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Recently, there has been substantial interest in realizations of skyrmions, in particular in quasi-2D
systems due to increased stability resulting from reduced dimensionality. A stable skyrmion, repre-
senting the smallest realizable magnetic texture, could be an ideal element for ultra-dense magnetic
memories. Here, we use the most general form of the quasi-2D free energy with Dzyaloshinskii-
Moriya interactions constructed from general symmetry considerations reflecting the underlying
system. We predict that skyrmion phase is robust and it is present even when the system lacks
the in-plane rotational symmetry. In fact, the lowered symmetry leads to increased stability of
vortex-antivortex lattices with four-fold symmetry and in-plane spirals, in some instances even in
the absence of an external magnetic field. Our results relate different hexagonal and square cell
phases to the symmetries of materials used for realizations of skyrmions. This will give clear direc-
tions for experimental realizations of hexagonal and square cell phases, and will allow engineering of
skyrmions with unusual properties. We also predict striking differences in gyro-dynamics induced by
spin currents for isolated skyrmions and for crystals where spin currents can be induced by charge
carriers or by thermal magnons. We find that under certain conditions, isolated skyrmions can move
along the current without a side motion which can have implications for realizations of magnetic
memories.

I. INTRODUCTION

Skyrmions are topological structures corresponding
to highly stable particle-like excitations. Although
skyrmions were first invented as a model for baryons [1],
it has been found that their analogs can be realized in
condensed-matter systems such as chiral magnets. Exis-
tence of magnetic skyrmion lattices has been predicted
theoretically [2] and confirmed experimentally [3]. Mag-
netic skyrmions in chiral magnets, which are the main
subject of interest in this paper, have received a lot of
interest recently [3–29].

One of the most attractive features of skyrmions is
their dynamics [27]. For domain walls in ferromagnets,
the threshold current density for current-driven motion
is ∼ 109−1012A m−2 whereas for skyrmions this thresh-
old is ∼ 105 − 106A m−2 in the slow-speed regime [30],
which may lead to development of low-power and ultra-
dense magnetic memories [31, 32]. Another attractive
feature of skyrmions is the robustness of their motion: a
shape-deformation and a Magnus-like force in their dy-
namics allow skyrmions to avoid impurities and lead to
a very robust current-velocity relation [25]. On the other
hand, in magnetic insulators skyrmions can be driven
by magnon currents induced by temperature gradients
[15, 16, 23, 33, 34]. The interlocking of the local magne-
tization direction and the spin of the conduction electrons
in chiral magnets can lead to various transport phenom-
ena such as the topological Hall effect [35–37] and non-
Fermi liquid behavior [38–40].

In chiral magnets such as MnSi, FeGe, and Cu2OSeO3

the microscopic spin-orbit coupling (SOC) breaks the
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inversion symmetry. This chiral interaction prefers
twisted magnetic structures rather than uniform mag-
netization, and eventually can lead to creation of spi-
rals and skyrmions. The SOC manifests itself as the
Dzyaloshinskii-Moriya (DM) interaction in the free en-
ergy [27, 41–43]. Symmetries of these magnets deter-
mine the nature of the DM interaction and magnetic tex-
tures that form within the magnet. For example, broken
bulk inversion in noncentrosymmetric materials results
in a highly symmetric DM interaction and vortex-like
skyrmions. The stability of such skyrmions increases for
thin film structures [44, 45], hinting that studies of two-
dimensional (2D) systems should be of particular impor-
tance. In addition, inversion is naturally broken in 2D
systems interfacing between different materials. Recent
examples of such systems include magnetic monolayers
[46, 47] as well as magnetic thin films [48, 49] deposited
on non-magnetic metals with strong SOC. Magnetic sys-
tems at oxide interfaces [50, 51] also reveal large SOC
and DM interactions — ingredients that result in forma-
tion of skyrmions [52]. A magnetically doped thin layer
on a surface of a topological insulator could be yet an-
other promising system for realizations of magnetic sys-
tems with strong DM interactions [53, 54].

In this paper, we study the effect of the structural
and bulk asymmetries on the skyrmion (SkX) and square
cell (vortex-antivortex) (SC) crystals. Taking the most
general form of the free energy with DM interactions,
we classify 2D chiral magnets. We discuss possible re-
alizations via appropriate structural asymmetry where
microscopically this leads to appearance of SOC, e.g.,
of Rashba and/or Dresselhaus type. We calculate the
phase diagram for different configurations of DM inter-
actions and find that SkX and SC phases are robust and
are present even when the system is lacking the in-plane
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rotational symmetry — the case not considered in pre-
vious studies [18, 19]. Magnetization dynamics simula-
tions reveal that skyrmions and vortices flexibly deform
and adapt to lowered symmetries, resulting in configura-
tions with unusual shapes. However, we also find that
SkX region of the phase diagram gradually shrinks as
the asymmetries become stronger. On the other hand,
the lowered symmetry leads to increased stability of the
vortex-antivortex SC lattice with four-fold symmetry and
the in-plane spiral, in some instances even in the absence
of an external magnetic field. In chiral magnets with only
reflection symmetry, we find an extremely stable in-plane
spiral phase.

We also address the spin-current-induced dynamics of
isolated skyrmions and skyrmion crystals which is of
interest due to potential applications of skyrmions in
magnetic memory devices [31, 32]. Using Thiele’s ap-
proach, we obtain a general velocity-current relation for
skyrmions. Our results show that dissipative corrections
can influence the direction of the transverse motion of
isolated skyrmions, leading to strikingly different results
for isolated skyrmions and skyrmion lattices. Our results
apply to spin currents induced by charge carriers as well
as to spin currents induced by magnon flows. The latter
case is addressed in more detail in Appendix where we
derive the Landau-Lifshitz-Gilbert (LLG) equation with
magnonic torques starting from the stochastic LLG equa-
tion. Finally, in Appendix we also show how DM inter-
actions can arise from spin-orbit interactions in micro-
scopic models corresponding to magnets with both local-
ized (relevant to oxide interfaces [50, 51]) and itinerant
(relevant to thin magnetic films [48, 49]) spins.

II. MODEL

Our system of interest is a 2D chiral magnet with crys-
talline anisotropies and in the presence of an external
magnetic field. The continuum free energy of such system
contains the chiral term known as Dzyaloshinskii-Moriya
(DM) interaction [41–43] which is responsible for broken
inversion symmetry. Its origins can be traced back to
relativistic spin-orbit coupling (SOC) [30, 55, 56] which
provides a link between structural and magnetic chiral-
ities in the system (see Appendix A for further discus-
sion). We phenomenologically introduce the continuum
free energy density of the 2D chiral magnet as

F0 =
∑
µ=x,y

J

2
(∂µn)2 + (D̂eµ) · (n× ∂µn), (1)

where n is a unit vector along local spin density, eµ is
a unit vector along the µ-axis in the positive direction,
J > 0 is the exchange interaction constant, and D̂ is a
rank-2 tensor describing the DM interaction whose form
depends on the structural and bulk symmetries of the sys-
tem. Note that asymmetric spin-orbit interactions can be
introduced in a similar way for semiconductor quantum
wells [57].

