields χ1 and χ2. Now that there is
no denominator containing the random potential, we can
perform functional integration over V and obtain

[ρ(E)]d.a. =
1

2πVd
Im

∫

[

D ~̃φDχ̃2Dχ̃1

]

∫

dx~̃φ(x) · ~̃φ(x)

×e−Sb[
~̃φ]−S2f [χ̃1,χ̃2,

~̃φ]−S4f [χ̃1,χ̃2] (B7)

with

Sb[
~̃
φ] =

1

2

∫

dx

[

~̃
φ ·

(

−
~
2

2m
∇2 − E −

γ

4
~̃
φ
2
)

~̃
φ

]

, (B8)

S2f [χ̃1, χ̃2,
~̃
φ] =

1

2

∫

dxχ̃2

(

−
~
2

2m
∇2 − E −

γ

2
~̃
φ
2
)

χ̃1 ,

(B9)
and

S4f [χ̃1, χ̃2] = −
γ

8

∫

dx (χ̃2χ̃1)
2
. (B10)

We have defined ~̃φ ≡ e+
iπ
4 ~φ and χ̃a ≡ e+

iπ
4 χa for E < 0

and the expression (B7) should be viewed with appropri-
ate analytic continuation in mind37,38.
To evaluate [ρ(E)]d.a. for large negative E, we use the

method of steepest descent, extremizing Sb. The trivial

saddle
~̃
φ = 0 gives no contribution to [ρ(E)]d.a. due to the

absence of negative modes. Among nontrivial saddles, we
assume that the saddles

~̃φcl (x) = ~e

√

−2E

γ
f

(

√

−2mE

~2
|x− x0|

)

(B11)

minimize the action, where ~e is a constant unit vector
and f(r̃) was defined around Eq.(14).39 Evaluating the
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action for these solutions gives the same leading expo-

nential factor e−
ad
g as before.

In regards to the subleading prefactor, one contribu-
tion comes from

∫

dx
~̃
φcl(x) ·

~̃
φcl(x) ∼ g−1(−E)−1 (B12)

in front. (We will not keep track of the overall dimen-
sionless constant in this derivation.) To evaluate the re-
maining contributions, we expand around each saddle as

~̃
φ− ~̃

φcl = ~e

∞
∑

l=0

ξ
B‖
l ϕ

B‖
l + ~e⊥

∞
∑

l=0

ξB⊥
l ϕB⊥

l (B13)

and

χ̃a =

∞
∑

l=0

(

ξFl
)

a
ϕF
l . (B14)

Here, ~e⊥ is a unit vector perpendicular to ~e, ϕ
B‖
l ’s are a

set of orthonormal functions satisfying
(

−
~
2

2m
∇2 − E −

3γ

2
~̃
φ
2

cl

)

ϕ
B‖
l = (−E)c

‖
l ϕ

B‖
l , (B15)

and ϕB⊥
l = ϕF

l ≡ ϕ⊥
l ’s are another set of orthonormal

functions satisfying
(

−
~
2

2m
∇2 − E −

γ

2
~̃φ
2

cl

)

ϕ⊥
l = (−E)c⊥l ϕ

⊥
l , (B16)

with dimensionless numbers c
‖
l ’s and c

⊥
l ’s. We deal first

with ξ
B‖
l fluctuations and then with the rest.

Analyzing ϕ
B‖
l modes, we find that the lowest mode

has a negative eigenvalue c
‖
0 < 0, giving rise to a factor

of

i(−E)−
1
2 (B17)

and allowing the saddles to contribute to the density of
states. Next come d translational zero modes. Trading
integration over these modes for integration over x0 and
dividing by the volume, we receive the Jacobian

{

1

d

∫

dx
(

∇~̃φcl

)2
}

d
2

∼

{

g−
d
2

(

−2mE

~2

)
d
2

}

. (B18)

Finally all the other modes have positive eigenvalues,
each of which gives a factor of (−E)−

1
2 .

Analyzing the other set of fluctuations, except the
lowest modes, all the modes have positive eigenvalues,
each of which gives a factor of (−E)−

1
2+

1
2+

1
2 = (−E)+

1
2 .

The lowest modes are the zero modes arising from O(2)-

rotational symmetry, proportional to
∣

∣

∣

~̃
φcl (x)

∣

∣

∣
. The

bosonic zero mode, upon trading integration over ξB⊥
0

for integration over ~e, yields the Jacobian

{
∫

dx~̃φ
2

cl

}
1
2

∼ (−E)−
1
2

(

g−
1
2

)

. (B19)

We also need to saturate fermionic zero modes by ex-
panding the action to the quartic order in fluctua-
tions: if we kept only quadratic terms in the expan-
sion of the action, integration over

(

ξF0
)

a
’s would give

zero. Thus we must bring down either a factor of

γ
∫

dxχ̃2

(

~̃
φ
2

− ~̃
φ
2

cl

)

χ̃1 or γ
∫

dx (χ̃2χ̃1)
2
. After appro-

priate Gaussian integrations, we obtain a factor of

(−E)+
2
2

(

g+
2
2

)

. (B20)

Putting them all together, we recover the same result
(19) as before.
Finally let us turn to the replica derivation13. The

replica trick proceeds by rewriting the expression (B3)
as

(

−i

Nr

)
∫

[

D~φ
]

~φ(x) · ~φ(x′)ei
∑Nr

a=1 SV [φa] (B21)

where we introduced (Nr − 1) replicas, promoting φ to
~φ = (φ1, φ2, ..., φNr), and took the dicey limit in which
Nr → 0 to eliminate the denominator. After integrating
over V and making analytic continuation, we find in-
stantons of the same form (B11), but zero-mode analysis
is slightly different from the one in the supersymmetric
derivation. Besides d translational zero modes, there are
limNr→0(Nr − 1) = −1 bosonic zero modes coming from
O(Nr)-rotational symmetry. The latter is replaced by the
combination of one bosonic zero mode and two fermionic
zero modes in the supersymmetric derivation.
We note that the instantons (B11) appearing in replica

and supersymmetric derivations and the localized wave-
functions (13) have exactly the same shape. Thus we
interpret the instantons as most likely forms of localized
wavefunctions or square roots of localizing potentials [cf.
Eq.(12)], dilutely distributed for large negativeE. It may
be more appropriate to call all these solutions “localons.”

Appendix C: General form of disorder saddle

In this appendix we derive coupled equations which
determine saddle points of the disorder integral for scale-
invariant models. Recall that we are seeking minima of
the cost

∫

dxV 2 (x) with the constraint EV
1;0 −EV

0;0 = E.
Through the introduction of a Lagrange multiplier λ0,
the problem becomes equivalent to the minimization of

I [V (x) , λ0] ≡ +
1

2

∫

dxV 2 (x) + λ0(E
V
1;0 − EV

0;0 − E) .

Extremizing it with respect to λ0 reproduces the con-
straint

EV
1;0 − EV

0;0 = E (C1)

while extremizing it with respect to V (x) yields

V (x) = −λ0
[

V 〈1; 0|Ĵ
t(x)|1; 0〉V − V 〈0; 0|Ĵ

t(x)|0; 0〉V
]

.

(C2)
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Here

ĤV |0; 0〉V = EV
0;0|0; 0〉V , (C3)

ĤV |1; 0〉V = EV
1;0|1; 0〉V , (C4)

and we used the Hellmann-Feynman relation41,42

δ

δV (x)
EV

Q;0 = V 〈Q; 0|Ĵ t(x)|Q; 0〉V .

We can see from Eq. (C2) that the disorder saddle in
general is proportional to the excess density profile of the
localized state, as is the case for noninteracting systems.
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