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Abstract

Phase diagrams and hysteresis loops were obtained by Monte Carlo simulations and a mean-

field method for a simplified model of a spin-crossover material with a two-step transition between

the high-spin and low-spin states. This model is a mapping onto a square-lattice S = 1/2 Ising

model with antiferromagnetic nearest-neighbor and ferromagnetic Husimi-Temperley (equivalent-

neighbor) long-range interactions. Phase diagrams obtained by the two methods for weak and

strong long-range interactions are found to be similar. However, for intermediate-strength long-

range interactions, the Monte Carlo simulations show that tricritical points decompose into pairs of

critical endpoints and mean-field critical points surrounded by horn-shaped regions of metastability.

Hysteresis loops along paths traversing the horn regions are strongly reminiscent of thermal two-

step transition loops with hysteresis, recently observed experimentally in several spin-crossover

materials. We believe analogous phenomena should be observable in experiments and simulations

for many systems that exhibit competition between local antiferromagnetic-like interactions and

long-range ferromagnetic-like interactions caused by elastic distortions.

PACS numbers: 75.30.Wx,64.60.My,64.60.Kw,75.60.-d
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I. INTRODUCTION

In many materials, local elastic interactions induce effective long-range interactions via

the macroscopic strain field.1,2 In addition to elastic crystals, physical realizations of long-

range interactions include systems as diverse as earthquake faults3 and long-chain polymers.4

Phase transitions in such systems belong to the mean-field universality class , which has some

unusual properties. In particular, critical clusters can be strongly suppressed compared to

transitions caused by purely short-range interactions. This effect should be experimentally

observable as an absence of critical opalescence.5–7

A particular class of systems that exemplify these interesting properties are spin-crossover

(SC) materials.5–12 These are molecular crystals in which the individual organic molecules

contain transition metal ions, such as Fe(II), Fe(III), or Co(II), that can exist in two different

spin states: a low-spin ground state (LS) and a high-spin excited state (HS). Molecules

in the HS state have higher effective degeneracy and larger volume than those in the LS

state. Due to the higher degeneracy of the excited HS state, crystals of such molecules

can be brought into a majority HS state by increasing temperature, changing pressure or

magnetic field, or by exposure to light.8,13–17 If the intermolecular interactions are sufficiently

strong, this change of state can become a discontinuous phase transition such that the

HS phase becomes metastable and hysteresis occurs.13,18 In the case of optical excitation

into the metastable phase, this effect is known as light-induced excited spin-state trapping

(LIESST).13,19 The different magnetic and optical properties of the two phases make such

cooperative SC materials promising candidates for applications such as switches, displays,

memory devices, sensors, and activators.15,17,20,21

Various experimental results over the last decade have led to the suggestion that the

dominant interaction mechanism in SC materials is elastic and therefore effectively long-

range, due to the larger size of the molecule in its HS state.9,22 Such systems can be modeled

by a pseudo-spin Hamiltonian of the form

H = −J
∑

〈i,j〉

sisj −
1

2
(kBT ln g −D)

∑

i

si +HLR . (1)

The first two terms constitute the Wajnflasz-Pick Ising-like model,23 in which the pseudo-spin

variables si denote the two spin states (−1 for LS and +1 for HS), and J is a nearest-neighbor
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interaction. The effective field term,

H = (kBT ln g −D)/2 , (2)

contains D > 0, which is the energy difference between the HS and LS states, g, which is

the ratio between the HS and LS degeneracies, and kBT , the absolute temperature in energy

units. The long-range interactions are represented by HLR. The usual order parameter for

SC materials is the proportion of HS molecules, nHS, which is related to the pseudo-spin

variables as nHS = (m+ 1) /2, where m =
∑

i si/N (with N the total number of molecules)

is the pseudo-magnetization.

While the long-range term HLR is most often considered as a true elastic interaction,5,7,24

many aspects of the model can be obtained at much lower computational cost by replacing

this by a Husimi-Temperley (a.k.a. equivalent-neighbor) effective Hamiltonian.6,25 The latter

is the approach we follow in the present paper.

In previous work we have considered models of SC materials that show a direct, or one-

step, transition between the LS and HS phases. In these cases, the short-range interactions

favor configurations in which nearest-neighbor molecules are in the same state (LS-LS or

HS-HS). This corresponds to a positive short-range interaction constant J in Eq. (1). In the

pseudo-spin language often used in the SC literature, this case is called ferromagnetic-like,

or simply ferromagnetic. We emphasize that this is only an analogy and does not imply

a magnetic character of the interactions. In the remainder of this paper, we will use the

simplified terms, ferromagnetic and antiferromagnetic, for interactions that favor uniform

and checkerboard spin-state arrangements, respectively.

When both the short-range and long-range interactions are ferromagnetic, any nonzero

long-range interaction has the effect of changing the universality class of the critical point

of the LS/HS phase transition caused by the short-range interactions from the Ising to the

mean-field universality class.6 As a result, critical clusters are suppressed, and the system

develops true metastable phases limited by sharp spinodal lines in the phase diagram.

There also exist SC materials, in which the transition between the LS and HS phases

proceeds as a two-step transition via an intermediate phase.26–40 For some materials, such as

Fe(II)[2-picolylamine]3Cl2·Ethanol,26 it has been shown by x-ray diffraction that spontaneous

symmetry breaking induces an intermediate phase, characterized by long-range order on two

interpenetrating sublattices with nearest-neighbor molecules in different states (HS-LS).41,42
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This situation can be modeled by the Ising-like model of Eq. (1) with antiferromagnetic

nearest-neighbor interactions (J < 0). Various mean-field approximations to this model

have been considered, both with27,29,34 and without33 a long-range ferromagnetic term.

