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Abstract

First-principles-based effective Hamiltonian approach is used to predict the existence of a highly

tunable piezocaloric effect in antiferroelectric PbZrO3. The high tunability originates from a strong

dependence of both the magnitude and sign of the piezocaloric temperature change on the initial

temperature and the nature of stress. The linearity of the temperature response to the applied

stress allows for the doubling of the efficiency of the basic solid state refrigeration cycle. The large

values and high tunability of the piezocaloric effect in antiferroelectrics is traced to the strong

coupling between the multiple order parameters that coexist in such materials. An experimental

setup for the demonstration of such an unusual effect is proposed.

1



Caloric effects in functional materials are presently under intense investigation owing to

both the discoveries of giant caloric effects in several ferroics [1–9] and their technological

promise for solid state refrigeration. The solid state refrigeration is regarded as an energy

efficient and environmentally friendly alternative to the conventional refrigeration that uti-

lizes hazardous gases. Caloric effects are defined by either an adiabatic temperature change

or by an isothermal entropy change upon application of external fields such as magnetic,

electric, or stress fields. The effects in excess of several Kelvins are usually termed as giant

which emphasizes the drastic leap from the earlier measurements of just tenths Kelvins [10].

The giant electrocaloric effects of up to 12 K were reported in ferroelectric class/phases of

ferroics [8, 9, 11] followed by theoretical predictions of more exotic elastocaloric and mul-

ticaloric effects in the same class of materials [12–14]. The latter effects have been recently

demonstrated in experiments [15, 16]. The tendency of ferroics to exhibit large multiple

caloric effects originates from the strong coupling between ferroelectricity and ferroelasticity

that is naturally present in these materials.

As the search for superior caloric materials intensifies it appears fruitful to screen the

potential candidates based on their ability to exhibit a strong coupling between the electric

(or magnetic) orderings and the structural deformations. Among different ferroics PbZrO3

is known for its excellent electromechanical response [17]. However, PbZrO3 is an antifer-

roelectric and may at first appear as an unlikely caloric material. Indeed, the first direct

measurements of the electrocaloric effect in PbZrO3 yielded only a moderate ∆T of 1.5 K

in bulk samples [18]. However, the intrigue behind the discovery was not so much the mag-

nitude of the electrocaloric effect but rather its sign. While a typical ferroelectric warms

up under application of the electric field (positive electrocaloric effect), the antiferroelectric

PbZrO3 was found to cool down upon electric field application (negative electrocaloric ef-

fect). This unusual discovery prompted further investigations that led to the finding of giant

negative electrocaloric effect in antiferroelectric thin films [19]. As the potential of antifer-

roelectric calorics seems to unfold it provokes a question of whether they could exhibit a

large piezocaloric effect. Piezocaloric effect (PCE), also termed as an elastocaloric effect, is

associated with a reversible temperature change under the adiabatic application of a stress

field and could be as large as the electrocaloric effect in ferroelectric ferroelastics [12, 13].

If such an effect indeed exists in antiferroelectrics then what is its sign? Positive as in fer-

roelectrics [12], or negative in an analogy with the electrocaloric effect in antiferroelectrics
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[18]? Or could the sign of the effect be controlled by the stress field [14]? What is the

intrinsic magnitude of the PCE in antiferroelectrics and what is the atomistic mechanism

behind the effect? Could the effect be demonstrated in experiments and is it large enough

for potential applications? How does the PCE compare to the electrocaloric effect in the

same antiferroelectric? These are just a few questions awaiting the answers.

Motivated to address these questions we carry out first-principles-based simulations to

investigate the PCE in antiferroelectric PbZrO3. Similar computational experiments were

previously used to predict the elastocaloric and multicaloric effect in ferroelectrics [12, 13]

that have recently received experimental confirmation [15, 16]. The aims of the present study

are to: i) predict the (co)existence of large positive and negative PCE in antiferroelectric

PbZrO3; ii) reveal the intrinsic features and atomistic origin of the effect; iii) report a high

tunability of the PCE by the applied stress and how it may improve the refrigeration cycle;

iv) propose an experimental setup to demonstrate the PCE.

