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Incorporating nanoparticles into superconducting materials has emerged as an efficient route to
enhance their current-carrying capability. However, a thorough understanding of how these inclu-
sions can be used in the most efficient way is still lacking. We address this problem of optimizing
the vortex pinning landscape for randomly distributed metallic spherical inclusions using systematic
large-scale numerical simulations of time-dependent Ginzburg-Landau equations. This approach al-
lows us to predict the size and density of particles for which the highest critical current is realized.
For a given particle size and magnetic field, the critical current reaches a maximum value at a
particle density, which typically corresponds to 15–23% of the total volume being replaced by the
nonsuperconducting material. For a fixed diameter, this optimal particle density increases with the
magnetic field. Moreover, we found that, as the magnetic field increased, the optimal particle diam-
eter slowly decreases from 4.5 to 2.5 coherence lengths. This result shows that pinning landscapes
have to be designed for specific applications taking into account relevant magnetic field scales.

PACS numbers: 74.20.De, 74.25.Sv, 74.25.Wx

Pinning of vortex lines by defects is essential for su-
perconductor’s ability to carry electrical current without
dissipation. Thus, high-current applications of supercon-
ductivity require engineering defect microstructures to
efficiently suppress the mobility of vortices over a wide
range of magnetic fields. On the other hand, vortex mat-
ter in disordered superconductors represents a complex
system with extremely rich and non-trivial dynamics that
has challenged researchers for more than five decades.
As this field is of high fundamental and practical im-
portance, great efforts have been devoted in the past to
establishing basic laws of pinning [1–3]. Two most stud-
ied limiting cases are a very high density of weak centers
described by the collective pinning theory [4], and a low
density of large-size pins, described by the strong-pinning
theory [5, 6]. In addition to analytical theories, pinning
has also been extensively explored by Langevin-dynamics
simulations for both isolated elastic string [7, 8], and ar-
ray of interacting strings [9–12].

Interest in the strong-pinning scenario has been re-
newed recently due to its relevance for YBa2Cu3O7

(YBCO) films with self-assembled inclusions which
strongly enhance critical currents in these films. Such
inclusions may be prepared in the form of almost spheri-
cal particles [13–19], nanorods [20], or combinations of
both [21]. This technology has been implemented in
the second-generation superconducting cables based on
YBCO coated conductors [22] operating in a wide range
of magnetic fields. In addition to self-assembly, large-
size defects in the form of impurity clusters can also be
introduced by proton irradiation [23, 24].

Increased ability to engineer a pinning microstructures
raises the following question: At what sizes and densi-

ties of inclusions does the critical current reach its maxi-
mum for different magnetic field and temperatures. This
fundamental problem of pinning optimization cannot be
resolved by simple approaches. Indeed, both analytical
theory [5, 6] and Langevin-dynamics simulations [7–12]
can evaluate the critical current only in the case when
particles occupy small fraction of the material. While the
ultimate critical-current optimization can be achieved by
the constructive combination of different pinning centers,
a natural first step is to determine the best pinning con-
figuration for a relatively simple system with only one
type of defects. In this Letter, we explore the case of
monodisperse spherical defects with diameters of a few
coherence lengths using large-scale simulations of the
time-dependent Ginzburg-Landau (TDGL) model [25],
allowing for a systematic study of arbitrary defect con-
centrations, while at the same time taking the collective
behavior and the intricate intrinsic interactions of the
vortex matter into account.

The TDGL model describes dynamics of the super-
conducting order parameter and the vortex lines ap-
pear spontaneously as its singularities. Even though
the TDGL model does not provide a fully realistic de-
scription of the dynamic properties of superconductors,
it does describe accurately vortex-line flexibility, interac-
tions between vortex lines, and interactions of vortices
with pinning sites. It also allows for cuttings and recon-
nections of vortex lines. Therefore, this model is per-
fectly suited for the problem of the critical-current op-
timization, for which a fully accurate description of the
dynamics is not essential. The TDGL model has been
proven to be very useful for exploring many properties of
the vortex state [26–34]. However, only recently a mean-
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Figure 1. (a) Current-voltage dependences computed for
different numbers of particles Np with diameter a = 4ξ for
magnetic field 0.1HC2. The numbers in parentheses represent
the volume fractions occupied by the particles f . The criti-
cal currents are determined by the intersection of the CVD
and 2% of the flux flow voltage (dashed line). The optimal
concentration of particles is at Np = 4 000 corresponding to
f = 0.23. (b) The dependences of the critical current JC

on the particle volume fraction f for a = 4ξ and three mag-
netic fields. The optimal f increases with the magnetic field.
(c) The dependences of JC on f for different particle diam-
eters at B = 0.1HC2. The optimal particle diameter is in
between 3ξ and 4ξ. (d) Order parameter isosurfaces for a
pinned vortex configurations with a = 4ξ, Np = 500, and
B = 0.016HC2. (e) The field-induced vortex lines extracted
from the same order parameter. The particles are shown as
transparent spheres. Vortex lines outside particles are red,
and inside particles are blue.

ingful exploration of the parameter space for sufficiently
large three-dimensional superconductor has became pos-
sible [35] allowing us to address the problem of critical-
current optimization.