In a recent work, Nishino and Miyashita studied such a model using an elastic long-range

interaction.24 They found that, for weak applied field, the antiferromagnetic phase transition

remains in the Ising universality class. At low temperatures they observed tricritical points

separating lines of second-order and first-order phase transitions. However, much of their

high-temperature analysis replaced the short-range interactions by a two-sublattice mean-

field model, which neglects the effects of local fluctuations. The aim of the present paper

is to investigate the effects of such fluctuations in an Ising-like model with nearest-neighbor

antiferromagnetic interactions and a long-range ferromagnetic interaction of the Husimi-

Temperley form. This enables us to obtain excellent long-time statistics for systems with

over one million individual pseudo-spins, and for several different values of the long-range

interaction strength. Some preliminary results were included in Ref. 43.

The organization of the rest of the paper is as follows. In Sec. II we present the

Ising Hamiltonian with antiferromagnetic nearest-neighbor interactions and a ferromag-

netic Husimi-Temperley type long-range interaction of adjustable strength. Here we also

obtain ground-state diagrams (zero-temperature phase diagrams) including phase coexis-

tence points and spinodal points for different strengths of the long-range interaction term.

In Sec. III we present results for a mean-field approximation to this model, in which the

nearest-neighbor antiferromagnetic interactions are replaced by a two-sublattice mean-field

approximation. Two different strengths of the long-range ferromagnetic interactions, which

yield qualitatively different phase diagrams, are considered. In Sec. IV we return to our

original, nearest-neighbor antiferromagnetic interactions, investigating the resulting phase

diagrams by Metropolis importance-sampling Monte Carlo (MC) simulations. We find that,

in a certain range of the the long-range interaction strength, the resulting phase diagrams

are qualitatively different from those obtained by the mean-field approximations. In par-

ticular, tricritical points predicted by the mean-field approximations are found by MC to

decompose into pairs of critical endpoints and mean-field critical points surrounded by horn-

shaped regions of metastability. Here we also present hysteresis curves that are particularly

relevant to the system’s interpretation as a model of two-step transitions in SC materials.

Our conclusions and suggestions for future work are presented in Sec. V.
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II. HAMILTONIAN AND GROUND-STATE ANALYSIS

The square-lattice Ising antiferromagnet with weak, long-range (Husimi-Temperley) fer-

romagnetic interactions is defined by the Hamiltonian

H = −J
∑

〈i,j〉

sisj −N

(

H +
A

2
m

)

m (3)

with J < 0 and A > 0. Here, H is the applied field, si = ±1, and m = N−1
∑

i si. For

a square lattice of side L, N = L2. The strength of the long-range interaction is A. It

is defined such that the critical temperature of the pure long-range ferromagnet (J = 0)

equals A/kB, where kB is Boltzmann’s constant. For convenience we will hereafter use the

dimensionless variables, h = H/|J |, a = A/|J |, and t = kBT/|J |.
The model’s equilibrium and metastable phases at zero temperature are found by a

simple ground-state analysis. The per-site energies of the fully ordered antiferromagnetic

(AFM) and field-induced ferromagnetic (FM) phases are given by EAFM/(N |J |) = −2,

E+/(N |J |) = 2 − a/2− h, and E−/(N |J |) = 2 − a/2 + h, respectively. Equating the AFM

and FM energies yields the zero-temperature transition values of h as

hAFM/+ = 4− a/2 (4)

and

hAFM/− = −4 + a/2 . (5)

For a > 8, the AFM ground state disappears, and the system in equilibrium has a direct

transition between the m = −1 and m = +1 FM ground states at h = 0. (For a = 8, the

AFM and both FM ground states are degenerate at h = 0.)

The limits of local stability of metastable phases at t = 0 (zero-temperature spinodal

fields) are the field values at which the energy change due to a flip of a single spin in the

metastable phase becomes negative.44 For metastability, a positive energy change is required.

The spinodal fields are determined as follows.
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A. a < 8

Decreasing h, attempting to nucleate a transition from metastable m = +1 to the AFM

or m = −1 ground state by a single spin flip,

+ + + + + +

+ + + → + − +

+ + + + + +
,

the energy change is

∆E/|J | = −8 + 2h+ 2a(1− 1/N) > 0 ⇒ h > 4− a(1− 1/N) . (6)

Thus, (in the limit N → ∞) the m = +1 phase is metastable for 4 − a < h < 4 − a/2. By

symmetry, the m = −1 phase is metastable for −4 + a/2 < h < −4 + a.

Increasing h, attempting to nucleate a transition from metastable AFM to the m = +1

ground state by a single spin flip,

− + − − + −
+ − + → + + +

− + − − + −
,

the energy change is

∆E/|J | = 8− 2h− 2a/N > 0 ⇒ h < 4− a/N . (7)

Thus, (in the limit N → ∞) the AFM phase is metastable against decay to m = +1 for

4− a/2 < h < 4. By symmetry, the AFM phase is metastable against decay to m = −1 for

−4 < h < −4+a/2. Four mean-field sharp spinodal lines extend from these zero-temperature

spinodal points toward higher t. The zero-temperature limits of the phase diagrams shown

in Figs. 1(a), 4(a), and 5(a) illustrate the positions of coexistence and spinodal points for

values of a < 8.

