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Positioned between crystalline solids and liquids, disordered many-particle systems which are
stealthy and hyperuniform represent new states of matter that are endowed with novel physical
and thermodynamic properties. Such stealthy and hyperuniform states are unique in that they are
transparent to radiation for a range of wavenumbers around the origin. In this work, we employ
recently developed inverse statistical-mechanical methods, which seek to obtain the optimal set of
interactions that will spontaneously produce a targeted structure or configuration as a unique ground
state, to investigate the spin-spin interaction potentials required to stabilize disordered stealthy
hyperuniform one-dimensional (1D) Ising-like spin chains. By performing an exhaustive search
over the spin configurations that can be enumerated on periodic 1D integer lattices containing N =
2, 3, . . . , 36 sites, we were able to identify and structurally characterize all stealthy hyperuniform spin
chains in this range of system sizes. Within this pool of stealthy hyperuniform spin configurations,
we then utilized such inverse optimization techniques to demonstrate that stealthy hyperuniform
spin chains can be realized as either unique or degenerate disordered ground states of radial long-
ranged (relative to the spin chain length) spin-spin interactions. Such exotic ground states appear to
be distinctly different from spin glasses in both their inherent structural properties and the nature
of the spin-spin interactions required to stabilize them. As such, the implications and significance of
the existence of such disordered stealthy hyperuniform ground state spin systems warrants further
study, including whether their bulk physical properties and excited states, like their many-particle
system counterparts, are singularly remarkable, and can be experimentally realized.

I. INTRODUCTION

There has been a tremendous amount of interest re-
cently in the creation of “materials by design,” that is,
the directed and systematic search for new materials
that possess prescribed desirable properties. Computa-
tional methods developed for this purpose will play a cen-
tral role toward this goal. Inverse statistical-mechanical
methods allow for a new mode of thinking about the
structure and physical properties of condensed phases of
matter,1 and are ideally suited for materials discovery by
design.

Much of statistical mechanics centers around finding
the structural and bulk physical properties for a given
many-particle (or many-spin) system Hamiltonian, what
we refer to as the “forward” problem of statistical me-
chanics.2–5 In this regard, so-called inverse statistical-
mechanical methods have been devised that yield opti-

mized interactions that robustly and spontaneously lead
to a targeted many-particle configuration of the system or
targeted set of physical properties for a wide range of con-
ditions.1,6–20 An interesting class of target configurations
that have been studied are classical many-particle ground
states of varying complexity and novelty.1,6–15 One can
also design the system to have exotic physical proper-
ties, such a negative Poisson ratio and negative thermal
expansion coefficients over a range of temperatures.16,17

Recently, we have generalized inverse statistical-
mechanical methods to the case of two-state Ising spin
systems with radial spin-spin interactions of finite range
(i.e., extending beyond nearest-neighbor sites).21,22 Our
interest in these initial studies was to find the optimal
set of shortest-range pair interactions whose correspond-
ing ground state was a targeted spin configuration. The
possible outcomes for a given target configuration were
classified into whether or not the targeted ground-state
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spin configurations were unique, degenerate, or neither.
In general, inverse techniques applied to targeted spin
configurations could have implications for the design of
solids with novel magnetic and electronic properties, e.g.
see Refs. 21 and 23.

We note that these inverse statistical-mechanical meth-
ods applied to spin systems differ significantly with re-
gard to the inverse Ising problem and related statisti-
cal inference procedures.24–27 The inverse Ising problem
and, more generally, the statistical inference of undi-
rected graphical models involves matching a probability
distribution to a training data set. However, the inverse
statistical-mechanical method takes as input only a sin-
gle datum (a single spin configuration), and finds a con-
strained set of optimal interactions that produces this
target as a ground state. Similarly, undirected graphical
models are typically defined at non-zero temperatures,
while the inverse statistical-mechanics method that we
focus on here is explicitly at zero temperature.

Our objective in this work is to determine whether
one-dimensional (1D) spin chains having target configu-
rations that are disordered, stealthy, and hyperuniform
can be made to be classical ground states. This choice is
motivated by the fact that such exotic amorphous states
of matter in the context of particle systems offer fascinat-
ing open theoretical questions and possess novel physi-
cal properties. Hyperuniform many-particle systems pos-
sess anomalously suppressed infinite-wavelength density
fluctuations, as quantified by the number variance.28,29

Disordered hyperuniformity occurs in a variety of physi-
cal systems, including large-scale structure in the Uni-
verse,30,31 the arrangement of avian photoreceptors,32

driven non-equilibrium systems,33,34 dynamics in cold
atoms,35 surface-enhanced Raman spectroscopy,36 tera-
hertz quantum cascade lasers,37 wave dynamics in disor-
dered potentials based on super-symmetry,38 and certain
Coulombic systems.39

Stealthy hyperuniform systems are those that com-
pletely suppresses single scattering for a range of long
wavelengths.40,41 It has been shown that systems of par-
ticles interacting with certain long-ranged (i.e., on the
order of the chain length) pair potentials can counterin-
tuitively freeze into classical ground states that are disor-
dered stealthy hyperuniform. By mapping such stealthy
configurations of particles into network solids, the first
disordered cellular solids with complete isotropic pho-
tonic band gaps comparable in size to photonic crystals
were discovered.42,43