For convenience, we work with dimensionless free
energy density obtained by the transformation x →
x/(J/D), y → y/(J/D) where D = ||D̂|| > 0 is the over-
all strength of the DM interaction and J/D is the typical
length scale of magnetic structures such as skyrmions and
spirals [58]. Expressed using the new units of length, the
free energy density becomes

F0 =
∑
µ=x,y

1

2
(∂µn)2 + (D̂eµ/D) · (n× ∂µn) (2)

in units of J . Following discussions in this paper are
based on this free energy density with additional Zee-
man energy H ·n due to the external magnetic field and
uniaxial anisotropy energy Asn

2
z. Expressed in the new

units, the total free energy density is given by

F = F0 +
HJ

D2
nz +

AsJ

D2
n2
z, (3)

where F0 is given by Eq. (2), H = gµBHa, Ha is the
strength of the applied external magnetic field along the
z-axis, g > 0 is the g-factor, µB is the Bohr magneton,
and As is the strength of the anisotropy. Adding mod-
erate strength anisotropy that is not of easy-plane/easy-
axis type in Eq. (3) does not change our results qualita-
tively.

We now investigate the effects of broken symmetries
in a chiral magnet due to structural asymmetries, which
manifest themselves in the form of D̂ tensor. To this end,
let us discuss the correspondence between the structural
asymmetries in a system and the form of the free energy
density given by Eq. (3). We first note that in the case
of a 2D magnet given that ∂z = 0 (cf. Eq. (2)) the right-

most column of D̂ is unimportant in the sense that it
does not contribute to the free energy. The symmetries
of the DM magnet can be classified based on the DM
tensor D̂, which can be written as a sum of a symmetric
and an antisymmetric tensor as D̂ = D̂sym + Dasym×.
The off-diagonal tensor components [D̂]zx and [D̂]zy can
come from both symmetric and antisymmetric parts of
D̂, however we can assume that they are due to the anti-
symmetric part without losing any generality in our clas-
sification. Thus assuming [D̂sym]zx = [D̂sym]zy = 0, the

2 × 2 upper-left block of D̂sym can be diagonalized and

expressed as D011 + D3λ̂3 (here λ̂3 = diag(1,−1, 0) and
11 = diag(1, 1, 0)) by an in-plane O(2) operation (rota-

tion and/or reflection) around the z-axis. Since [D̂]zz
does not enter into the free energy, this means D̂sym can
be specified using two independent parameters (D0, D3).
The antisymmetric part, however, requires the full set of
three parameters Dasym = (Dx, Dy, Dz).

Based on this decomposition, symmetries of a 2D DM
magnet can be classified into six symmetry classes [59]:

1. Rashba SOC: D̂ = −Dz× = −DĴz with in-plane
O(2) symmetry (throughout this paper, Ĵµ de-
note the generators of SO(3), explicitly given in
Eq. (A3)).
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FIG. 1. (Color online) Nontrivial symmetry operations of the
point group C2v. σ(yz) (σ(xz)) is a reflection through the yz
(xz) plane and C2 is a π rotation around the z-axis.

2. Dresselhaus SOC: D̂ = −Dλ̂1 (λ̂1 is given in Eq. (4)
with D2d symmetry. [60]

3. In-plane SO(2) symmetry: D̂ = −D011 resulting
in the DM interaction term −Dn · (∇ × n) which
could be of relevance, e.g., for MnSi [5, 43]. This

case could also include a Rashba contribution D̂ =
−D011−DzĴz without affecting the symmetry class.

4. Combination of Rashba and Dresselhaus SOC,
found in noncentrosymmetric systems: D̂ =

−DRĴz−DDλ̂1 such that D =
√
D2
R +D2

D, corre-
sponding to an interface with C2v symmetry (C2v

symmetry is described in Fig. 1).

5. C2 symmetry: D̂ = −D011−D1λ̂1 −DzĴz.

6. Reflection symmetry: D̂ = −DnT× where nT is a
tilted unit vector making a nonzero angle with the
z-axis. For such a system, the plane of reflection
is along the in-plane component of nT . This case
could also include a contribution from the Dres-
selhaus term when the tilting is along one of the
mirror planes of C2v symmetry.

Let us turn to the properties of the free energy un-
der global transformations of magnetization. The free
energy density of the DM magnet given by Eq. (3) does

not change under the global transformation n → R̂zn,
D̂ → R̂zD̂, where R̂z ∈ O(2) is a global rotation
around/reflection through the z-axis (note that this is
not a similarity transformation). It follows that the cases

D̂ = −Dz× and D̂ = −D11 (or their linear combinations)
can be mapped onto each other and lead to the same
phase diagram [61] where the corresponding mapping is
given in Figs. 2a and 2d. These two cases have been
studied in [18] and [5, 19], respectively. A global mag-
netization rotation changes the helicity of the skyrmions
by the angle of rotation, whereas a reflection changes
the sign of their topological charge (for examples of the
equivalent skyrmion configurations and the correspond-
ing DM interactions see Fig. 2). Clearly, the overall
sign of the DM term is unimportant in the sense that

Q = 1

(a) γ = 0 (b) γ = π
2

(c) γ = π (d) γ = −π
2

Q = −1

(e) γ = 0 (f) γ = π
2

(g) γ = π (h) γ = −π
2

FIG. 2. (Color online) Spin density configuration of skyrmions
corresponding to different SOC. The length and direction of
the arrows represent the in-plane component of n, and the
color indicates nz. At the skyrmion center, nz is aligned with
the external magnetic field H = Hez, whereas in the outer
region of skyrmion nz is antialigned with H. The spin con-
figuration nĴz shown in Fig. 2a represents a skyrmion with
topological charge Q = 1 and helicity γ = 0, which occurs
for Rashba SOC given by D̂ = −DĴz. Other skyrmions
[antiskyrmions] with topological charge Q = 1 [Q = −1]
and an arbitrary helicity γ can be obtained via the global
transformation R̂z(γ)nĴz ; they occur naturally in a system

with DM tensor D̂ = −DR̂z(γ)Ĵz [D̂ = DR̂z(γ)λ̂3Ĵz)], where

R̂z(γ) = exp(γĴz) is a rotation around the z-axis by an angle

γ and λ̂3 = diag(1,−1, 0) is an inversion matrix.

it does not affect the phase diagram. Another exam-
ple is given by the equivalence between the DM tensors

D̂ = −DRĴz − DDλ̂1 and D̂ = −DR11 − DDλ̂3, which
are related by a global −π/2 rotation of magnetization
around the z-axis. We can also relate the free energies
of systems with Dresselhaus SOC and the Rashba SOC
(corresponding skyrmions are shown in Figs. 2e and 2a,
respectively) using a reflection along the line x = y:

λ̂3 = R̂x=yĴz with R̂x=y = λ̂1 =

0 1 0
1 0 0
0 0 0

 . (4)

Here we dropped the [R̂x=y]zz component of the reflec-
tion matrix since it does not play any role in this context.
Owing to the transformation rules of the free energy den-
sity given by Eq. (3), phase diagrams corresponding to
pure Rashba and Dresselhaus SOC are identical. Note
that Rashba and Dresselhaus skyrmions will have oppo-
site topological charge.