B. a > 8

The only ground states are m = +1 for h ≥ 0 and m = −1 for h ≤ 0. Increasing h,

attempting to nucleate a transition from metastable m = −1 to the m = +1 ground state
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by a single spin flip,

− − − − − −
− − − → − + −
− − − − − −

,

the energy change is

∆E/|J | = −8− 2h+ 2a(1− 1/N) > 0 ⇒ h < a(1− 1/N)− 4 . (8)

Thus, (in the limit N → ∞) m = −1 is metastable for 0 < h < a−4. By symmetry, m = +1

is metastable for −a+4 < h < 0. Using Eq. (7) and symmetry, we find that the AFM state,

while never a ground state, is metastable for −4 < h < 4. The zero-temperature limits of

the phase diagrams shown in Figs. 3(a) and 9(a) illustrate the positions of coexistence and

spinodal points for a > 8.

III. MEAN-FIELD APPROXIMATION

In order to obtain an approximate picture of the behavior of the model at finite t, we

employ a simple, two-sublattice Bragg-Williams mean-field approximation27,29,33,45,46 with

sublattice magnetizations mA = 2N−1
∑

i∈A si on sublattice A (mA ∈ [−1,+1]) and analo-

gously for mB on sublattice B. The magnetization and staggered magnetization are given by

m = (mA + mB)/2 and mStag = (mA −mB)/2, respectively. The approximation is defined

by the Hamiltonian

HMFA

N |J | =
4

2
mAmB − a

2
m2 − hm

=
1

2

(

4− a

2

)

mAmB − a

8
(m2

A +m2
B)−

h

2
(mA +mB) . (9)

Note that the effective interaction between the two sublattice magnetizations includes the

long-range interaction strength a and changes sign from AFM for weak a to FM for strong a

at a = 8. For a = 8, the mean-field approximation describes two independent, ferromagnetic

sublattices.

The system entropy in the mean-field approximation is the sum of the two sublattice

entropies,

SMFA = −N

2

B
∑

X=A

(

1 +mX

2
ln

1 +mX

2
+

1−mX

2
ln

1−mX

2

)

, (10)
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and the resulting free energy is45–47

FMFA = HMFA − kBTSMFA . (11)

The coupled self-consistency equations, ∂FMFA/∂mA = 0 and ∂FMFA/∂mB = 0, become

mA = tanh

[

(

a
2
− 4

)

mB + a
2
mA + h

t

]

(12)

and equivalent for mB with A and B interchanged on the right-hand side.

For a < 8 and h = 0, the global free-energy minima lie along the AFM axis (mB =

−mA) in the order-parameter plane, and the self-consistency equation for the staggered

magnetization becomes

mStag = tanh
4mStag

t
(13)

with the Néel temperature tN = 4, independent of a. For a > 8 and h = 0, the global

free-energy minima lie along the FM axis (mB = mA), and the self-consistency equation for

the magnetization becomes

m = tanh
(a− 4)m

t
(14)

with the a-dependent Curie-Weiss critical temperature tC = (a − 4). For non-zero applied

fields, free-energy minima and saddle points in the (mA, mB) plane were obtained numerically

using Mathematica. Resulting phase diagrams for a = 7 and a = 10 are shown in Figs. 1

and 3, respectively.

A. a = 7

Typical mean-field phase diagrams for the model with a < 8 are shown in Fig. 1, here using

a = 7. In Fig. 1(a), the line of Néel critical points, marking the continuous phase transition

between the stable AFM phase and the high-temperature disordered phase, extends from

tN = 4 to two tricritical points at a lower temperature, which decreases with decreasing a.

(For a = 7, the tricritical points are found at t3 ≈ 3.75 and h3 ≈ ±0.211, as seen in Figs. 1(a)

and 2(c).) Lines of first-order phase transitions (AFM/FM coexistence lines) extend from

the tricritical points to the zero-temperature coexistence points at h = ±(4 − a/2) = ±0.5.

Sharp spinodal field lines marking the limits of metastability for the AFM phase extend

from the tricritical points to the zero-temperature spinodal points at h = ±4, and spinodals
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marking the limits of metastability for the FM+ and FM− phases extend to their zero-

temperature termination points at h = 4− a = −3 and h = −4+ a = +3, respectively. The

corresponding zero-field order parameters, the equilibrium AFM mStag and the metastable

FM m, which follow Eqs. (13) and (14), respectively, are shown in Fig. 1(b). However,

the free-energy barriers that prevent the decay of the metastable FM phases (which are

possible at h = 0 only for 4 < a < 8) into an AFM phase vanish at a spinodal temperature

tsFM ≈ 2.615, marked by a discontinuous drop of m to zero. This temperature corresponds

to the crossing of the two FM spinodals in Fig. 1(a). Above it, the FM solutions of the

self-consistency equations become saddle points. Samples of free-energy contour plots in the

mA, mB plane, based on Eq. (11), overlaid with curves representing the individual solutions

of the two self-consistency equations, Eq. (12), are shown in Fig. 2.