Here we begin a program to apply inverse techniques
to explore whether 1D spin chains that are disordered,
stealthy and hyperuniform can be made to be classi-
cal ground states of radial spin-spin interactions. Such
spin chains would suppress single scattering for a range
of wavenumbers around the origin, implying anoma-
lously suppressed magnetization fluctuations at long
wavelengths. By focusing only on configurations that
are stealthy at the smallest positive wavenumber, we are
able to enumerate all periodic stealthy spin configura-

tions containing N = 2, 3, . . . , 36 spins on the 1D inte-
ger lattice under periodic boundary conditions and then
structurally characterize these configurations by comput-
ing pair correlation functions, structure factors, and de-
gree of disorder. We select from them the disordered con-
figurations and determine via inverse optimization tech-
niques whether they can be made to be ground states. We
discover that stealthy hyperuniform spin configurations
can be realized as either unique or degenerate disordered
ground states of radial long-ranged (i.e., relative to the
chain length) spin-spin interactions. Such exotic ground
states are distinctly different from spin glasses studied to
date44–46 in both their inherent structural properties and
the nature of the spin-spin interactions required to sta-
bilize them (e.g., these disordered stealthy hyperuniform
spin systems exhibit no single-scattering for large wave-
lengths and are stabilized by deterministic rather than
stochastic spin-spin interactions).

Section II briefly reviews basic concepts, including def-
initions of stealthiness, hyperuniformity, and a disorder
metric for 1D spin chains. Section III describes the
inverse statistical-mechanical procedure used to gener-
ate stabilizing radial spin-spin interactions. Section IV
presents our major results, including an enumeration
of stealthy hyperuniform spin configurations containing
N = 2, 3, . . . , 36 spins on the 1D integer lattice under
periodic boundary conditions, their characteristics, and
their ability to be spontaneously generated as ground
states by the inverse methodology. Finally, in Sec. V,
we close with concluding remarks.

II. THEORETICAL BACKGROUND

We are interested in a generalized class of spin Hamil-
tonians in arbitrary Euclidean space dimensions. In this
initial study, we focus on the spin-spin interaction Hamil-
tonian of spin chains on the 1D integer lattice given by
the distance-dependent version of the Ising model

H = −
∑
r

J(r)σiσi+r (1)

where −1 ≤ J(r) ≤ 1 can in general be a long-ranged
spin-spin interaction potential with a radial extent on
the order of the chain length. Such long-ranged spin-
spin interactions have been studied by various investiga-
tors using standard forward statistical-mechanical tech-
niques.2,47–53 The inverse statistical-mechanical method-
ology involves optimally tuning the parameters of J(r)
such that the targeted spin configuration is sponta-
neously produced as a unique ground state according to
the criteria and procedures described in Sec. III. In what
follows, we briefly review the basic concepts and defini-
tions that will be used throughout the paper, including
collective coordinates, hyperuniformity and stealthiness,
and order metrics.
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A. Collective Coordinates

The configurations we designate as targets in the in-
verse methodology are defined through collective density
coordinates. Specifically, we focus on 1D spin chains
composed of N spins σj = ±1 with position r on the
sites of the integer lattice (r = 1, 2, . . . , N) in a funda-
mental unit cell under periodic boundary conditions. The
spin collective density variable of the chains is the Fourier
transform of the spin density

ρσ(k) =

N∑
j=1

σje
ikr, (2)

which can be viewed as a transformation from the fi-
nite set of spin configurations to the complex functions
ρσ(k) that depends on the infinite set of wavenumbers
k on the integer lattice in reciprocal space.41 The pos-
sible wavevectors for a chain on the integer lattice are
k = 2πn/N for integer n. The spin structure factor is
then defined as

S(k) =
1

N
ρσ(k)ρσ(−k), (3)

which is a real function with inversion symmetry. For
spins on the integer lattice, the structure factor is peri-
odic with S(k) = S(k + 2π). This symmetry property
combined with Eq. (3) imply that S(k) is symmetric
about k = π for integer spin chains. In addition, through
Fourier inversion of the structure factor we can obtain
the radial spin-spin correlation function as

G2(r) =
1

N

N∑
j=1

sjsj+r. (4)

where si = σi − 〈σi〉. Therefore, the structure factor is
expressible in terms of the spin-spin correlation function
as follows:

S(k) =

N∑
r=1

G2(r)eikr (5)

B. Hyperuniformity and Stealthiness

The spin configurations of interest in this study possess
both hyperuniformity and stealthiness. Hyperuniform
spin systems possess anomalously suppressed infinite-
wavelength magnetization fluctuations, that is28

lim
k→0

S(k) = 0, (6)

a definition that explicitly omits forward scattering. This
hyperuniformity condition and relation (5) implies the
sum rule

N∑
r=1

G2(r) = 0. (7)