We simulate bulk PbZrO3 that is modeled by a 16x16x16 supercell periodic along all

three Cartesian directions. The total energy of the supercell is given by the first-principles-

based effective Hamiltonian of Ref.20. The degrees of freedom for the Hamiltonian include

local modes, u, that are proportional to the dipole moment in the unit cell, oxygen octahe-

dron tilts about pseudocubic axes, ω, that describe oxygen octahedron rotation, and strain

variables tensors, ηl, in Voigt notation, that are responsible for the mechanical deformations

of a unit cell. Note that the unit cell here refers to a five atom cell of cubic perovskite. The

energy of the PbZrO3 Hamiltonian includes dipole-dipole interactions, short-range interac-

tions, on-site self energies, elastic energy, coupling energy between the degrees of freedom

and the interaction between the local modes and electric field and is given in Ref.20. All the

parameters of the effective Hamiltonian were computed from first-principles and are reported

in Ref.20. The Hamiltonian correctly reproduces many of the electrical and thermodynami-

cal properties of PbZrO3[20]. In particular, it accurately predicts the antiferroelectric phase

transition and the dipole pattern associated with it, electric hysteresis loops, and the PbZrO3

behavior under pressure. The computational specific heat at room temperature is 316 J/K

· kg which compares well with the experimental values of 330-340 J/K · kg [8, 21]. The

latent heat of the phase transition in computations is 7.2 kJ/kg which is within the range

of the experimental values of 5.0-12.7 kJ/kg [21–23]. The thermal expansion coefficient in

the antiferroelectric phase and in the absence of stress is (12.9±0.8)·10−6 K−1. This com-
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pares well with the thermal expansion coefficient of (13.1±0.7)·10−6 K−1 computed using

the experimental data from Ref.24. Above the Curie point and under zero stress the ther-

mal expansion originates from the unharmonicity of the interatomic potential (mechanical

deformation potential in the language of the effective Hamiltonian) which we neglect in the

present simulations. Experimentally the thermal expansion coefficient above the Curie point

has a relatively small value of (6.9±1.1)·10−6 K−1. In our simulations the thermal expansion

above the Curie point originates entirely from the applied stress and, therefore, provides a

lower estimate for the PCE.

Prior to PCE computations, the simulated sample was annealed from 1200 K to 5 K in

steps of 5 K using the canonical Monte Carlo simulations. Thus equilibrated supercells were

used in simulations of the piezocaloric effect in the framework of the adiabatic Monte Carlo

approach proposed in Refs.12 and 25. In such an approach the caloric change in temperature

is computed during the application (or removal) of the stress field under adiabatic conditions.

It closely models the direct method for caloric effect measurements [26] and does not require

the use of either Maxwell relations or other thermodynamical relations. Direct computations

allow us to study both the first-order and the second-order phase transitions, reversible

and irreversible processes, and stable and metastable phases. It naturally captures the

temperature dependence of the heat capacity. The method was previously found to agree well

with experiments for both electrocaloric [25, 27] and piezocaloric [12, 15] effects. Technically,

the normal uniaxial stress field, σ, in the range of -2 GPa to 2 GPa was simulated. The stress

field was chosen to act either on [100], or [010], or [001] crystallographic planes. In Voigt

notation the corresponding components of the stress tensor are σ1, or σ2, or σ3, respectively.

In each simulation the stress field was slowly applied and then removed at a rate of 2 kPa

per one Monte Carlo sweep. The temperature and structural properties were computed at

each Monte Carlo sweep and then averaged over 10,000 Monte Carlo sweeps.