Mean-field models of two-step crossover have previously been considered by Zelentsov

et al.,27 Bousseksou et al.,29 and Bolvin,33 with Bragg-Williams approaches similar to ours,

and by Chernyshov et al.34 using Landau theory. However, Bolvin does not include any FM

interaction, and consequently the resulting mean-field phase diagrams are those of a pure

Ising antiferromagnet without any first-order transitions (Figs. 5 and 6 of Ref. 33). Zelentsov

et al. and Bousseksou et al. confine the FM interactions to each sublattice separately, and

so these interactions do not affect the effective inter-sublattice interaction as they do in our

model [see Eq. (9)]. Neither paper contains explicit phase diagrams. However, their plots of

HS fraction vs temperature indicate that phase diagrams for the case of identical sublattices

(their intra-sublattice interactions JA = JB) should be similar to ours, including tricritical

points and first-order transitions at low temperatures. However, their intra-sublattice FM

interactions lower the energies of the FM and AFM ground states by the same amount, with

the result that they, in contrast to the corresponding term in our model, do not influence

the ground-state diagram of the pseudo-spin model. In that respect, their approaches would

correspond to a mean-field approximation to a square-lattice Ising model with AFM nearest-

neighbor (inter-sublattice) and FM next-nearest neighbor (intra-sublattice) interactions.48–50

In the Landau-theory approach of Chernyshov et al., the ferromagnetic interactions are not

limited to the separate sublattices. For not too negative values of their temperature-like

parameter α2, the phase diagram in Fig. 5 of Ref. 34 is quite similar to our Fig. 1(a). We

believe an approach, in which the ferromagnetic interactions are not limited to the individual

sublattices, provides a better approximation for the effects of a long-range elastic interaction.
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B. a = 10

Figure 3 shows typical mean-field phase diagrams for the model with a > 8, here using

a = 10. There are only FM equilibrium phases, which coexist at h = 0 up to the Curie

temperature, tC = a − 4 = 6. In Fig. 3(a), sharp spinodal field lines marking the limits of

metastability for the FM+ and FM− phases extend from the critical point to their zero-

temperature termination points at h = 4 − 10 = −6 and h = −4 + 10 = +6, respectively.

Two degenerate, metastable AFM phases are possible at low t and h, and the spinodals

marking their limits of local stability are also shown. The corresponding zero-field order

parameters, the equilibrium FM m and the metastable AFM mStag, which follow Eqs. (14)

and (13), respectively, are shown in Fig. 3(b). However, the metastable AFM phases become

unstable toward decay into a FM phase at a spinodal temperature tsAFM ≈ 3.308, where the

two AFM spinodals meet in Fig. 3(a).

In both ranges of the long-range interaction strength a, near the critical, tricritical, or

spinodal temperature the spinodal fields obey the power law,51

|hSpin − hCoex| ∼ (tc − t)3/2 , (15)

where hSpin and hCoex are are the spinodal and coexistence fields, respectively, and tc repre-

sents the appropriate temperature where they meet. This is shown in the insets in Figs. 1(a)

and 3(a).

IV. MONTE CARLO SIMULATIONS

The standard mean-field approximation for the short-range interactions, discussed in

Sec. III, does not properly describe the microscopic fluctuations that are important in low-

dimensional systems, especially near critical and multicritical points.52,53 We therefore return

to the full model described by Eq. (3) to further investigate its phase diagrams and dynamics

using importance-sampling Metropolis MC simulations. We consider L × L square lattices

with L = 64, ..., 1024 and periodic boundary conditions. Results are extrapolated to the

thermodynamic limit using known finite-size scaling relations.

Critical points are located by crossings of fourth-order Binder cumulants54 for the anti-
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ferromagnetic order parameter mStag,

UL = 1−
〈m4

Stag〉L
3〈m2

Stag〉2L
. (16)

(In general, the moments included in this equation are central moments, but since the model

contains no staggered field, this is automatically satisfied for the moments of mStag.) This

method significantly reduces finite-size effects, and the results are further linearly extrapo-

lated to 1/L = 0.6 For isotropic interactions and periodic boundary conditions on a square

lattice, as used here, the Ising fixed-point value of the cumulant is U∗ = 0.61....55–57

Coexistence lines represent first-order phase transitions between stable equilibrium

phases, i.e., equality of the corresponding bulk free energies. Here, we locate the coexis-

tence lines by starting simulations from an initial configuration consisting of two slabs, one

in the AFM ground state and one in the FM ground state corresponding to the sign of h

(mixed start method), and searching for the field at which the final state would be either

with approximately 50% probability.

The long-range, ferromagnetic interactions produce a finite barrier in the free-energy den-

sity , separating the metastable and stable phases. As a result, the total free-energy barrier

increases linearly with the system size, N = L2, leading to an exponential size divergence for

the lifetime of such a “true” metastable phase.25,58 (We note that this situation is radically

different from the case of metastable decay in systems with only local interactions. In that

case, the decay occurs through nucleation and growth of compact droplets of the stable

phase, and the metastable lifetime becomes system-size independent in the thermodynamic

limit.59) The sharp spinodal lines at which the free-energy barrier vanishes are located by

starting an L × L system in the equilibrium phase and slowly scanning h past the coexis-

tence line (where the initial phase becomes metastable) until the order parameters undergo

simultaneous, discontinuous jumps denoting the limit of metastability. The field hSpin, cor-

responding to the instability, was extrapolated to the thermodynamic limit according to the

finite-size scaling relation19

|hSpin − hL| ∼ L−4/3 , (17)

where hL is the field at which the metastable phase becomes unstable for the given value of

L.
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A. a = 4

The h, t phase diagram for a = 4 is shown in Fig. 4. Except for the absence of metastable

FM phases at h = 0, which is due to the lower value of a used here, the phase diagram is

topologically identical to the mean-field phase diagram for a = 7, shown in Fig. 1. However,

the line of critical points belongs to the Ising universality class, as evidenced by cumulant

crossing values U∗ ≈ 0.61. At h = 0 the critical temperature is near the exact Ising

value, tc(h = 0) = 2/ ln(1 +
√
2) ≈ 2.269, unaffected by the long-range interaction. Sharp

spinodal lines extend from the tricritical point, separated by a field distance in agreement

with Eq. (15). (See inset in Fig. 4.) Near the tricritical point, values of L as large as 1024

were used. To estimate the position of the tricritical point, we extrapolated the separation

between the L-extrapolated spinodal fields to zero according to Eq. (15) to find the tricritical

temperature and from it the corresponding field values. The result is t3 ≈ 1.914 and h3 ≈
±1.383 The coexistence line was obtained by the mixed start method with L = 512. No

significant differences were observed with larger L.