We finally note that since the rightmost column of the
DM tensor D̂ does not affect the free energy, whether
[D̂]zx and [D̂]zy belong to the antisymmetric part of the
tensor or not does not affect the phase diagram either.

Thus there are only three distinct symmetry classes
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we need to consider: the Rashba case, the Rashba com-
bined with Dresselhaus case, and the Rashba with tilting
case, i.e. D̂ = −DnT×. We remark that the equiva-
lence relations we just described are global transforma-
tions relating the free energies of two distinct systems
with different DM tensors, whereas the symmetry classes
we enumerated above correspond to the real-space sym-
metries of the free energy of the system corresponding to
the specified DM tensor.

III. PHASE DIAGRAMS

In this section, we present our results for the high-
and low-symmetry cases of the spin-orbit interaction. We
used Monte Carlo (MC) simulated annealing with jack-
knife resampling to obtain the equilibrium states. To
construct the phase diagrams (As, H), one can compare
the energy of the states obtained from low-temperature
(kBT = 0.01J) annealing against the zero temperature
ground-state energy of the uniform ferromagnetic state
[19]. However, all the phase transitions we study are of
the first order (except for the one between the collinear
aligned and tilted FM phases, which is a second order
transition). As the first order phase transitions exhibit
hysteresis, the annealing does not give clear results near
the phase boundaries. Instead, the configuration gets
stuck in metastable states, limiting the accuracy in find-
ing the critical values of As and H, and allowing only a
semi-quantitative analysis of the phase diagram [19]. On
the other hand, the advantage of annealing over the vari-
ational approach [18] is that ansatz-based minimization
may miss certain phases such as the square-lattice phase
reported in [19]. Our approach here is two-fold. We first
used MC to determine the phases and spin density con-
figurations, and to obtain a sketch of the phase diagram.
Using this information as the starting point, we solved
the LLG equation numerically to determine the phase
boundaries accurately at zero temperature.

The spin density configuration n(ri) obtained from
MC simulations has been analyzed by inspecting the
Bragg peaks in the momentum space

n(k) =

∫
ddr

(2π)d
e−ik·rn(r), (5)

as well as the topological charge density, which is given
by

χ(r) =
1

4π
[∂xn(r)× ∂yn(r)] · n(r), (6)

where r and k are (in-plane for d = 2) position and
momentum vectors and d = 2 for a 2D system.

Annealing results reveal the presence of four differ-
ent phases: ferromagnetic (FM, aligned with nz = −1
and tilted with nz > −1), triangular skyrmion lattice
(or skyrmion crystal, SkX), square cell (SC) lattice of
vortices-antivortices (with the topological charge that is

not an integer or a half-integer), and spiral (SP, denoting
both coplanar and in-plane spirals) phases.

Additional phases such as the cone phase may occur in
a 3D chiral ferromagnet with the width ∼ J/D or thicker
[24, 62]. The presence of quartic term in the free energy
near the Curie temperature Tc is also known to influence
the phase diagram [14].

In order to determine the phase boundaries in a more
precise manner, we numerically solved the overdamped
LLG equation

s(1 + αn×)ṅ = n×Heff, (7)

in order to relax the system towards the local minimum.
Here α is the Gilbert damping parameter, s is the local
spin density, n is a unit vector along the spin density,
and Heff = −δnF is the effective magnetic field and F is
the free energy. We used the LLG equation to relax the
system into a stable state, starting from SC, SkX and SP
configurations that are based on the results from MC:

nSkX = C[nq(Q0) + nq(Q2π/3) + nq(Q−2π/3)],

nSC = C[nq(Q0) + nq(Qπ/2)],

nSP =
1√
2

[eu cos(q · r) + ev sin(q · r)], (8)

where

nq(q) = cos(q · r)ez +
1

2
sin(q · r)ez ×

(
D̂

D
q

)
,

Qφ = (cosφ, sinφ, 0)T ,

r = (x, y, 0)T ,

eu · ev = 0, (9)

and C is a (position-dependent) normalization factor en-
suring that |n| = 1. Initial values for the unit vectors
eu and ev were determined by minimization, and the cell
size was treated and optimized as a dynamical variable
(see Appendix E for details). We determined the phase
at each (As, H)-point by comparing the average energy
densities for SkX, SC, and SP states, and the analytical
energy density for the FM phase.

A. Rashba SOC

Here we study the case of the DM tensor given by
D̂ = −DĴz. The cases D̂ = −DĴz and D̂ = −D11
(which are equivalent to each other up to a global trans-
formation, as discussed in the previous section) have been
studied in Refs. 18 and 19. Our zero-temperature phase
diagram shown in Fig. 3 mostly agrees with [18], except
for the additional SC region which was missing in their
analysis. SkX phase shows hedgehog-like skyrmions with
well-localized topological charge Q = 1 (Fig. 4). The
same phase diagram also applies to the pure Dresselhaus

case, D̂ = −Dλ̂1, but skyrmions have Q = −1 due to the
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FIG. 3. Zero temperature phase diagram for the pure Rashba
or pure Dresselhaus type symmetry is obtained by numerically
solving the LLG equation. The same phase diagram also ap-
plies to the case of SO(2) symmetric DM tensor, D̂ = −D11.
The grey line separates the aligned and the tilted regions of
the FM phase. This phase is taken over by SkX, SP, and SC
phases in the regions defined by the bold lines.

reflection involved in the equivalence transformation, as
can be seen from Eq. (4). As the easy-plane anisotropy is
increased the topological charge of skyrmions gradually
splits, forming the precursor to the vortex-antivortex pair
lattice shown in Fig. 5, while the total charge within a
single unit cell remains Q = 1. As pointed out in [19] the
core radius of skyrmions in SkX phase becomes larger
and skyrmions start to overlap causing the formation of
vortices/antivortices during this process. When the rela-
tive size of antivortices (with respect to vortices) reaches
a critical value, the square lattice becomes the energet-
ically more favorable packing for the vortex-antivortex
lattice and a first-order phase transition occurs from SkX
phase to SC phase.

B. Rashba + Dresselhaus SOC

The mixture of Rashba and Dresselhaus SOC [57, 64,
65] with C2v symmetry has been studied in [65] in the
absence of anisotropies, with the conclusion that SkX
phase cannot exist when both SOC terms are present.
Our analysis here shows that SkX phase can be stabilized
by the uniaxial anisotropy. Figure 6 shows the phase

diagram for D̂ = −DRĴz − DDλ̂1 with DR/DD = 5
(DR, DD > 0). The DM tensor of mostly of Rashba type
with an additional small symmetry-breaking Dressel-
haus type term results in skyrmions with the topological
charge Q = 1. In the opposite situation of DD/DR = 5,
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FIG. 4. (Color online) Normalized spin density n and topo-
logical charge density χ in SkX phase for the Rashba SOC.
The size and direction of the arrows represent the in-plane
component of n and the color represents nz. AsJ/D

2 = 0
and HJ/D2 = 0.7 (top), AsJ/D

2 = 0.8 and HJ/D2 = 0.7
(bottom). As the strength of the easy-plane anisotropy is
increased, localized skyrmions undergo a continuous charge
splitting. When the relative size of the antivortices reach a
critical value, square packing becomes energetically favorable
and a first-order phase transition occurs into SC phase.
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FIG. 5. (Color online) Normalized spin density and topolog-
ical charge density at AsJ/D

2 = 1.5 and HJ/D2 = 1.4 (SC
phase) for Rashba SOC.

skyrmions converge to topologically-different Dresselhaus
type skyrmions with Q = −1 charge. We observe that
SkX region shrinks while SP and SC regions expand.
The C2v symmetry allows deformations along the axes
of reflection (x- and y-axes in this case), but unlike the
SP and SC configurations, the sixfold symmetry of SkX
is not compatible with such deformations. Elongation
of skyrmions along the axes of symmetry is evident in
Figs. 7 and 8.