Before we present our computational data for the PCE it is imperative to discuss how

the applied stress affects the equilibrium phases of PbZrO3. Fig.1 gives the dependencies

of the antiferroelectric (AFE), antiferrodistortive (AFD) and strain order parameters on

the temperature under zero stress (red curves) and in the presence of the σ2 stress (all the

other curves). The magnitudes of AFE and AFD order parameters are computed as follows:

|AFE| =
√

< ux(Σ2) >2 + < uy(Σ2) >2 + < uz(Σ2) >2, where the averages are associated

with Σ2 point of the Brillouin zone. |AFD| =
√

< wx >2 + < wy >2 + < wz >2. All order
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parameters are reported relative to the computational lattice constant of cubic PbZrO3. Un-

der stress-free conditions the simulated sample undergoes a single phase transition from a

paraelectric cubic phase to an antiferroelectric orthorhombic phase with the AFE and AFD

order parameters aligned along [1,0,-1] and [-1,0,1] directions of the parent cubic structure

(orthorhombic a-axis), respectively. The stress has a pronounced effect on the magnitude of

all order parameters as well as the Curie point. In particular, in the AFE phase both the

AFE and AFD order parameters are weakened by the tensile (positive) stress and enhanced

by the compressive (negative) stress. The same observation holds for the η2 component of

the strain tensor. Consequently, the Curie point is reduced under the tensile stress and

increased under compressive stress. Such sensitivity of the structure to the external stress

is suggestive of a strong piezocaloric response which relies on the possibility to influence

the structural order by the applied stress. Under compressive stress the Clausius-Clapeyron

equation, ∆TC

∆σ
= −∆ηTC

Lρ
, is satisfied. In the latter equation TC is the Curie temperature,

∆η is the change in strain at the phase transition, L and ρ are the latent heat and den-

sity, respectively. From computations ∆TC

∆σ
=-37±5 K/GPa, while the estimate from the

Clausius-Clapeyron equation gives the value of -51 K/GPa. The negative sign indicates the

increase in TC with the increase in magnitude of compressive stress. Tensile stress induces

metastable states (with AFE order parameter pointing along [101] pseudocubic direction)

which transition irreversibly to stable states (with AFE order parameter pointing along [110]

or [011] pseudocubic direction) in the vicinity of the Curie point. The irreversible nature

of this phase transition prohibits application of the Clausius-Clapeyron equation in case of

tensile stress. Note that in the AFE phase the structure is much less sensitive to either σ1

or σ3 stresses which explains why we do not present the data for those stresses.

Having established the effect of the external stress on the structural distortions in PbZrO3

we present the computational data for the PCE in this antiferroelectric. Fig.2(a) gives the

dependence of the piezocaloric temperature change, ∆T , on the applied stress for a few

selected temperatures. Immediately we notice that very large ∆T can be achieved by the

application of large stress fields which suggests a strong piezocaloric response. Another

striking feature is the linearity of the piezocaloric response below the Curie point (946 K

in computations) that gives rise to the change in the sign of the piezocaloric ∆T as the

stress changes from compressive to tensile. There are two important consequences to this

prediction. First of all, it indicates that both positive and negative PCE can coexist in the

5



same antiferroelectric. Secondly, it suggests the possibility of controlling the sign of ∆T by

the sign of the applied stress that could potentially double the efficiency of the refrigeration

cycle as shown in the inset to Fig.2(b). Note, that similar strategy was previously suggested

to enhance the electrocaloric ∆T [25]. Finally, we note a strong dependence of both the

magnitude and sign of the PCE on the temperature. In particular, while below the Curie

temperature the sign of the PCE is controlled by the sign of the applied stress, above the

Curie point PCE remains positive for all stresses considered.

To elucidate the origin of such unusual findings we take advantage of the atomistic picture

available from our computations. Fig.2(b)-(d) quantifies how the structural order parame-

ters respond to the applications of stress. The change in the order parameters is reported

relative to their stress-free values to facilitate the comparison. Several important features

are immediately revealed. Firstly, we notice that all three order parameters experience si-

multaneous, rather large changes that are comparable in magnitude. Secondly, we notice

that the change in the strain shows only a weak dependence on the temperature, while the

change in the magnitude of the AFE and AFD order parameters follow the temperature

evolution of ∆T (σ) from Fig.2(a) rather closely. To elucidate the change in the stress de-

pendence of the AFE order parameter with temperature we recall that this order parameter

is coupled to stress via piezoelectric response of the local electric dipoles. Since piezoelectric

constants typically exhibit strong temperature dependence the response of the AFE order

parameter to stress is also temperature dependent. Similar argument applies to the stress

dependence of the AFD order parameter. Finally, we note that the sign of the PCE is largely

determined by the change in the magnitude of the AFE and AFD order parameters. If the

magnitude of this order parameter decreases the structure becomes less ordered which leads

to an increase in the configurational, or structural, entropy. Since the total entropy must

be conserved this results in a decrease in the thermal entropy and cooling of the sample.