We note that, for this relatively weak long-range interaction, our MC phase diagram

shown in Fig. 4 is qualitatively similar to mean-field phase diagrams, both our Fig. 1 and

Fig. 5 of Ref. 34. However, for stronger long-range interactions, novel features that are

not seen in the mean-field approximations are revealed by our MC simulations. These are

discussed in Secs. IVB and IVC below.

B. a = 7

1. Phase diagram

The MC phase diagram in the h, t plane for a = 7 is shown in Fig. 5. Because of the

stronger long-range interactions, metastable FM phases are possible for weak fields and low

temperatures. However, the main difference from the case of a = 4 (Fig. 4) is that the

tricritical points have been transformed into critical endpoints,60,61 where the line of Ising

critical points meets the coexistence lines at a large angle (light gray squares, magenta

online). Above the temperature of the critical endpoints, the coexistence lines continue

toward higher temperatures, each eventually terminating at a mean-field critical point (large,

black circles). Below the critical line and between the two coexistence lines, the stable
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phase is AFM. On the positive (negative) side of the right-hand (left-hand) coexistence

line, the stable phase is FM+ (FM−). Above the critical line and between the coexistence

lines, the stable phase is disordered with local fluctuations of AFM symmetry and a small

magnetization in the direction of the applied field. For clarity, the inset in Fig. 5(a) shows

the phase diagram with only the stable phases and corresponding phase transition lines and

points included. The critical and coexistence lines were obtained as described above, with the

coexistence lines calculated with L = 1024 to minimize the uncertainty. Our best estimates

for the positions of the critical endpoints and mean-field critical points, based on simulations

up to L = 1024 and finite-size scaling extrapolations, are t = 2.126(1), h = ±0.636(1) and

t = 2.61(1), h = ±0.561(1), respectively. Since the full phase diagram, including metastable

phase regions and spinodal lines is quite complicated, we present three, increasingly detailed

views.

The main part of Fig. 5(a) shows the full range of temperatures and fields covered by

the phase diagram, including the metastable phases and spinodal lines. The spinodal lines

marking the limits of metastability of the FM+ and FM− phases cross the line of critical

points at fields significantly weaker than those of the critical endpoints. Each of the FM

spinodals continues on to meet the corresponding disorder spinodal at a mean-field critical

point, forming a horn-like region of metastability. (As discussed below, the disorder spinodal

and the disorder/FM coexistence line coincide within our numerical accuracy for t & 2.2.)

We located the critical point by scanning h at constant t across the coexistence line and

monitoring the maximum of the susceptibility, χmax. At the critical point χmax ∼ Lγ/νeff , with

the mean-field exponents γ = 1 and νeff = 2/d = 1.6,62,63 Above the critical temperature,

the scaling is sublinear in L, and below it is superlinear. The gray (orange online), diagonal

line corresponds to the path for the hysteresis loops shown in Fig. 7.

The main part of Fig. 5(b) shows a magnified image of the horn region. At this level

of detail, two interesting phenomena become apparent. The first is that the Ising critical

line (obtained from the crossings of fourth-order cumulants and linearly extrapolated to

1/L = 0) continues beyond the critical endpoint where it meets the coexistence line, until it

meets the spinodal line at h ≈ 0.705. The triangular region limited by the coexistence line,

the extended critical line, and the spinodal line is shown in further detail in Fig. 5(c). Our

interpretation of this structure is that the extended critical line represents a nonequilibrium,

second-order, Ising phase transition between a metastable AFM phase at lower temperatures
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and a metastable disordered phase inside the triangle. The existence of a true phase transi-

tion between two metastable phases is possible because of the divergence of the metastable

lifetimes in the thermodynamic limit. In this triangular region, FM+ has the lowest free

energy and is therefore the stable phase. Conversely, in the rest of the horn region, the

stable phase is the disordered phase, while FM+ is metastable. Snapshots of the stable and

metastable phases in the latter region at the phase point marked by a diamond in Fig. 5(b)

are shown in Fig. 6. (See methodological details in the caption of that figure.) In the tri-

angular region in Fig. 5(c), the stability of FM+ was confirmed by starting systems with L

up to 1024 with a completely random spin configuration and equilibrating at t = 2.15 and

h = 0.645 [marked by an up triangle in Fig. 5(c)] for 107 MCSS before measuring the order

parameters. The metastability of the disordered phase in the same region was confirmed

by scanning h in the positive direction across the coexistence line until it decayed discon-

tinuously to FM+ at the spinodal. At the point where the extended critical line meets the

spinodal line, the interpretation of the latter changes from the limit of metastability of the

AFM phase at lower t to being the limit of metastability of the disordered phase at higher

t. The line was determined by the same method in both temperature regions.

The second phenomenon observed in Figs. 5(b) and (c) is that, above t ≈ 2.20, the

coexistence line and the spinodal line for the disordered phase coincide within our numerical

accuracy. The inset in Fig. 5(b) demonstrates that the separation of the spinodals near the

tip of each horn obeys Eq. (15). At h = 0 the critical temperature is again near the exact

Ising value, tc(h = 0) ≈ 2.269, unaffected by the long-range interaction.