All periodic patterns are hyperuniform, but disordered
configurations, such as liquids and structural glasses, gen-
erally are not. It is well known that the k → 0 limit
of the structure factor for particle systems in thermal
equilibrium is proportional to the isothermal compress-
ibility.54 The well-known analogous spin formula relates
the susceptibility χ = N−1 (∂〈M〉/∂H)T to the spin-spin
correlation function G2(r):

kBTχ =
1

N
(〈M2〉 − 〈M〉2) =

N∑
r=1

G2(r), (8)

where M =
∑
i σi is the magnetization, and H is the

external magnetic field. We see that any ground state
(T = 0) in which the magnetic susceptibility χ is bounded
and positive must be hyperuniform by virtue of (7). This
includes crystals as well as exotic disordered states such
as stealthy ones, defined below. However, in order to
have a hyperuniform system at positive T , the magnetic
susceptibility must be zero, which is the analog of the
condition on the isothermal compressibility for a positive
temperature many-particle hyperuniform system.41

It is noteworthy that general hyperuniform spin sys-
tems (equilibrium or not) in any space dimension are at
an “inverted” critical point such that normalized magne-
tization fluctuations vanish identically, in complete anal-
ogy with many-particle hyperuniform systems.28 This is
to be contrasted with standard Ising-like critical points
in which the normalized magnetization fluctuations be-
come unbounded in the thermodynamic limit due to the
long-rangedness of the correlation function G2(r).

Stealthy configurations are those in which the struc-
ture factor is zero for a range of wavevectors. In the
special case in which S(k) = 0 for 0 < k ≤ K (where
K > 0 is called the exclusion zone radius), the stealthy
configurations are also hyperuniform, which is the case of
interest in the present paper. Stealthy patterns are char-
acterized by long-ranged correlations due to the suppres-
sion of large-scale density fluctuations. In this sense, dis-
ordered stealthy hyperuniform patterns have a “hidden
order” on large length scales.41 There has been a recent
effort to generate stealthy particle configurations through
“stealthy” potentials; see Ref. 41 and references therein.
These stealthy potentials are radial pairwise interaction
potentials restricted to a range of wavevectors. These
potentials have been shown to produce highly degener-
ate disordered, hyperuniform, stealthy configurations.41

In this study, we explore the discrete spin chain analogs
of these continuous stealthy hyperuniform particle sys-
tems via the inverse statistical-mechanical methodology.
Specifically, we investigate periodic 1D spin chains on the
integer lattice that are both stealthy and hyperuniform,
so that S(k) = 0 for at least the range of wavenumbers
0 < k ≤ K = 2π/N . Obtaining stealthy spin chains for
K > 0 can be non-trivial, as demonstrated in Fig. 1. The
complex exponentials in the collective density variables
[cf. Eq. (2)] must cancel at least at the smallest posi-
tive wavenumber k = 2π/N for the spin configuration in
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FIG. 1. (a) A visualization of how ρ(k) cancels at the smallest
positive wavenumber k = 2π/N for (b) the depicted stealthy
spin configuration of size N = 12 on the 1D integer lattice.
The unit vectors represent the positive spin (σj = +1) ex-

ponential ei2πj/N terms from the collective density variables
ρ(k = 2π/N) =

∑N
j=1 σje

i2πj/N . The negative spin terms
also cancel in a similar fashion. The plot contains a gray
regular polygon including all possible unit vectors. The unit
vectors that are summed for the positive spins in this partic-
ular configuration are colored according to how they cancel
with other vectors. In this case, the scattering cancellation
can be decomposed into two doublets (green and blue) and
one triplet (red), which correspond to the indicated spins in
(b).

question to be considered stealthy hyperuniform.

C. Order Metric

We are particularly interested in stealthy hyperuniform
configurations that possess a high degree of disorder. As
discussed in the Appendix, periodic spin configurations
may be “reducible.” For reducible stealthy spin patterns,
the unit cell of the pattern can be expressed as a repeti-
tion of a smaller unit cell. These patterns will of course
appear to be more ordered. Of greater interest to us
are those spin patterns that cannot be decomposed into
smaller unit cells: the irreducible patterns. These pat-
terns are more disordered.

We quantify the degree of order between configurations

of the same size N and magnetization 〈σ〉 =
∑N
j=1 σj/N

by using the order metric defined by Ref. 41 and used for
two-dimensional stealthy spin systems in Ref. 55:

τ =
∑
k

[S(k)− S0(k)]
2

(9)

where the summation is over k =
2π/N, 4π/N, . . . , 2π(N − 1)/N and S0(k) is a refer-
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FIG. 2. Four periodic spin configurations with N = 30 sites
and 〈σ〉 = 0. The order metric τ of each configuration is dis-
played, followed by the spin configuration, and the structure
factor. (a)–(c) The top three are stealthy hyperuniform. (d)
The bottom configuration is a randomly generated Poisson
spin pattern, which is hyperuniform but not stealthy.

ence structure factor. For our purposes, we set this to a
constant value

S0(k) = 1− 〈σ〉2, (10)

which is the expected structure factor of an ensemble
of uncorrelated Poisson spin patterns of period N and
average magnetization 〈σ〉. Each configuration in the
Poisson ensemble is generated by setting each spin to
σi = +1 with probability 〈σ〉 and to σi = −1 otherwise.