When the magnitude of this order parameter increases, the response is just the opposite and

the sample’s warming occurs. Based on the atomistic analysis we conclude that the PCE

is set into action by the mechanical deformation under the applied stress. The deformation

triggers rather large changes in the localized structural distortions (such as AFE and AFD

distortions) owing to a strong coupling between the lattice instabilities and the elastic strain.

The drastic structural changes result in a considerable entropy flow between the structural

ordering and thermal vibrations that gives rise to large PCE. In other words, the PCE in
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the antiferroelectric PbZrO3 is a cooperative action of multiple structural distortions driven

by the mechanical deformations. It is worthwhile to note that once such cooperation is

destroyed (well above the Curie point) the PCE dramatically weakens.

Once the mechanism responsible for the rather unusual PCE effect in PbZrO3 is estab-

lished it is imperative to understand how it plays out in a wider range of temperatures.

Fig.3 gives the computational data for the piezocaloric ∆T as a function of temperature. As

expected for a cooperative phenomena the PCE reaches its largest values in the vicinity of

the Curie point. Below the Curie point the comparison of ∆T (T ) obtained under tensile and

compressive stresses confirms that the sign of the piezocaloric ∆T is uniquely determined by

the nature of the stress. The robustness of the effect in a very wide range of temperatures

is attractive for potential applications.

We also studied application of both compressive and tensile stresses along [100] and [001]

pseudocubic directions. These are the directions associated with the nonzero components of

the antipolar vector in the AFE phase. In the paraelectric phase the results are very similar

to the ones reported in Fig.3 as expected from the symmetry considerations. In the AFE

phase, however, the PCE is much smaller as compared to the effect that can be achieved by

applying the stress along the orthorhombic c-axis. A rather small piezocaloric ∆T in this

case is due to the fact that the AFE PbZrO3 is much less sensitive to the external stresses

that act in the ab orthorhombic plane.

The paraelectric to antiferroelectric phase transition in PbZrO3 is of the first-order. It

is imperative to estimate the piezocaloric ∆T at the first order phase transition. Fig.4

shows a few representative T (σ) curves in the vicinity of the Curie point. Under tensile

stress the first-order phase transition (indicated by an arrow in Fig.4(a)) is irreversible and,

therefore, cannot be used for PCE harvesting. Note that in Fig.3 we do not report the

PCE for stresses greater than the ones associated with the irreversible phase transition.

Under compressive stress there is a reversible jump in the temperature of about 9 K at

the point of the first-order phase transition (indicated by an arrow in Fig.4(b)). From

thermodynamics the piezocaloric ∆T at the first-order phase transition can be estimated

with the help of the Clausius-Clapeyron equation and the relation ∆T = T∆S
C

[28], where ∆S

is the entropy change and C is the heat capacity. We obtain ∆T ≈ TC

ρc
dσ
dTC

∆η or ∆T ≈ L/c.

Note that c is the specific heat at the Curie point. The above expressions yield 8 K and

6 K, respectively. It is important, however, to realize that the approximate relationships
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for ∆T provide only crude estimates due to a very fast variation of the heat capacity in

the vicinity of transition temperature. Using the experimental values for L and c [21] we

get the estimate of ∆T ≈16 K. However, this value is too large to assume a constant heat

capacity and, therefore, should be used with caution. Nevertheless, the estimate provides an

experimental validation for our computational data. Away from the Curie point (Fig.4(c))

the temperature changes continuously suggesting that the first-order phase transition does

not contribute to the PCE.