2. Hysteresis loops

The phase diagram for a = 7, shown in Fig. 5, suggests the existence of complex hysteresis

loops. Constant-temperature hysteresis loops for two different temperatures in the horn

region are shown in Fig. 7. In Fig. 7(a) we use t = 2.18, which lies between the temperature

of the critical endpoint and the temperature at which the FM spinodal lines cross the critical

line. Following the curves in the negative direction from h = +0.8, the system starts in the

stable FM+ phase, which becomes metastable as the phase point crosses the coexistence

line at h ≈ +0.63. (Note that the disorder/FM coexistence lines are at only slightly weaker

fields than the disorder spinodal lines at this temperature. See Figs. 5(b) and (c).) Crossing
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the FM+ spinodal line at h ≈ +0.33, the system changes discontinuously to the equilibrium

AFM phase. It remains in this phase until it crosses the critical line into the equilibrium

disordered phase at h ≈ −0.52. Finally there is a discontinuous change to the FM− phase

across the disorder spinodal at h ≈ −0.63. The sequence is symmetric in h as the field is

reversed from h = −0.8 back to +0.8.

Raising the temperature to t = 2.25 (which lies between the temperature at which the

FM spinodals cross the critical line and the zero-field critical temperature) in Fig. 7(b),

the main difference is that the system changes discontinuously from the FM+ phase to the

equilibrium disordered phase at h ≈ +0.38, only passing into the equilibrium AFM phase as

it crosses the critical line at h ≈ +0.24. At h ≈ −0.24 it again crosses the critical line into the

disordered phase, which it leaves through a discontinuous jump as it crosses out of the horn

region at the negative disorder spinodal at h ≈ −0.60. The path is again symmetric during

the field reversal. At both temperatures the nonzero values of the staggered magnetization

in the disordered equilibrium phase are a finite-size effect.

When using the model studied here to represent phase transitions in SC materials, the

magnetic field is replaced by the temperature-dependent effective field of Eq. (2). A path

for temperature driven hysteresis within this interpretation of the model is represented by

the diagonal line segment in Fig. 5(a) (degeneracy ratio ln g = 20/3 and energy difference

D = 18|J |). The corresponding phase transitions and hysteresis loops are shown in Fig. 8.

The loops are asymmetric. The narrow loop above the critical temperature corresponds to

passage across the positive-h horn, while the wider loop below the critical temperature lies

between the negative AFM spinodal and the FM− spinodal. The nonzero values of mStag

in the disordered phase region are again a finite-size effect.

We note that the pattern of transitions and hysteresis loops shown in Fig. 8 closely

resembles recent experimental results for thermal two-step transitions with hysteresis in

several different SC materials.35–40 Some of these experiments are also discussed in two

recent reviews of this rapidly developing field.64,65

C. a = 10

For a > 8 there is no stable AFM phase. The h, t phase diagram with a = 10 is

shown for h ≥ 0 in Fig. 9(a). The phase diagram is symmetric around h = 0. The black

16



curve with data points in the main figure shows the FM− spinodal. For weak fields and

temperatures below the Ising critical temperature (tc(h = 0) ≈ 2.269), there also exists a

metastable AFM phase. It is separated from the stable FM phases by sharp mean-field

spinodals. At higher temperatures, this AFM phase undergoes a second-order transition to

a metastable disordered phase. These metastable phases are separated by a line of critical

points in the Ising universality class. (Located and identified by the fourth-order cumulant

method as above.) At h = 0, the disordered phase is metastable between the zero-field Ising

critical temperature and t ≈ 2.68. Like the metastable AFM phase, it is separated from

the equilibrium FM phases by sharp mean-field spinodals. A magnified view of the region

containing the metastable disordered phase is shown in the inset in Fig. 9(a). The spinodals

and the metastable critical line shown in Fig. 9(a) were obtained from finite-size scaling

extrapolations of MC data up to L = 1024. These features do not appear in the simple

mean-field approximation shown in Fig. 3(a). Stable and metastable order parameters at

h = 0 are shown in Fig. 9(b), corresponding to the mean-field results shown in Fig. 3(b). The

MC simulations for the metastable order parameter are seen to be in excellent agreement

with the Onsager-Yang exact order parameter for a square-lattice Ising model in zero field,66

mStag(t, 0) = {1− [sinh(2/t)−4]}1/8. The metastable disordered phase is characterized by

values of the simulated mStag that decrease linearly with L and go discontinuously to zero

at a sharp spinodal temperature. This phase lies between the Ising critical temperature and

the spinodal temperature, whose L-extrapolated value is marked by a vertical, dashed line.

If the system is heated in the metastable phases, this is the temperature at which the stable

order parameter m will jump discontinuously from near zero to its equilibrium value. The

observation of a critical line separating the metastable AFM and disordered phases in this

large-a regime supports our interpretation of the critical line in the small part of the horn

region for a = 7, shown in Fig. 5(c) as a transition line separating two metastable phases.

The phase transition of the stable FM phase at t ≈ 4.98 involves a small discontinuity

(seen only for L = 1024) and negative values of the Binder cumulants above the transition

temperature (seen for L = 1024 and 512, not shown). These features suggest that this

transition is weakly first-order. Exploratory simulations for a = 8.5 and a = 20 at h = 0

indicate a strongly first-order transition in the former case, and a continuous transition in

the mean-field universality class in the latter. Further investigation of the strong long-range

interaction regime of a ≥ 8 is left for future study.
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V. CONCLUSIONS

In this paper we present a detailed investigation of the phase diagrams of a simplified

model of an SC material with a two-step transition as a square-lattice Ising model with

AFM nearest-neighbor interactions and FM long-range interactions of the Husimi-Temperley

(equivalent-neighbor) kind. An AFM equilibrium phase for weak applied fields is replaced

by field-induced FM phases at stronger fields. These phases are separated by coexistence

lines surrounded by sharp spinodal lines representing limits of metastability.