The order metric (9) is meaningful for relative com-
parisons between spin configurations of fixed size N and
fixed magnetization 〈σ〉. Four examples of spin config-
urations with 〈σ〉 = 0 and associated values of τ are
displayed in Fig. 2(a)–(d) along with their corresponding
structure factors. Configurations (a)–(c) are stealthy hy-
peruniform, while (d) is a random Poisson pattern. As
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one can see, configuration (a) is periodic on a unit cell of
size 2 and has a single Bragg peak in 0 < k < 2π. This
large deviation of S(k) from S0 = 1 at k = π leads to
a large value of τ . Configuration (b), the second most
ordered configuration, is almost reflectionally symmetric
about the center of its unit cell, which leads to two peaks
smaller in size than in (a). This explains the elevated
value of τ . The remaining two configurations (c) and
(d) do not have any easily discernible order and both
have S(k) vary about the target structure factor S0 = 1.
Yet, we see that the order metric can pick up the “hid-
den order” of (c) the stealthy hyperuniform configuration
compared to (d) the Poisson pattern.

We note in passing that a direct-space representation
of the order metric defined in (9) is trivially obtained
by Parseval’s theorem,41 which is effectively tantamount
to replacing S(k) with the direct-space two-point func-
tion G2(r) [defined by (4)] and summing over r. Such
direct-space sums have been studied in a variety of other
contexts (not as order metrics), including spin Hamilto-
nians56 and as optimization objective functionals to re-
construct digitized binary heterogeneous media.57

III. INVERSE OPTIMIZATION TECHNIQUES

We systematically study all stealthy hyperuniform spin
configurations under periodic boundary conditions with
N = 2, . . . , 36. Specifically, we enumerate the 2N possi-
ble configurations and keep only those with a vanish-
ing structure factor for at least the smallest positive
wavenumber k = 2π/N . In our enumeration, two con-
figurations that can be produced by translations or re-
flections of each other are considered equivalent and are
not counted as distinct configurations.21,22

We characterize the structural properties of the discov-
ered stealthy spin systems, including their degree of dis-
order, and attempt to generate spin-spin interaction po-
tentials, which produce the stealthy spin configurations
as ground states if such potentials exist. We accomplish
the latter via the competitor-based zero-temperature op-
timization scheme developed in Ref. 21. The procedure
searches for interactions J(r) in two-state spin Hamilto-
nians of the form

H = −
N∑
i=1

RC∑
r=1

J(r)σiσi+r

= −N
RC∑
r=1

J(r)S2(r) (11)

with interactions up to a cutoff distance RC between
spins, where

S2(r) =
1

N

N∑
i=1

σiσi+r (12)

is the spin-spin correlation function without the mean
magnetization subtracted from the spin variables. The

procedure attempts to produce a target configuration T
as a ground state by maximizing the difference in energy
density (ε = H/N) between T and the closest energetic
competitor C:

z ≡ max
J

[
min
C

[
∆εC

]]
= max

J

[
min
C

[
εC − εT

]]
= max

J

[
min
C

[
−

RC∑
r=1

J(r)
[
SC2 (r)− ST2 (r)

]]]
(13)

subject to the constraint that ∆εC ≥ 0 and −1 ≤
J(r) ≤ 1. Note that this method attempts to gener-
ate a specific spin configuration C as a ground state,
but not an entire set of configurations at once. We note
that a family of interaction potentials capable of gen-
erating all stealthy hyperuniform particle configurations
as degenerate ground states have been studied across
dimensions.40,41,58–61 The spin analog of these potentials
can be used to create degenerate stealthy hyperuniform
spin configuration ground states.

The spin-spin interaction potentials which maximize
the energy density in Eq. (13) are generated with the aid
of a scheme in which the list of competitors is updated
by iterating between linear programming (LP) and sim-
ulated annealing (SA) optimization21. The scheme of
potential generation involves (i) the global optimization
of the objective function z in Eq. (13) and (ii) an up-
date of the list of competitor spin configurations {C}.
Since z is linear in the J(r) variables and is subject to
linear constraints, the exact maximization of z can be
efficiently performed using LP optimization to identify
the best possible J(r). After a J(r) which maximizes the
energy difference between the lowest energy competitors
is found, the competitor list is updated by performing
SA. If any spin configuration discovered in SA is lower
in energy than or equal in energy to the target config-
uration T , then it is added to the competitor list {C}
and another maximization of z is performed21. The SA
optimization used to discover competitor configurations
utilizes the classical single spin-flip (Metropolis) Monte
Carlo algorithm on spin configurations with variable pe-
riodic unit cells (up to a cell size of 100).

This procedure starts by attempting to find an inter-
action potential with cutoff RC = 1. Then, as described
above, the objective function z is maximized with LP
and any new competitors are discovered with SA. It is
often the case that the optimization of z given an up-
dated competitor list {C} is infeasible. When this occurs,
we increment RC by one lattice distance and repeat the
procedure until the potential cutoff reaches a maximum
distance Rmax (which we set to bN/2c, where N is the
size of the periodic unit cell of the target configuration
T ).