We have also estimated piezocaloric ∆T from the Maxwell equation ∆T = −
∫ σ

0

T
cρ

(

∂η

∂T

)

σ
dσ

(the indirect approach). The results are given in Fig.5. We notice that this method sub-

stantially underestimates the piezocaloric ∆T at the Curie point as it does not take into

account the entropy change at the first-order phase transition. Indeed the underestimation

of the peak ∆T is about 13 K in agreement with the ∆T of 9 K due to the first-order

phase transition. The Maxwell equation can also be used to estimate the PCE due to

an elastic heating from experimental data. Writing η = ησ=0 + sσ, where s is the elas-

tic compliance, we obtain ∆T ≈ − T
cρ

[(

∂η

∂T

)

σ=0
σmax +

(

∂s
∂T

)

σ=0

σmax

2

]

. Using T =500 K,

c =330 J/K·kg, ρ =8.3 g/cm3,
(

∂η

∂T

)

σ=0
=9.9·10−6K−1 (average of the cubic and orthorhom-

bic phases),
(

∂s
∂T

)

σ=0
=2.5·10−14 m2/N·K (estimated from Ref.29), and σmax =2 GPa we

obtain ∆T ≈13 K which agrees well with our computational data in Fig.3 away from the

phase transition. At the phase transition this value is augmented by 16 K due to the

latent heat of the phase transition yielding the experimental estimate of 29 K for the max-

imum PCE in PbZrO3. This compares well with our computational value of 39 K under

compressive stress (see Fig.3).

To put our findings into perspective we compare the PCE predicted in this work with the

relevant caloric effects from the literature in Table I. The second column in the Table reports

the room temperature caloric effects. We notice that our predicted value of -1.1 K/GPa

compares well with the experimental value of 1.0 K/GPa for PCE [15] and barocaloric

[6, 30] effects in other high-performance materials. Furthermore, the room temperature

PCE in PbZrO3 is comparable with the PCE in ferroelectrics (BCZTO ceramics, BST,

PbTiO3, BaTiO3). The third column in Table I reports the maximum values for different

caloric effects and the associated temperature at which the values are achieved. Here we find

that PCE in PbZrO3 (14.5 K/GPa at 523 K) is within the upper boundary of the reported

range (6 to 17.5 K/GPa). We also added the values for the electrocaloric effect in PbZrO3
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TABLE I. Piezocaloric, barocaloric, and electrocaloric effects (abbreviated as PCE, BCE, and

ECE, respectively) from the literature and this work.

Effect Near RT value Max. value Material Method Reference

PCE ∆T/∆σ 1.0 K/GPa 6.0 K/GPa (at 335 K) BCZTO ceramics exper. [15]

PCE ∆T/∆σ 6.0 K/GPa 9.0 K/GPa (at 250 K) BST theory [12]

PCE ∆T/∆σ 3.5 K/GPa 17.5 K/GPa (at 640 K) PbTiO3 theory [13]

PCE ∆T/∆σ 0.8 K/GPa BaTiO3 theory [14]

PCE ∆T/∆σ -1.1 K/GPa 14.5 K/GPa (at 523 Ka) PbZrO3 theory this work

BCE ∆T/∆p 16.7 K/GPa Ni-Mn-In alloy exper. [5]

BCE ∆T/∆p 1 K/GPa 6 K/GPa (at 270 K) Gd5Si2Ge2 exper. [30]

BCE ∆T/∆p < |-1| K/GPa -11.3 K/GPa (at 240 K) La-Fe-Si-Co compound exper. [6]

ECE ∆T/∆E -11 K·cm/MV -18 K·cm/MV (at 370 K) PbZrO3 exper. [18]

ECE ∆T/∆E -14 K·cm/MV 15 K·cm/MV (at 500 K) PLZT2/95/05 exper. [19]

a The computational temperature is rescaled to correct for the Curie point overestimation.

since they may be helpful to estimate the overall performance of this material. Under the

experimentally realizable stress of 0.25 GPa [15] the room temperature piezocaloric ∆T is

0.3 K while the maximum value is 3.6 K. Application of both positive and negative stress

in the same cycle could potentially double these values to 0.6 K and 7.2 K, respectively.