C. Rashba SOC with tilting

Finally, we discuss the case in which the DM ten-
sor is antisymmetric and corresponds to a vector that
is making a small tilting angle with the z-axis: D̂ =
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FIG. 6. Zero temperature phase diagram for the Rashba +
Dresselhaus SOC with C2v symmetry (D̂ = −DRĴz −DDλ̂1

with DR/DD = 5). SkX phase is only present in the easy-
plane region (AsJ/D

2 > 0) of the phase diagram. The grey
line separates the aligned and the tilted regions of the FM
phase [63], whereas SkX and SP phases are not affected by
this line.
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FIG. 7. (Color online) Normalized spin density and topo-
logical charge density at AsJ/D

2 = 0.4, HJ/D2 = 1.2 (SkX
phase) for the Rashba + Dresselhaus SOC with C2v sym-
metry. This plot shows the initial stage of charge splitting
of skyrmions elongated along the mirror planes (xz and yz
planes).

−D(0, sin θT , cos θT )T× and the tilting angle is chosen
to be θT = tan−1(0.1) ≈ 0.1 or 5.7◦. Such a system has
reflection symmetry along a single mirror plane (which
is the yz-plane for this choice of parameters). We find
that SP region expands greatly while SkX region slightly
shrinks and SC region is completely replaced by SP, as
can seen in Fig. 9. It turns out that the SP phase also
takes over the tilted FM region (in which the spin density
is nz = −H/2As) due to the fact that such form of DM
interaction favors in-plane spirals (Fig. 11) and this al-
lows exchange and DM interactions to lower the average
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FIG. 8. (Color online) Normalized spin density and topologi-
cal charge density at AsJ/D

2 = 0.6, HJ/D2 = 1.3 (SC phase)
for the Rashba + Dresselhaus SOC with C2v symmetry. The
vortices and antivortices are noticeably elongated.
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FIG. 9. Zero temperature phase diagram for the SOC with
reflection symmetry (D̂ = −D(0, sin θT , cos θT )T× with θT =
tan−1(0.1) ≈ 5.7◦) which shows a SP phase with enhanced
stability. The grey line separates the aligned and the tilted
regions of the FM phase.
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FIG. 10. (Color online) Normalized spin density and topolog-
ical charge density at AsJ/D

2 = 1.3, HJ/D2 = 1.5 (SkX
phase) for reflection symmetry. The core of skyrmions is
shifted (from the unit cell center which is at the origin) along
the axis of reflection.

energy density from FFM/A = Asn
2
z + Hnz (note that
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FIG. 11. (Color online) Normalized spin density at AsJ/D
2 =

1.5, HJ/D2 = 1 (SP phase) for reflection symmetry, showing
a mostly-in-plane spiral configuration. When the easy-plane
anisotropy AsJ/D

2 is increased, spirals become almost com-
pletely in-plane.

the in-plane component of the spin density does not con-
tribute at all) where FFM is the free energy and A is the
area of the system. The core of resulting skyrmions is
shifted along the y-axis as can be seen in Fig. 10. There
is also a slight elongation along the y-axis (around 2%
for the parameters used in the figures).

IV. DYNAMICS OF SKYRMIONS INDUCED
BY SPIN CURRENTS

Here we study the dynamics of skyrmions in response
to spin currents. Spin currents naturally arise in a con-
ducting ferromagnet in the presence of charge currents.
Spin currents can also arise in a ferromagnetic insulator
in a form of magnon current as a response to a temper-
ature gradient as we show in Appendix D by deriving
the LLG equation from the stochastic LLG equation. In
both cases, we can apply the following LLG equation:

s(1 + αns×)ṅs = ns ×Heff − (1 + βns×)(js ·D)ns,
(10)

where s is the local spin density, β is the dissipative
correction to the magnonic torque, js is the effective
spin current induced either by charge carriers or by
magnon currents, D = (Dx,Dy,Dz) is the chiral deriva-
tive [55, 56], and ns represents the spin density whose
dynamics is determined by the external magnetic field,
magnetic anisotropies, and spin currents. The form of
the chiral derivative is determined by symmetries of the
system. In the most simple case it can be determined
by DM interactions, i.e., Dµ = ∂µ + (D̂eµ/J)× (see Ap-
pendix A for a detailed discussion for the case of magnon
currents and [66] for charge currents). However, in the
most general settings the tensor involved in the chiral
derivative can be renormalized, e.g., due to various scat-
tering processes.

For describing the motion of skyrmions, we use Thiele’s
approach [25, 29–31, 67–69] in which the motion of mag-

netic textures is constrained to a subspace described by
the generalized (collective) coordinates qi in the form
ns = ns(r − q(t)). Under this assumption, the mag-
netic structure drifts as a whole while maintaining its
internal structure: ṅs becomes −∑µ q̇µ∂qµns and the
equations of motion for qµ can be found by applying the
operator

∫
cell

d2r(∂qµns) ·ns× to the LLG equation (10).
We obtain the following equation for the generalized co-
ordinate:

s(Ĝ+ αη̂)v − (Ĝ1 + βη̂1)js = 0, (11)

where v = q̇ denotes the speed of the skyrmion and

[Ĝ]µν =
1

4π

∫
d2r(∂µns × ∂νns) · ns =

∫
d2rχ(r)εµνz,

[Ĝ1]µν =
1

4π

∫
d2r(∂µns ×Dνns) · ns,

[η̂]µν =
1

4π

∫
d2r(∂µns · ∂νns),

[η̂1]µν =
1

4π

∫
d2r(∂µns · Dνns), (12)

with µ, ν ∈ {x, y} and the integrations are over a single

unit cell. The antisymmetric gyrotensor Ĝ can be written
as −Qz×, and we have Ĝ = Ĝ1. The damping dyadic
tensors η̂ and η̂1 account for the effects of dissipation.