There are three possible outcomes for the competitor-
based procedure, which can be organized into the follow-
ing solution classes:

• Class I: Solutions in which a spin-spin potential
J(r) is found that generates the target configura-
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tion as the unique ground state up to translations,
reflections, and spin inversion operations.

• Class II: Solutions in which a spin-spin potential
is found that generates the target configuration as
a non-unique ground state, degenerate in spin-spin
correlation S2(r) [cf. Eq. (12)] with other spin con-
figurations.

• Class III: Solutions that are neither class I nor II.

Note that Class III solutions only arise when the opti-
mization is deemed infeasible by the LP optimization. As
such, there are no false-positive Class III solutions. For
further discussion of the zero-temperature competitor-
based method applied to spin systems, see Refs. 21 and
22.

IV. RESULTS AND DISCUSSION

With a complete list of stealthy spin configurations of
size N = 2, . . . , 36 at our disposal, we now examine their
statistical properties, such as magnetization and degree
of disorder, and classify their “groundstateability,” i.e.,
whether such target spin configurations can be stabilized
as unique or degenerate ground states.

A. Characterization of enumerated configurations

1. Spin configurations of fixed size and magnetization

The enumerated stealthy spin configurations can be
expressed in terms of spin configurations of fixed size
and magnetization, two defining properties of generic
spin patterns. Of primary interest is how the number
of stealthy spins grows with system size. Figure 3(a) dis-
plays the abundance of stealthy hyperuniform spin con-
figurations relative to all possible 2N configurations. The
general trend for stealthy spin configurations of size N is
exponential growth aN in the number of configurations
at a rate of a ≈ 1.4 < 2. Other scalings with N for spe-
cific N seem to occur as well. For example, for N that
are multiples of 6, there appears to be an exponential
growth with a different growth rate. We do not have any
theoretical explanations for these empirical observations
at the moment. Spin configurations with prime N have
only the two trivial stealthy configurations of all up spins
and all down spins. Moreover, most stealthy spin config-
urations of size N ≤ 36 are reducible to fundamental unit
cells of size less than N . As discussed in the Appendix,
this property comes from the fact that all stealthy spin
configurations of N = pq, where p and q are prime, are
reducible to smaller bases. The values of N that do not
follow this pattern admit irreducible stealthy configura-
tions. They are shown in red in Fig. 3(a) and are labeled
“irreducible.”

The probability distribution of magnetization for con-
figurations of stealthy spins of size N , shown in Fig. 3(b),
is symmetric and binomial-like, though with some key
differences. For finite system sizes, depending on N , a
spin configuration distribution is peaked at either 〈σ〉 = 0
or 〈σ〉 = ±1/N . This behavior is determined by the
prime factorization of N and the abundance of reducible
configurations of size N . For comparison, Fig. 3(b) shows
the magnetization distribution of all spin configurations
on chains of length N , which exactly follows a binomial
distribution. It is interesting to note that the distribu-
tions of magnetization of the stealthy configurations tend
to oscillate about the binomial profile. This seems to be
a finite size effect that has to do with the fact that more
stealthy configurations with an even number of up spins
exist than with an odd number.

2. Order and disorder in stealthy spin configurations

Our enumeration reveals a range of disorder for hype-
runiform stealthy spin systems. The distributions of dis-
order for stealthy spin configurations, according to the
order metric defined in Eq. (9), are displayed in Fig. 4.
Figure 4(a) shows the distribution of the order metric τ
among irreducible only and all stealthy spin configura-
tions of size N = 30 and 〈σ〉 = 0. The distribution of τ
tends to spread out as the system size increases and is
positively skewed. Figure 4(b) shows the distribution of τ
for N = 36 and 〈σ〉 = 0 stealthy configurations and high-
lights the importance of irreducibility in stealthy spin
systems. For size N = 36, the irreducible configuration
are the most disordered of all the stealthy configurations.

The nature of disorder in our 1D spin systems is in-
timately linked to their stealthiness. We measure the
degree of stealthiness of a material by the number of in-
dependent wavevectors for which S(k) = 0 for k ≤ K,
which for 1D periodic spins chains on the integer lattice
is M(K) = NK/2π, proportional to exclusion zone ra-
dius K. The distribution of M(K) for all stealthy spins
of size N = 36 is shown in Fig. 5. We see that the dis-
tribution of M(k) is skewed towards the smaller values
of K. In general, larger M(K) correspond to configura-
tions with more Bragg peaks in the range of wavenumbers
0 < k < 2π and hence larger τ values. This is particu-
larly true for the irreducible stealthy spin configurations,
which only have exclusion radii with M(K) ≤ 2 and are
the most disordered stealthy configurations. This cor-
relation between stealthiness and order in spin chains,
along with similar evidence of order in stealthy contin-
uous particle systems with large exclusion zone radii,59