The room temperature value of 0.3 K is comparable to the electrocaloric ∆T in the same

material under an applied electric field of 80 kV/cm [18] which may open even more avenues

toward the enhancement of the caloric ∆T . Further improvements may be possible through

alloying or doping of PbZrO3.

To achieve the required compressive and tensile stresses experimentally one can utilize

a bending setup sketched in Fig.6. In such a setup a thin layer of PbZrO3 is deposited

on top of a substrate. Bending of the substrate creates tensile or compressive stress in the

PbZrO3 layer. From the mechanics of beam bending we estimate that achieving 1 GPa

compressive or tensile stress in a micron thick PbZrO3 film deposited on a few micron thick

SrTiO3 substrate requires creating a bending radius of 45 microns. There is compelling

experimental evidence that PbZrO3 films could withstand a mechanical stress of up to

2.5 GPa [31].
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In summary, we studied the intrinsic PCE in an antiferroelectric PbZrO3 using first-

principles-based effective Hamiltonian approach. Our computations predict the existence of

a very large PCE when the external stress acts along the orthorhombic c-axis. Tensile stress

destabilizes the AFE orthorhombic phase which results in a negative PCE. Compressive

stress, on the other hand, further stabilizes the AFE phase and is associated with a positive

PCE. The coexistence of both positive and negative PCE in the same material is very

attractive for potential application as it allows to enhance the overall caloric response. We

believe that our study is particularly timely in the light of the recent discovery of giant

electrocaloric effect in PbZrO3[19] and may open a new direction in the area of functional

materials.

Financial support for this work provided by the National Science Foundation Grant No.

DMR-1250492 and MRI CHE-1531590.
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FIG. 1. Dependence of the magnitude of the AFE and AFD order parameters [(a) and (b)] and

strain (c) on the temperature in the presence of different external stresses σ2.
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FIG. 2. (a) Dependence of the piezocaloric change in temperature on the applied stress. Depen-

dence of the change in the c lattice constant (b), the magnitude of the AFE (c), and AFD (d)

order parameters on the applied stress. The stress acts on the ab orthorhombic plane. The inset to

panel (b) shows a basic refrigeration cycle that utilizes both positive and negative PCE. The cycle

begins (step 1) with application of compressive stress which is followed by a heat exchange with a

heat sink under constant stress (step 2). At step 3 the compressive stress is removed adiabatically

resulting in a drop in the temperature below T0 via positive PCE. At step 4 a tensile stress is

applied producing an additional drop in the temperature via negative PCE. At step 5 the system

returns to the original T0 by absorbing the heat from the load. The cycle closes via an adiabatic

removal of the tensile stress (step 6) followed by the heat exchange with the heat sink (step 7).

The ∆T = T4 − T0 of the double cycle exceeds that of a single cycle which utilizes either positive

PCE (∆T = T3 − T0) or negative PCE (∆T = T4 − T3).
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FIG. 3. Dependence of the piezocaloric ∆T on the temperature. Vertical lines indicate computa-

tional transition temperature.

14



 930

 940

 950

 960

 970

-2 -1  0  1  2

T
 (

K
)

σ (GPa)

(a) T0=940 K

stress application
stress removal

stress application
stress removal

 940

 950

 960

 970

 980

 990

-2 -1  0  1  2

T
 (

K
)

σ (GPa)

(b) T0=950 K

 950

 960

 970

 980

 990

 1000

-2 -1  0  1  2

T
 (

K
)

σ (GPa)

(c) T0=955 K

FIG. 4. Dependence of the temperature on the applied stress in the vicinity of the Curie point.

(a), (b) and (c) give data for initial temperatures of 940 K, 950 K, and 955 K, respectively.

Arrows indicate first-order phase transitions. Under tensile stress the first-order phase transition

is irreversible and associated with hysteresis (see panel (a)).
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FIG. 5. Dependence of the piezocaloric ∆T on the temperature computed using the indirect

approach. Vertical lines indicate computational transition temperatures. We removed the points

associated with the irreversible phase transition.
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FIG. 6. Schematic view of the bending setup for experimental demonstration of PCE. The red and

blue color schematically indicate tensile and compressive stresses, respectively, that develop in the

structure upon bending.
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