For rotationally symmetric case a skyrmion of radius
R will result in η̂ = η11 and η̂1 = η111, with

η = π

∫ R

0

dr

(
sin2 nθ
r

+ r(∂rnθ)
2

)
,

η1 = η + π

∫ R

0

dr(sinnθ cosnθ + r∂rnθ), (13)

where nθ and nφ are the spherical coordinates of n, lead-
ing to the equation of motion

(ηαsv − η1βj
s)−Qz × (sv − js) = 0. (14)

For the motion of skyrmions in response to a time-
independent spin current along x-direction (js = jsex),
this equation yields

vx = js
Q2 + αβηη1

s(Q2 + α2η2)
, vy = jsQ

βη1 − αη
s(Q2 + α2η2)

, (15)

that is, skyrmions will move along the spin current with
an additional side motion, resulting in a Hall-like motion
with Hall angle θH = tan−1(vy/vx) (see Fig. 12).

In cases lacking the rotational symmetry, the dissi-
pation tensor can be diagonalized as η̂′ = R̂z η̂R̂

T
z =

diag(η′xx, η
′
yy) by a proper rotation R̂z around the z-axis

that aligns the basis vectors with the preferred direc-
tions due to the broken symmetry. R̂z also diagonal-
izes η′1. Such a transformation does not affect Ĝ since

[R̂z, Ĵz] = 0, thus the equation of motion in the new co-
ordinate system becomes

η̂′αsv′ − η̂′1βjs′ −Qz × (sv′ − js′) = 0, (16)
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or

Qz × (sv′ − js′)−
(
η′xx 0
0 η′yy

)
αsv′

+

(
η′1xx 0

0 η′1yy

)
βjs
′

= 0, (17)

where js
′

= R̂zj
s and v′ = R̂zv.

In SkX phase, inter-skyrmion interactions force the
inter-skyrmion distance to a particular value. In the case
when chiral derivative is given by Dµ = ∂µ + [D̂eµ/J ]×
this leads to η̂′1 = 0 and θH = −Qαη (see Appendix E).
However, this exact cancellation does not happen for iso-
lated skyrmions in general and when the chiral derivative
entering the LLG equation (10) is renormalized. Never-
theless, we observe that the renormalization of the dissi-
pative tensor in Eq. (12) has to be taken into account, es-
pecially for skyrmion lattices. Such renormalization was
not considered in the previous studies [19, 23, 25, 27].

Isolated skyrmions in a chiral magnet can be realized
by increasing the magnetic field in SkX phase or by in-
jection of spin currents. Such isolated skyrmions will ex-
ist as topologically protected defects [21, 45, 70], whose
Hall motion is affected by the β-term as well (see e.g.
Eq. (14)). On the other hand, for isolated skyrmions the
inter-skyrmion distances become much larger compared
to the skyrmion core size, for which we estimate η̂1 ≈ η̂.
In the particular case of α = β (this case is realized
for magnon-mediated torques for d = 2, see Appendix
D), isolated skyrmions will move along the spin current
without a side motion (see Eq. (15)), similar to antiferro-
magnetic skyrmions [26]. This can have implications for
realizations of magnetic memories relying on skyrmions
for information encoding.

While the form of the SOC completely determines the
helicity γ and topological charge Q of the skyrmions in
SkX phase, in principle it is possible to create metastable
skyrmions with different helicity γ′ and charge Q′. The
dynamics of such skyrmions will be different in general: n
in Eq. (12) will be replaced by R̂′n, where R̂′ = R̂z(γ

′ −
γ)(−λ3)(1−QQ′)/2, which in turn means Ĝ → det(R̂′)Ĝ,

Ĝ1 → det(R̂′)Ĝ1, η → η and η1 → R̂′T (η1 − η) + η.
Note that we consistently keep only the first order

terms in SOC strength and assume a smooth magnetic
texture. In sharp textures, there could be additional
damping terms of the order of (D/J)2 whose overall ef-
fect is to renormalize the elements of η̂ [37, 71]. Similar
corrections can occur when the magnon wavelength is
comparable to the texture size [72].

V. CONCLUSIONS

In this work, we have studied SkX and SC crystals at
temperature that are much lower than the Curie temper-
ature. Similar studies of magnetic skyrmions so far have
been limited to systems with high symmtery. A previ-
ous study concluded that SkX phase does not exist in

FIG. 12. (Color online) Motion of Q = 1 skyrmions due to
spin current along the x-axis, simulated by the LLG equation
with the torque term, Eq. (10). Skyrmions move along the
spin current (e.g. toward the hotter region for the case of
magnon-mediated torques) (+x direction) with an additional
side motion (−y direction). Skyrmions get deformed along
the direction of motion.

a system with both Rashba and Dresselhaus SOC, but
uniaxial anisotropy was not present in their model [65].
As we have shown, SkX phase is present even in sys-
tems with reduced symmetries; however, the skyrmions
become asymmetric. In fact, we have established a clear
connection between the symmetries of skyrmions and the
corresponding DM interactions (see, e.g., Fig. 2). In ad-
dition, we have found that reduced symmetries result in
enhanced stability of vortex-antivortex lattices and spi-
rals, even in the absence of an external magnetic field.
This behavior has also been reported in [17] for MnSi

(D̂ = 11). In our Monte-Carlo simulations, we have ob-
served anisotropy-driven, first order phase transitions be-
tween FM, SkX, SC, and SP phases.

We have also studied the dynamics of skyrmions and
SkX (SC) lattices induced by spin currents where the spin
current is induced by charge carriers or by magnons. We
have found striking differences between the motion of lat-
tices and isolated skyrmions. This difference arises due to
a renormalization of the dissipative dynamics of SkX and
SC lattices and can be expressed via the chiral derivative.
On the other hand, this renormalization is not important
for isolated skyrmions. As a consequence, our theory in-
dicates that under certain conditions, isolated skyrmions
can move along the current without a side motion, simi-
lar to antiferromagnetic skyrmions. This can have impli-
cations for realizations of magnetic memories relying on
skyrmions for information encoding.

Our results applies to monolayers as well as quasi-2D
layers thinner than the pitch of out-of-plane spirals with
the length scale J/D [6, 13, 24, 52, 62].

To conclude, our results relate different SkX and SC
phases to the symmetries of materials used for realiza-
tions of skyrmions. This will give clear directions for ex-
perimental realizations of SkX and SC phases, and will
allow engineering of skyrmions with unusual properties.
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Appendix A: Dzyaloshinskii-Moriya interaction in
itinerant ferromagnets

The discussion in this section is relevant to itinerant
ferromagnets with DM interactions, e.g., thin magnetic
films realized experimentally in Refs. [48, 49]. The effec-
tive free energy of a quasi-two-dimensional (2D) chiral
magnet can be obtained starting from the 2D Rashba
Hamiltonian with a general spin-orbit interaction term

Ĥ =
p2

2m
+ (α̂p) · σ. (A1)

Here the tensor α̂ describes SOC, p is the in-plane 2D
electron momentum, σ = (σx, σy, σz). Note that SOC
can be related to DM interactions by relation α̂ =
~/(2mJ)D̂. The Coulomb interactions resulting in the
magnetic state are spin independent.Thus, we can elimi-
nate the spin-orbit interaction using a local SU(2) gauge

transformation [55] Û = exp(−iϕu · σ/2) to obtain

Û†ĤÛ =
p2

2m
+O(ϕ2), (A2)

where u = D̂r/|D̂r| a unit vector along the axis of ro-
tation, r is the in-plane position vector and the angle
ϕ = ~|D̂r|/J is proportional to the strength of the spin-
orbit interaction. In the remainder of this Appendix, we
will neglect higher order terms in ϕ given that SOC is a
relativistic effect.