suggests a strong positive relationship between the ab-
sence of magnetic and radiation scattering for large wave-
lengths and ordering. Disordered stealthy spin-chains re-
quire a relatively small exclusion zone radius and a nar-
rower range of wavevectors for which scattering does not
occur.
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FIG. 3. (a) The number of stealthy hyperuniform spin configurations for spin configurations of periodic unit cell sizes between
N = 2 and 36. In gray, for comparison, is the line 2N . In black are all of the stealthy hyperuniform configurations. In red
are the irreducible stealthy configurations, which cannot be expressed in unit cells smaller than N . (b) The distribution of
magnetization for irreducible spin configurations. For comparison, the symmetric binomial distributions about 〈σ〉 = 0 are
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FIG. 4. Histograms representing the probability density of the order metric τ for stealthy hyperuniform spin chains of size (a)
N = 30 and (b) N = 36 with zero magnetization. Displayed in dashed red lines are histograms of the τ distribution among all
stealthy patterns of the specified sizes, including the reducible configurations which can be expressed in terms of smaller unit
cells. Displayed in solid black lines are histograms of the τ distribution for irreducible stealthy configurations. A few extremely
ordered configurations with τ > 500 are not shown. Note that there are 2306 size N = 36 stealthy configuration, 872 of which
are irreducible, and that there are 315 size N = 30 stealthy configurations, 297 of which are irreducible. Evidently, for these
system sizes, there appears to be a minimum value of τ of about 30, below which there are no stealthy configurations. An
example of a highly disordered spin configuration with τ ≈ 30 of size 30 is displayed in Fig. 2(c).

B. Groundstateability

By application of the inverse statistical-mechanical
method developed in Ref. 21, we have been able to show
that irreducible stealthy hyperuniform spin chains can
be stabilized as ground states of the long-ranged (i.e.,
relative to the chain length), spin-spin interaction de-
fined in Eq. (11). The “groundstateability” of these irre-

ducible configurations were classified into class I, II, and
III, according to whether those configurations could be
uniquely realized as ground states or not, as detailed in
Sec. III.

Figure 6 displays the ground-state classification of ir-
reducible stealthy spin configurations. As demonstrated
in Fig. 4, these configurations are the most disordered of
the stealthy spin configurations at these sizes. For the
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FIG. 5. The distribution of M(K) [number of wavevectors
for which S(k) = 0 for k ≤ K] for all enumerated stealthy
configurations of unit cell size N = 36.

given stabilizing potential and limited spin chain lengths
considered here, a majority of stealthy configurations
are class III. Nonetheless, a surprisingly large fraction
of stealthy configurations at N = 18, 24, 30, 36 can be
uniquely stabilized. Among the stabilized configurations,
most are class I. Class II stealthy configurations are rare,
but begin to appear for the larger system sizes. It has
been demonstrated that, for 1D spin chains on the inte-
ger lattice, as N increases the number of S2 degeneracies
increases.22 This trend holds also for stealthy spin chains
and seems to indicate that more class II configurations
occur for larger N . This trend of increasing degeneracy
among stealthy hyperuniform configurations would agree
with the recent results for the particle analogs.28

We should note that the number of class I and II config-
urations might not be quite accurate due to the heuristic
nature of the zero-temperature competitor-based method
implemented.21 Class III configurations cannot be incor-
rectly classified, as discussed in Sec. III. However, true
class III configurations can be incorrectly classified as
class I or II if the competitor space is not adequately
sampled by the simulated annealing procedure. Incor-
rect classification is more likely for large fundamental
unit cells N and large potential potential cutoffs RC ,
where the solution space becomes large and full of local
minima. Nonetheless, we took care to verify the class I
and II configurations found through the inverse method.
After obtaining a solution, we ran 10 – 50 of iterations of
simulated annealing optimizations to confirm the target
configuration as the ground state. Each simulated an-
nealing run started with different initial conditions and
involved 10,000 – 30,000 Monte Carlo sweeps.

The J(r) potentials engineered by the inverse method
are the shortest possible stabilizing interactions. Inter-
estingly, these interactions are long-ranged in the sense
that they grow with the chain length N and display a
distribution of cutoff distances, with 9 ≤ RC ≤ 23 for
size N = 36 stealthy spin chains. Figure 7 shows the dis-
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FIG. 6. (a) The number of irreducible stealthy 1D spin con-
figurations in classes I, II, and III for sizes N = 12, . . . , 36
plotted on a log-scale. The first size with class II configura-
tions is N = 30. N = 12 has one class III configuration. Con-
figurations equivalent by a spin-inversion are not counted. (b)
The relative amounts of these configurations in classes I, II,
and III. Most of the sizes studied have no irreducible stealthy
configurations and so are not depicted. Only 10 out of 1068
irreducible stealthy configurations with period N = 30 and
52 out of 5362 irreducible stealthy configurations with period
N = 36 are class II.

tributions of potential cutoffs RC for Class I and Class
II irreducible stealthy spin configurations of size N = 18
and N = 36. This is promising for the future engineering
of disordered stealthy spin configurations.