In a range of intermediate-strength long-range interactions, we find significant differences

between the phase diagrams of this model, calculated by importance-sampling MC simu-

lations, and those of a model in which fluctuations have been neglected by replacing the

nearest-neighbor interactions by a two-sublattice mean-field approximation. The difference

consists in the replacement of each tricritical point in the mean-field model with a pair

consisting of a critical endpoint and a mean-field critical point in the h, t phase diagram,

surrounded by horns representing metastable phases. For even stronger long-range interac-

tions, the AFM equilibrium phase disappears. However, metastable AFM and disordered

phases can still be observed. These complex phase diagrams give rise to hysteresis loops

reminiscent of two-step transitions observed in several SC materials.26–42,64,65

We find it likely that the horn type phase diagrams and related two-step hysteresis loops

revealed in our model by MC simulations may be observed in more realistic models of SC

materials with elastic interactions,24 and also in future experiments. An investigation into

the former possibility is in progress.67 Other interesting avenues of further research include

cluster mean-field approximations for the short-range AFM interactions52 and calculation of

free-energy surfaces in the mA, mB plane by Wang-Landau MC simulations.68
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42 N. Huby, L. Guérin, E. Collet, L. Toupet, J.-C. Ameline, H. Cailleau, and T. Roisnel, Photoin-

duced spin transition probed by x-ray diffraction, Phys. Rev. B 69, 020101(R) (2004).

43 G. Brown, P. A. Rikvold, and S. Miyashita, Monte Carlo studies of the Ising antiferromagnet

with a ferromagnetic mean-field term. Phys. Proc. 57, 20 (2014).

44 E. Jordão Neves and R. H. Schonmann, Critical droplets and metastability for a Glauber

dynamics at very low-temperatures, Commun. Math. Phys. 137, 209 (1991).

45 W. L. Bragg and E. J. Williams, The effect of thermal agitation on atomic arrangement in

alloys, Proc. Roy. Soc. London A 145, 699 (1934).

46 W. L. Bragg and E. J. Williams, The effect of thermal agitation on atomic arrangement in

alloys - II, Proc. Roy. Soc. London A 151, 540 (1935).

47 R. Osorio, Generalized Bragg-Williams method for antiferromagnetic lattice gases, Revista

Brasileira de F́ısica 13, 515 (1983).

48 D. P. Landau, Magnetic tricritical points in Ising antiferromagnets, Phys. Rev. Lett. 28, 449

22



(1972).

49 D. P. Landau and R. H. Swendsen, Tricritical universality in two dimensions, Phys. Rev. Lett.

46, 1437 (1981).

50 P. A. Rikvold, W. Kinzel, J. D. Gunton, and K. Kaski, Finite-size scaling study of a two-

dimensional lattice-gas model with a tricritical point, Phys. Rev. B 28, 2686 (1983).

51 C. M. Newman and L. S. Schulman, Complex free-energies and metastable lifetimes. J. Stat.

Phys. 23, 131 (1980).

52 Better agreement between mean-field and MC results can be obtained by including some fluc-

tuation effects through cluster mean-field approximations with clusters of at least 6× 6 spins.53

However, this approach will not change the universality class of critical lines.

53 C. Omand, S. Miyashita, and P. A. Rikvold, in preparation.

54 K. Binder, Critical properties from Monte Carlo coarse graining and renormalization, Phys.

Rev. Lett. 47, 693 (1981).
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FIG. 1: (Color online) Mean-field phase diagrams for a = 7 < 8. (a) In the h, t plane, showing a
line of equilibrium critical points terminated by two tricritical points, equilibrium coexistence lines,
and sharp spinodals. The FM+ phase is stable everywhere on the positive-h side of the right-hand
coexistence line, and analogously for FM− on the negative-h side. The inset demonstrates the
(tc − t)3/2 behavior of the spinodal fields, as given by Eq. (15). Here, ∆h is the difference between
the FM and corresponding AFM spinodals. (b) Showing the stable AFM order parameter mStag