The free energy density corresponding to the system
in the rotated frame is given by F0 =

∑
µ=x,y J(∂µn̄)2/2

where J is the strength of the exchange interaction of the
magnetic state with the order parameter n̄ originating
from the Coulomb interactions. The original and rotated
frames are related to each other by an SO(3) rotation:

n = R̂n̄, where R̂ = exp(ϕu · J) = exp(φu×), J =

(Ĵx, Ĵy, Ĵz) and:

Ĵx =

0 0 0
0 0 −1
0 1 0

 , Ĵy =

 0 0 1
0 0 0
−1 0 0

 , Ĵz =

0 −1 0
1 0 0
0 0 0


(A3)

are the generators of the fundamental representation of
SO(3). (Û and R̂ represent the same rotation in spin- and

real-space, respectively.) Since the gauge transformation
is not a global one, we obtain a nontrivial covariant (often
called chiral in this context) derivative Dµ,

Dµ = ∂µ + R̂∂µR̂
T = ∂µ + (D̂eµ/J)×, (A4)

which replaces the spatial derivative ∂µ and captures the
linear effects of SOC. The continuous free energy density
in the original frame is then found to be

F0 =
∑
µ=x,y

J

2
(Dµn)2 ≈

∑
µ=x,y

J

2
(∂µn)2 + (D̂eµ) · (n× ∂µn).

(A5)

Appendix B: Tight-binding microscopic model

In this section, we derive the free energy based on
a tight-binding microscopic model. Such microscopic
model can be relevant to realizations of magnetic sys-
tems at oxide interfaces [50, 51] We describe our sys-
tem by the tight-binding Anderson-Hasegawa Hamilto-
nian Ĥ = Ĥt + ĤSO + Ĥint on a square lattice [52]:

Ĥt = −t
∑
〈i,j〉,α

c†iαcjα + H.c.,

ĤSO = −iλSO

∑
〈i,j〉,αβ

c†iαcjβDij · σαβ + H.c.,

Ĥint = J
∑
ij

Si · Sj − 2JH
∑
i

si · Si, (B1)

where Ĥt is the nearest-neighbor hopping term, ĤSO is
the spin-orbit coupling and Ĥint is the interaction Hamil-
tonian, J is superexchange energy, JH is Hund’s cou-

pling energy, c†iα (ciα) creates (annihilates) an itinerant

fermion with spin α at lattice site i, Dij = D̂eij/D,
σ = (σx, σy, σz), eij is a unit vector from site i to j,∑
〈i,j〉 denotes summation over nearest neighbors, si =∑
αβ c

†
iασαβciβ/2, and Si denotes lattice-localized spins.

The SOC coupling can be gauged away by a rotation
in the spin space, which rotates the first site by an angle
φij defined through tanφij = (|D̂eij |/D)(λSO/t) and the

second site by −φij around the axis uij = D̂eij/|D̂eij |:

c̄iα = [Û ij ]†αβciα, c̄jβ = [Û ij ]αβcjβ , Ûij = eiφijuij ·σ/2.

(B2)

In terms of the rotated operators, H becomes

Ĥ = −t̄
∑
〈i,j〉,α

c̄†iαc̄jα +
∑
〈i,j〉

JS̄i · S̄j − 2JH s̄i · S̄jδij

= −t̄
∑
〈i,j〉,α

c̄†iαc̄jα +
∑
〈i,j〉

J(R̂TijSi) · (R̂ijSj)

−2JH(R̂Tijsi) · (R̂ijSj)δij , (B3)

where t̄ =
√
t2 + λ2

SO and R̂ij ∈ SO(3) represents the

same rotation as Ûij in the three-dimensional Euclidean
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space: a rotation by −φij around the uij axis, which can
be written as

R̂ij = cosφij11 + (1− cosφij)uiju
T
ij − sinφijuij× (B4)

In the limit of large JH and classical spins S̄i, Hamilto-
nian (B3) corresponds to effective exchange interaction
between localized spins given by [73]

−JF
∑
〈i,j〉

√
1 + S̄i · S̄j/2S2, (B5)

where S is the magnitude of the local spins, JF = Kt̄,
and K is a constant related to the density of itiner-
ant electrons. Expanding the square root and using
(R̂TijSi) · (R̂ijSj) = Si · (R̂2

ijSj) along with Eq. (B4)
and considering nearest-neighbor interactions, we obtain
the Hamiltonian

Ĥ =
∑

i,µ=x,y

− JµSi · Si+µ −Dµuµ · (Si × Si+µ)

−Aµc (uµ · Si)(uµ · Si+µ) (B6)

with Jµ = −J cos 2φµ, Aµc = Jo(1− cos 2φµ), and Dµ =
J sin 2φµ. Since φµ ∼ λSO/t� 1, we obtain the relation

AcJ/D
2 ≈ 1/2, where Ac ≈ Aµc (D/|D̂eµ|)2.

The continuous free energy density corresponding to
this lattice tight-binding model is

F =
∑
µ=x,y

J

2
(∂µn)2 + (D̂eµ) · (n× ∂µn)

−Ac
[
(Dµ · n)

2 − 1

2
(Dµ · ∂µn)

2 − 1

2
(|Dµ|∂µn)

2

]
.

(B7)

Using J/D as the new unit of length, the free energy
density can be rewritten in the dimensionless form

F0 =
∑
µ=x,y

1

2
(∂µn)2 + Dµ · (n× ∂µn)− AcJ

D2
(Dµ · n)

2

+
AcJ

D2

1

2

(
D

J

)2 [
(Dµ · ∂µn)2 + (|Dµ|∂µn)

2
]

(B8)

in units of J . After adding the uniaxial anisotropy and
Zeeman energies as well as dropping the term (D/J)2 ∼
(λSO/t)

2 � 1, this free energy density shares the symme-
tries of the one given by Eq. (3). They become equivalent

for D̂ = −Jz or D̂ = −11 leading to a uniaxial anisotropy
with a renormalized strength As → As +Ac. In the case
of C2v symmetry discussed in Sec. III, there is an addi-
tional anisotropy term Ac2DRDD(D2

R+D2
D)−1(n2

x−n2
y)

which is compatible with C2v symmetry. For the case
with only reflection symmetry, the leading anisotropy
term is Ac2θTnz(nx cosφT + ny sinφT ), where θT and
φT are spherical angles describing the tilting vector nT ;
as one would expect, the additional term respects the re-
flection symmetry. We numerically found that for small
DD/DR or θT there is no significant difference in the
phase diagrams due to additional anisotropy terms.