There is a large variety of interactions that can stabi-
lize stealthy hyperuniform spin chains as ground states.
To showcase this variety in size N = 36 spin chains,
we pick three potentials with RC from different points
(RC = 9, 12, 14) in the distribution depicted in Fig. 7.
Figure 8 shows the three stabilizing potentials, along
with the class I stealthy spin configurations they gen-
erate and the spin-spin correlation of the configurations.
Figure 8(a) shows a 〈σ〉 = 0 configuration generated by
a potential with RC = 9. Both the spin-spin correla-
tion and the potential J(r) vary greatly on short length
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FIG. 7. The probability distributions of relative potential
cutoffs RC/N , where RC is an integer between 1 and N , for
N = 18 and N = 36 periodic 1D irreducible stealthy spins
systems on the integer lattice. Larger systems tend to have
a greater spread in relative potential cutoff centered around
lower values. For N = 18 and N = 24 (not shown), all
potential cutoffs were at least half of the period length RC ≥
N/2. While N = 30 (not shown) and N = 36 contained many
configurations which could be represented as ground states of
potentials of length RC < N/2.

scales. Figure 8(b) shows a longer (RC = 12) potential,
which, along with the spin-spin correlation, changes more
smoothly as a function of distance. The longest potential
displayed (RC = 14) in Figure 8(c) shows the smoothest
stabilizing potential and spin-correlation of the three con-
figurations shown. These three class I spin configurations
and their corresponding stabilizing potentials are repre-
sentative.

Our characterization of class II configurations is more
limited. We have only managed to observe a few dozen
such configurations for size 30 and 36 spin chains. All size
30 class II stealthy configurations are shown in Fig. 9.
For size 30 and 36 stealthy hyperuniform spin chains,
all class II configurations came in S2-degenerate pairs,
rather than in larger degenerate groups. It seems likely
that for larger N , degeneracy should increase given the
large combinatorial increase in the number of possible
configurations and ways to construct stealthy, hyperuni-
form patterns.

V. CONCLUSIONS

In this work, we have shown that disordered stealthy
hyperuniform spin configurations can be realized as ei-
ther unique or degenerate ground states of radial long-
ranged (relative to the chain length) spin-spin interac-
tions. Stealthy hyperuniform states are unique in that
they are transparent to radiation for a range of wavenum-
bers around the origin, implying anomalously suppressed
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FIG. 8. Three representative stealthy class I spin configura-
tions of size 30 with 〈σ〉 = 0. Depicted are their unique spin-
spin correlations S2(r) in blue and their stabilizing potentials
J(r) in red with potential cutoffs (a)RC = 9, (b) RC = 12,
and (c) RC = 14. Note that the J(r) are not unique and that
other stabilizing interactions could exist, though not with cut-
offs less than the given RC .

magnetization fluctuations at long wavelengths. The dis-
covered exotic disordered spin ground states, distinctly
different from spin glasses,62 are the spin analogs of
disordered stealthy hyperuniform many-particle ground
states40,41 that have been shown to be endowed with
novel photonic properties.37,42,43 Thus, stealthy hyper-
uniform spin systems offer potentially exciting new av-
enues for future research, as we will elaborate below.

It is useful to summarize how we came to ascertain
that such disordered spin ground states exist. First,
we performed an exhaustive enumeration over the en-
tire set of spin configurations that exist on periodic 1D
integer lattices containing N = 2, 3, . . . , 36 sites in or-
der to identify and characterize all stealthy hyperuni-
form spin chains in this system size range. In doing so,
we found that the number of stealthy hyperuniform spin
configurations grows exponentially with system size (i.e.,
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FIG. 9. All class II stealthy spin configurations of size 30. Five pairs of S2(r)-degenerate configurations are grouped horizontally.

∼ 1.4N ), implying that the fraction of these unique spin
configurations goes to zero in the thermodynamic limit.
Furthermore, the distributions of magnetization and or-
der in these stealthy hyperuniform spin configurations
show strong deviations from the binomial distributions
of these quantities that are characteristic of the set of all
enumerated spin configurations.

To study the “groundstateability” of disordered
stealthy hyperuniform spin configurations, we employed
recently developed inverse statistical-mechanical tech-
niques21,22 in conjunction with a class of Hamiltonians
that allow for radial pairwise spin-spin interactions that
extend well beyond nearest-neighbor lattice sites. Al-
though many of these spin configurations cannot be sta-
bilized as unique (Class I) or S2(r)-degenerate (Class II)
solutions within this set of allowed spin-spin interaction
types, we did identify a significant number of Class I and
II disordered stealthy hyperuniform spin chains, in par-
ticular for the largest lattices considered herein. Interest-
ingly, the spin-spin interaction potentials that were able
to spontaneously produce these disordered spin chains
display a wide radial extent, spanning from ≈ 30% to ≈
60% of the length of the entire underlying integer lattice.
Although these long-range interactions (with respect to
the size of the lattice) tend to be repulsive over their de-
fined radial extent, there still exists a great variety in the
shapes and relative magnitudes of these spin-spin inter-
action potentials. As such, these findings are promising
indicators that such interactions—and therefore such ex-
otic spin configurations—can in fact be realized experi-
mentally.