and the metastable FM order parameter m vs t for h = 0. The latter terminates at the spinodal
temperature tsFM ≈ 2.615, corresponding to the crossing of the two FM spinodal field curves in
part (a). See further discussion in the text.
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FIG. 2: (Color online) Contour plots in the mA,mB plane of the mean-field free energy for a =
7. The black and light gray (yellow online) curves represent the solutions of ∂FMFA/∂mA = 0
and ∂FMFA/∂mB = 0, respectively. Crossings of the curves correspond to extrema and saddle
points of the free-energy surfaces. (a) t = 2.5 and h = 0. Global minima in the second and
fourth quadrant represent the degenerate AFM stable phases. Local minima in the first and third
quadrants represent the degenerate FM metastable phases. (b) t = 2.5 and h = 0.211. Global
minima in the second and fourth quadrants represent the degenerate AFM stable phases. The
local minimum in the first quadrant represents the metastable FM+ phase. (c) t = 3.75 and
h = 0.211, corresponding to the tricritical point where the two AFM and the FM+ phases are
indistinguishable. The shallow, global minimum lies in the first quadrant along the FM (mB = mA)
axis.
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FIG. 3: (Color online) Mean-field phase diagrams for a = 10 > 8. (a) In the h,t plane, showing
the equilibrium coexistence line at h = 0 and the spinodal field curves. The inset demonstrates
the (tc − t)3/2 behavior of the spinodal fields, as given by Eq. (15). (b) Showing the stable FM
order parameter m and the metastable AFM order parameter mStag vs t at h = 0. The latter
terminates at the spinodal temperature tsAFM ≈ 3.308, corresponding to the meeting of the two
AFM spinodal field curves in part (a). See further discussion in the text.
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FIG. 4: (Color online) (a) MC phase diagram for the full model with a = 4. Except for the absence
of metastable FM phases at h = 0, the phase diagram resembles the mean-field phase diagram for
a = 7, shown in Fig. 1. However, in contrast with the mean-field model, the line of critical points
belongs to the two-dimensional Ising universality class. At h = 0 the critical temperature is near
the exact Ising value, tc(h = 0) ≈ 2.269. Sharp spinodal lines extend from tricritical points at
t3 ≈ 1.914 and h3 ≈ ±1.383, separated by a field distance in agreement with Eq. (15). The inset
demonstrates this agreement near the tricritical point and was used to estimate its position. ∆h
is defined as in Fig. 1(a). See further discussion in the text.
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FIG. 5: (Color online) (a) MC phase diagram in the h, t plane for the full model with a = 7. In
contrast with the mean-field model, the critical line is in the two-dimensional Ising universality
class. Regions of phase stability and metastability are marked with text. The inset shows the phase
diagram including only the stable phases. The diagonal line marks the path for the hysteresis loops
in Fig. 7. (b) Detail of the horn region of the phase diagram. Our estimates of the positions of the
critical endpoint and the mean-field critical points are t = 2.126(1), h = ±0.636(1) and t = 2.61(1),
h = ±0.561(1), respectively. At h = 0 the critical temperature is near the exact Ising value. The
diamond marks the position of the snapshots in Fig. 6. The inset demonstrates that the width of
the horn region, ∆h, obeys Eq. (15). The straight line is a guide to the eye. (c) Further magnified
detail of the triangular region between the coexistence line, the critical line, and the spinodal line
for the disordered phase. Here, the stable phase is FM+ (confirmed by simulations at the point
marked with a triangle) and the disordered phase is metastable. See further discussion in the text.
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FIG. 6: (Color online) Snapshots for a = 7 at t = 2.25 and h = 0.50 in the horn region (marked by
a diamond in Fig. 5(b)). (a) and (b) show the equilibrium disordered phase with AFM fluctuations.
The system was initiated in an uncorrelated, random configuration and equilibrated for 107 MCSS
before the image was recorded. (c) and (d) show the metastable FM+ phase. The system was
initiated in the fully ordered FM+ configuration and “equilibrated” for 106 MCSS. In the “straight”
images, (a) and (c), up and down spins are colored dark gray (blue online) and light gray (yellow
online), respectively. The “masked” images (b) and (d) emphasize AFM domains by coloring up
spins on the A sublattice and down spins on the B sublattice dark gray (magenta online) and down
on A, up on B light gray (cyan online).
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FIG. 7: (Color online) Constant-temperature hysteresis loops for a = 7. The system size was
L = 512, except near where the hysteresis path crosses the critical line (marked with light gray
(green online) vertical, dashed lines) and in the disordered phase, where L = 1024 was used. The
nonzero values of mStag in the disordered phase are a finite-size effect. (a) At t = 2.18. The
metastable FM+ phase decays discontinuously into the ordered AFM phase at the FM+ spinodal
near h = +0.34. The loops are symmetric under reversal of h and m. The dark, vertical, short-
dashed lines mark the coexistence lines between the disordered and FM phases. At this temperature
they lie very close to the disorder spinodals. (b) At t = 2.25. The metastable FM+ phase decays
discontinuously into the disordered phase at the FM+ spinodal near h = +0.39. The loops are
symmetric under reversal of h and m. At this temperature, the disorder/FM coexistence lines and
the disorder spinodals coincide within our numerical accuracy. See further discussion in the text.

36



1.9 2 2.1 2.2 2.3 2.4 2.5
Temperature, t

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

<m>
<|m

Stag
|>

t
c

<---

--->
<---

---> --->

<---

--->

<---

--->

FIG. 8: (Color online) Asymmetric thermal hysteresis loops for a = 7 along the path marked by
a diagonal line segment in Fig. 5(a). The vertical, dashed line marks the temperature where the
path crosses the line of AFM Ising critical points. Simulated with L = 256. The nonzero values
of mStag in the disordered phase are a finite-size effect. This pattern of transitions and hysteresis
loops closely resembles recent experimental results for thermal two-step transitions with hysteresis
in several different SC materials.35–40 See further discussion in the text.
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FIG. 9: (Color online) (a) h, t phase diagram for a = 10. The FM+ phase is stable everywhere in
this figure, and FM− is metastable everywhere below the black spinodal curve. The AFM phase
is metastable below the medium gray (red online) spinodal and light gray (orange online) critical
curves, and the disordered phase is metastable inside the triangle between these curves. The inset
shows an enlarged view of the region around the metastable disordered phase. The phase diagram
is symmetric under simultaneous sign change of h and exchange of the FM+ and FM− phases. (b)
Stable FM order parameter m (solid curves) and metastable AFM order parameter mStag (dashed
curves), shown vs t at h = 0. The FM order parameter is shown for a composite of system sizes,
L = 16, ... 1024, identified online by different colors. The data for L = 512 and 1024 indicate
that the transition is weakly first-order. The AFM order parameter is shown as the exact, Onsager
order parameter and MC simulations for L = 128 and 256. The metastable disordered phase lies
between the Ising critical temperature and the L-extrapolated spinodal temperature marked by
the vertical dashed line. See further discussion in the text.
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