Appendix C: Variational estimate

In order to obtain an initial rough estimate for the
phase diagram, we minimize the average free energy den-
sity

F

A
=

1

A

∫
A

d2rF(n(r)) (C1)

by comparing the energies corresponding to ferromag-
netic, SkX, SC, and SP ansatzs. For each ansatz we
optimize the parameters that yield the minimal energy.
Skyrmion lattice. We assume a simple form of az-

imuthally symmetric skyrmion and linearly interpolate
the nθ component of the spin density:

nSkX = (sinnθ cosnφ, sinnθ sinnφ, cosnθ)
T (C2)

with nθ = −πr/R and nφ = Qφ+ γ. The optimal values
of R (skyrmion size), Q ∈ {−1, 1} (topological charge)
and γ (helicity) are found by minimization. In the re-
duced symmetry cases, the accuracy of this azimuthally
symmetric ansatz becomes less accurate as the asymme-
try is increased. In principle, this can be remedied by
adding a constant component to nSkX along a preferred
direction.

Spiral. MC simulations show that depending on D̂,
spirals can be coplanar or in-plane. To capture both
kinds of spirals, we assume the ansatz

nSP = eu cos(q · r) + ev sin(q · r) (C3)

for the spiral phase with eu · ev = 0. Minimization is
done with respect to eu, ev, and q.

Ferromagnetic. There are two types of uniform ferro-
magnetic phase that appear as the solution of equation:

Asn
2
z −Hnz = 0. (C4)

The first case is the aligned ferromagnetic phase with
nz = −1 with energy As+H. In the tilted ferromagnetic
phase, we have nz = −H/2As > −1 and the energy is
−H2/4As. The resulting phase diagrams coarsely agree
with the results obtained from using LLG equation and
MC.

Appendix D: LLG equation with magnonic torques

In this Appendix, we give a derivation of the LLG
equation (10) when the spin current and torque origi-
nate from magnon currents. The presentation here fol-
lows closely [15, 16, 74] and extends the result in [75] to
systems with DM interaction.

We assume that the time scale of the magnetiza-
tion dynamics determined by external magnetic fields,
anisotropies, and currents is slow compared to the time
scale of thermal magnons defined by the temperature.
We also assume that the thermal magnon wavelength
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is smaller than the typical size of the magnetic texture,
i.e., skyrmion. Magnetization dynamics of a ferromagnet
well below Curie temperature can be described by the
stochastic LLG equation

s(1 + αn×)ṅ = n× (Heff + h), (D1)

where s is the spin density, n = n(r, t) is a unit vector
along spin density, Heff = −δnF is the effective magnetic
field and h is the random Langevin field at temperature
T that satisfies the fluctuation-dissipation theorem with
the correlator

〈hi(r, t)hj(r, t)〉 = 2αsT (r)δijδ(r − r′)δ(t− t′). (D2)

Here α is the Gilbert damping coefficient and we assume
a uniform temperature gradient along the x-axis, ∂xT =
const.

We separate the spin density n into small and fast
oscillations ns with time scale 1/ωk (ωk is the magnon
frequency) on top of the slow spin density dynamics nf
whose time scale is defined by external magnetic fields,
anisotropies, and currents. These two orthogonal (that
is, nf ·ns = 0) components are related to spin density by

n =
√

1− n2
fns + nf by definition, and |ns| = |n| = 1.

We now switch to a coordinate system where the z-
axis points along ns through a local SO(3) gauge trans-

formation R̂s = exp(ΨĴz) exp(ΘĴy) exp(ΦĴz), where
Ψ,Θ, and Φ are Euler angles. In what follows we
set Ψ = 0. In this coordinate system, the spin den-
sity becomes n′ = R̂sn and the covariant derivative
is ∂ν − Âν with Âν = (∂νR̂s)R̂

T
s = Aν× and Aν =

(− sin Θ∂νΦ, ∂νΘ, cos Θ∂νΦ), and ν = t, x, y, z denotes
time and space coordinates. By treating Aν as a (fic-
titious) vector potential, we fix the gauge. In the new
frame nf lies in the x′ − y′ plane which can be repre-
sented by a complex number as nf = nx′ + iny′ . The
LLG equation in this frame for the fast dynamics is given
by

is[(1− iα)∂t − iAzt ]n+ =J(i∂µ +Azµ − dzµ)2n+ +Hn+,

(D3)

where dµ = D̂eµ/J and we assumed exchange interac-
tions are dominant over various anisotropy terms and
the coupling between the circular components nf and
n∗f can be ignored [15, 76]. RHS of this equation can

be read as follows: the gauge fields −Aµ and D̂eµ/J ,
respectively, account for aligning n′s with the z′-axis
and introducing the DM interaction; the gauge poten-
tials can be merged into an overall covariant derivative
D′µ ≈ ∂µ+(−Aµ+D̂eµ/J)×, where we kept only the first
order terms in D/J , ∂µΘ and ∂µΦ. Equation (D3) de-
scribes thermal magnons with spectrum ωk = [H+J(k−
k0)2 − Jk2

0]/s and magnon current jµ = J Im(n∗f∂µnf ).
Here, k0 is the momentum shift induced by the DM in-
teraction and magnetic texture. Formally, Eq. (D3) de-
scribes the motion of charged particles due to fictitious

electric and magnetic fields Eµ = n′s · (∂tn′s × ∂µn′s) and
Bi = −(εijk/2)n′s · (∂jn′s × ∂kn′s).

We are now in a position to calculate the force exerted
by the fast oscillations on the slow spin density dynam-
ics. For simplicity, we assume that the slow magnetic
texture is static since the time-dependence can be taken
into account later on by Onsager reciprocity principle.
The relevant terms in the total effective field

Heff = J

(
∂2
µn+ 2

D̂eµ
J
× ∂µn

)
− (H + 2Asnz)ez

(D4)

are exchange and DM terms because other terms average
out due to rapid oscillations (summation over µ = x, y is
implied), thus we obtain the expression for the torque

T = 〈n×Heff〉 − 〈n〉ns ×Hs
eff = Jns × S,

≈ J〈nf × ∂2
µnf 〉+ 2J〈n× (∂µns)∂µ(ns · n)〉

+ 2J〈nf × (dµ × ∂µnf )〉, (D5)

where we formally introduced S = −ns × T /J
as the nonequilibrium transverse accumulation of
magnon spins, 〈. . .〉 denotes averaging over the fast
oscillations induced by random fields and Hs

eff =
−δnF (〈n〉ns, 〈n〉∂µns). By dropping oscillatory terms
that average out, we obtain

S =2〈nf (∂µns · ∂µnf )〉 − 2〈ns(∂µnf · ∂µnf )

+ 2(ns × nf )(dµ · ∂µnf ). (D6)

The fact that vectors S,nf , ∂µns, ∂µnf and ns×nf are
in the x′ − y′ plane allows us to rewrite Eq. (D6) using
complex numbers, leading to

S = −idµ〈n+∂µn−〉 − (∂µns)〈n−∂µn+〉. (D7)

S = Sx + iSy describes the components of spin accumu-
lation leading to dissipative and nondissipative torques
and −idµ represents dµ × ns (which also is a vector in
the x′ − y′ plane) as a complex number. For the steady
state solution, we obtain