Our fundamental understanding of disordered stealthy
hyperuniform spin configurations and the spin-spin inter-
action potentials required to stabilize them is currently
in its infancy. Hence the implications of the existence of
disordered stealthy hyperuniform spin ground states es-
tablished herein provide fertile ground for future research
directions. We are interested in determining whether the
excited states and bulk physical properties of these sys-
tems are singularly remarkable and characterizing these
potential novel states of matter. The ground-state classi-
fication of these systems in the thermodynamic limit still
remains an outstanding open question as well as the ef-

fects of thermal and/or quantum mechanical fluctuations
on their stealthy and hyperuniformity properties. Such
knowledge would be invaluable in realizing the rational
design of these exotic spin systems and exploring their
potential technological applications.
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Appendix: Reducibility of stealthy hyperuniform
spin chains

Most stealthy hyperuniform spin chains on the integer
lattice are represented in a larger than necessary funda-
mental unit cell. These so called reducible configurations
can be defined with a smaller fundamental unit cell, un-
der which they are not stealthy. Consider, for instance,
the antiferromagnetic configuration depicted at the top
of Fig. 2. This configuration is not stealthy, i.e. does
not have S(k) = 0 at the smallest positive wavenumber
k = 2π/N , when represented in a periodic fundamental
unit cell of size N = 2.

The unusual trend in the number of irreducible
stealthy configurations as a function of fundamental unit
cell size N , shown in Fig. 3(a), suggests that the re-
ducibility of stealthy configurations is related to the
prime factorization of N . While we could not easily iden-
tify the general trend, we were able to characterize the
reducibility of a particularly simple factorization of N .
Conjecture: A spin chain that is stealthy hyperuniform

on the integer lattice with fundamental unit cell size N =
pq, where p and q are prime, is always reducible, i.e. can
be equivalently represented by a smaller unit cell of size
N ′ < N in which it does not appear stealthy.
Discussion: We use the notation σ = (σ1, σ2, . . . , σN )

to signify spin configurations. At size N , one can eas-
ily construct two crystalline configurations σ(p) and σ(q)

that cause the collective density variables, and hence the
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structure factor, to vanish when k = 2π/N . First, we
will show this for the σ(p) configuration

σ
(p)
j =

{
+1 j = p, 2p, . . . , qp

−1 otherwise
. (A.1)

Its collective density variables at the smallest positive
wavenumber can be expressed as

ρ(p)(2π/N) =

N∑
j=1

σ
(p)
j ei(2πj/N) (A.2)

=

q∑
n=1

ei(2πnp/N) −
N∑

j 6=np

ei(2πj/N) (A.3)

= ρ
(p)
+ (2π/N)− ρ(p)− (2π/N) (A.4)

We see that the second term can be expressed in terms
of the first term

ρ
(p)
− (2π/N) =

q∑
n=1

ei(2π(np+1)/N) + · · ·+
q∑

n=1

ei(2π(np+(p−1))/N)

(A.5)

=

p−1∑
m=1

ei(2πm/N)ρ
(p)
+ (2π/N) (A.6)

where we used the periodicity of the chain.

Now we can see that if ρ
(p)
+ vanishes, so does ρ

(p)
− . As

it turns out, the ρ
(p)
+ term does indeed evaluate to zero:

ρ
(p)
+ (2π/N) =

q∑
n=1

ei(2πnp/N) (A.7)

=
1

1− e−i(2πp/N)

(
1− ei(2πpq/N)

)
(A.8)

=
1

1− e−i(2πp/N)

(
1− ei(2π)

)
(A.9)

= 0. (A.10)

Therefore, ρ(p)(2π/N) = 0 and σ(p) is stealthy. The same
logic applies to σ(q) defined as

σ
(q)
j =

{
+1 j = q, 2q, . . . , pq

−1 otherwise
(A.11)

so we can conclude that it is also stealthy.

Both σ(p) and σ(q) are reducible. One might think
that a new irreducible stealthy configuration σ′ could be
generated by superposing σ(p) and σ(q), taking σ′j = +1

when σ
(p)
j = +1 or σ

(q)
j = +1. Based on the same reason

presented in Sec. VI of Ref. 41, the superposed config-
uration is stealthy if the sequences {p, 2p, . . . , qp} and
{q, 2q, . . . , pq} do not overlap. However, they do overlap
exactly once at pq. Since the collective density variables
are linear in their terms, this leaves ρ′(2π/N) with one
term in its summation that does not cancel. Therefore,
ρ′(2π/N) 6= 0 and the overlapped configuration is not
stealthy.

Moreover, our enumeration results suggest that σ(p)

and σ(q) are the only stealthy configurations that exist for
N = pq (modulo spin inversion and translation). Both
are trivial configurations that are reducible to fundamen-
tal unit cells of size N ′ = p and q respectively. In the
reduced N ′ cell, these chains have only a single up spin
which leads to a term that does not cancel in the density
ρ(2π/N ′). Therefore, the reduced configurations are not
stealthy.

Therefore, all stealthy hyperuniform spin chains of size
N = pq are reducible.
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