〈n±∂µn∓〉 =±
∫
dd−1kdω

(2π)d
〈n±(k, ω, x)∂µn∓(k′, ω′, x)〉

(2π)dδ(k − k′)δ(ω − ω′) ,

(D8)

where d = 2, 3 is the dimensionality of the magnet and

n±(k, ω, x) =

∫
dd−1ρdω

(2π)d
e∓i(ωt−ρ·k)n±(ρ, t) (D9)

is the Fourier transform with respect to time and trans-
verse coordinates. The δ-functions in the denominator
are canceled by the stochastic field

〈h∗(k, ω, x)h(k′, ω′, x)〉
4(2π)dαskB

= T (x)δ(x− x′)δ(ω − ω′).
(D10)
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Since we are interested in the linear response to the ran-
dom Langevin field h(k, ω, x), we set Azν = 0 in Eq. (D3)
and the stochastic LLG equation Eq. (D1) becomes the
inhomogeneous Helmholtz equation

J(∂2
x + κ2)n−(k, ω, x) = h(k, ω, x), (D11)

where κ2 = [(1 + iα)sω−H]/J − k2 − k2
0. This equation

corresponds to Eq. (D3) with an added stochastic term,
and can be solved easily by employing Green’s function
G(x − x0) = ieiκ|x−x0|/2κ. By substituting the solution
into Eq. (D8) and employing the quantum dissipation
theorem, we find

T = −(Dµns)jx(1 + iβ), (D12)

where Dµns represents Dµns as a complex number and

jx = (∂xT )/T

∫
ddk/(2π)dτ(ε)εv2

x∂εf0 (D13)

with τ(ε) = (2αω)−1, ε(k) = (Jk2 + H)/s,
vx = ∂ωk/∂kx and f0 = 1/[exp(ε/kBT ) − 1] is
the Bose-Einstein equilibrium distribution. The β
term in Eq. (D12) corresponds to the dissipative cor-
rection with β/α = (d/2)F1(x)/F0(x) ∼ d/2 with
F0(x) =

∫∞
0
dεεd/2−1εeε+x/(eε+x − 1)2 and F1(x) =∫∞

0
dεεd/2−1(ε + x)eε+x/(eε+x − 1)2 evaluated at the

magnon gap x = ω0/kBT (for d > 2 and for small gaps,
F1(x) = F0(x) = ζ(d/2)/Γ(1 + d/2), where ζ(x) is the
Riemann zeta function, and Γ(x) is the Euler gamma
function [77]). The magnon current density is given by

jµ = −kB(∂µT )F0/(6π
2λ~α) (D14)

for d = 3, where λ =
√

~J/skBT is the thermal magnon
wavelength, and

jµ = −kB(∂µT )F0/(4π~α) (D15)

for d = 2. Using the spin-torque term given by
Eq. (D12), we obtain the LLG equation with thermo-
magnonic torque

s(1 + αsns×)ṅs = ns ×Hs
eff − (1 + βns×)(js ·D)ns,

(D16)

where s = 〈n〉s is the renormalized spin density, Hs
eff =

−δnF (〈n〉ns, 〈n〉∂µns) is the effective field, αs = 〈n〉α
is the renormalized Gilbert damping, and js = −~j is
the spin current with polarization along ns carried by
magnons.

Appendix E: Scaling of the lattice vectors

In order to determine the ground state of the system
at a given point (A,H) in the phase diagram, we com-
pare the energies of relaxed SP, SC, SkX, and FM con-
figurations. We use LLG equation to simulate the spin
dynamics and to relax the system starting from ansatz-
states (SP, SC and SkX as given by Eq. (8), which are

obtained by inspecting the results from MC). We then
compare the resulting average free energy densities and
determine the actual phase.

In each case, we relax a single primitive cell with rect-
angular period boundary conditions. This, however, re-
quires us to specify the cell size, which we do not know
beforehand. To overcome this problem, we dynamically
scale the spatial coordinates as x′ = axx and y′ = ayy
such that the lattice vectors are scaled to their optimal
values as we describe below.

The dimensions of the primitive cell (Lx, Ly) in the
(x′, y′) coordinate system are chosen such that the ansatz
(SkX, SC, SP) is compatible with periodic boundaries

(that is, Lx = π, Ly = π/
√

3 for SkX, Ly = Lx = π/2 for
SC and Lx = Ly = π for SP). The average free energy
density is given by f = F/A, where

F =J

∫ Ly

−Ly

∫ Lx

−Lx
dx′dy′|J |F ′,

A =

∫ Ly

−Ly

∫ Lx

−Lx
dx′dy′|J |,

F ′ =
∑
µ=x,y

1

2
(aµ∂µ′n)2 + (D̂eµ/D) · (n× aµ∂µ′n)

+
HJ

D2
nz +

AsJ

D2
n2
z,

|J | = 1

axay
. (E1)

Here |J | is the Jacobian of the transformation. The op-
timal value of aµ is given by ∂aµf = 0 or

aµ = −1

2

∫ Ly
−Ly

∫ Lx
−Lx dx

′dy′|J |(D̂eµ/D) · (n× ∂µ′n)∫ Ly
−Ly

∫ Lx
−Lx dx

′dy′|J | 12 (∂µ′n)2
.

(E2)

Starting from an ansatz configuration n(0) given by

Eq. (8), one can determine the optimal value of a
(0)
µ us-

ing Eq. (E2) and relax the system using the overdamped
LLG equation Eq. (7) for a period of time TR. This
process yields the configuration n(1) which is closer to

the local minimum, and we can calculate a
(1)
µ using n(1).

Eventually, |f [n(i+1), ai+1
µ ] − f [n(i), aiµ]| vanishes as we

approach the minimum.
A corollary of Eq. (E2) is that at the equilibrium point,

FµD
2FµJ

=

∫ Ly
−Ly

∫ Lx
−Lx dx

′dy′|J |(D̂eµ/D) · (n× aµ∂µ′n)

2
∫ Ly
−Ly

∫ Lx
−Lx dx

′dy′|J | 12 (aµ∂µ′n)2
= −1,

(E3)

and since [η̂]µµ = 2FµJ and [η̂1]µµ = 2FµJ + FµD, we reach
to the conclusion that [η̂1]µµ = 0.

We emphasize that this result is derived under the as-
sumption of a periodic lattice and does not hold for iso-
lated skyrmions in general.
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Nat. Phys. 7, 713 (2011).

[9] N. S. Kiselev, A. N. Bogdanov, R. Schäfer, U. K. R. Ler,
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P. Böni, J. Phys. Conf. Ser. 200, 032026 (2010).

[13] S. Buhrandt and L. Fritz, Phys. Rev. B 88, 195137
(2013).

[14] X. Li, W. V. Liu, and L. Balents, Phys. Rev. Lett. 112,
067202 (2014).

[15] A. A. Kovalev, Phys. Rev. B 89, 241101 (2014).
[16] A. A. Kovalev, Phys. Rev. B 91, 239903(E) (2015).
[17] J. H. Han, J. Zang, Z. Yang, J.-H. Park, and N. Nagaosa,

Phys. Rev. B 82, 094429 (2010).
[18] S. Banerjee, J. Rowland, O. Erten, and M. Randeria,

Phys. Rev. X 4, 031045 (2014).
[19] S.-Z. Lin, A. Saxena, and C. D. Batista, Phys. Rev. B

91, 224407 (2015).
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