We use the TDGL model to explore vortex pinning
by randomly-placed metallic spherical inclusions. Our
objective is to find the optimal parameters for the pin-
ning landscape to maximize the critical current. Clearly,
when the particles occupy a small fraction of the total
volume, the critical current grows as particle density in-
creases. At some density, however, further increase of
particle number will not improve current-carrying capac-
ity [36] due to at least two factors: (i) The increasing
mobility of the vortex lines due to jumping between the
particles and (ii) the reduction the effective cross section
for the supercurrent caused by inclusions. Therefore, it
is important to find the size and density of particles that

maximizes the critical current. This problem can not
be accessed by simple approaches. We find optimal pa-
rameters for different magnetic fields by systematically
exploring the dependence of the critical current on size
and concentration of particles.

The dynamics of the order parameter ψ(r, t) is de-
scribed by the TDGL equation in the reduced form

(∂t + ıµ)ψ = ε(r)ψ − |ψ|2ψ

+
∑

j=x,y,z

η2
j (∇j − ıAj)

2ψ + ζ(r, t). (1)

Here µ and A are the scalar and vector potentials. We
used the in-plane coherence length ξ at the chosen tem-
perature as the unit of length, meaning that ηx = ηy = 1
and ηz = 1/γ, were γ is the anisotropy factor. We
took γ = 5 corresponding to YBCO. The function ε(r)
models pinning centers, ε(r) = 1 in the bulk [37] and
ε(r) = −1 inside metallic inclusions. We used the approx-
imation of large London penetration depth λ in which
the vector potential A is fixed by the external mag-
netic field, Ay = Bx, and the magnetic field is measured
in units of the c-axis upper critical field at given tem-
perature, HC2 = Φ0/2πξ

2. The Langevin term ζ(r, t)
describing thermal noise has the correlation function
〈ζ∗(r, t)ζ(r′, t′)〉 = T δ(r−r′) δ(t−t′), where T is the re-
duced temperature in units of H2

Cξ
3/8π and HC is the

thermodynamic field. The total electric current in units
of J0 = cΦ0/8π

2ξλ2 (CGS) is given by

Jj = η2
j (Im[ψ∗(∇j − ıAj)ψ]−∇jµ) , (2)

where the first term is the supercurrent and the second
term gives the normal current. In these units the depair-
ing current is Jdp = 2/3

√
3J0 ≈ 0.385J0. We performed

simulations with fixed current applied in the x direction
and compute the average electric field E = −∇xµ in
the dynamic steady state. For the simulations, we devel-
oped a stable and efficient solver implemented for graph-
ics processing units [35]. The simulated system size is
100ξ × 100ξ × 50ξ with 256 × 256 × 128 mesh points
and we used periodic boundary conditions in all direc-
tions [38]. The external current is applied along the x
axis. The procedure for fixing the current density flow-
ing through the system is described in Ref. [35]. We fixed
the reduced temperature at very small value T = 4×10−5

corresponding to real temperature . 1 K meaning that
thermal noise is not essential in these simulations. The
time discretization step is selected to be 0.1 in units of
the Ginzburg-Landau time.

We systematically computed the current-voltage de-
pendences (CVDs) for different particle sizes and den-
sities. Figure 1(a) shows representative series of CVDs
for different numbers of particles Np with diameter of
a = 4ξ at magnetic field B = 0.1HC2 corresponding to
159 vortex lines in the system. These CVDs are obtained
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by stepwise decrease of the applied current with a sim-
ulation time of about 105 units of the Ginzburg-Landau
time between current steps. Typically, we did not ob-
serve significant history effects: CVDs computed with
different starting currents and current steps are found to
be very similar to each other. Only at small magnetic
fields ∼ 0.01HC2 CVDs become more noisy and slightly
history-dependent.

The pinning effectiveness of the particles is primar-
ily determined by the volume fraction f occupied by
them. For spatially separated particles the “nominal”
volume fraction is fn = πNpa

3/6LxLyLz. As in our case
randomly-placed particles may overlap, the real volume
fraction is somewhat smaller, f ≈ fn − f2

n/2, where the
correction term accounts for possible overlaps between
pairs of neighboring spheres. For each number of parti-
cles, the value of f is specified in parenthesis in Fig. 1(a).
For low f the CVDs systematically shift to the right as
particle density increases indicating an increase of the
critical current. Above a certain density adding more
particles starts to degrade the critical current. The opti-
mal density corresponds to the volume fraction f = 0.23.

The computed CVDs are used to evaluate the critical
currents, JC, which we define using the criterion E(JC) =
0.02ρffJC [dashed line in Fig. 1(a)]. The free flux-flow
resistivity, ρff , in our reduced units is ρff = 1.689B.
Figure 1(b) shows the dependences of the critical cur-
rent on the nonsuperconducting volume fraction f for
a = 4ξ and three magnetic fields. The optimal volume
fraction slowly increases with the magnetic field, from
∼ 0.15 at B = 0.016HC2 to ∼ 0.23 at B = 0.1HC2. At
the lowest field, B = 0.016HC2, the maximum current
is JC ≈ 0.0383J0 corresponding to 10% of the depairing
current. The movie in [39] demonstrates the evolution of
vortex dynamics with increasing particle density for this
magnetic field.

Figure 1(c) presents the dependences of the critical cur-
rents JC on the nonsuperconducting volume fraction f for
different particle diameters at B = 0.1HC2. The highest
critical current is realized at a = 3ξ indicating the exis-
tence of an optimal particle size. By applying parabolic
fits to the numerical data for the geometry dependent
JC(a, f), we found the optimal particle size and volume
fraction at several fields. Figure 2(a) shows the magnetic
field dependences of the optimal particle size aopt and vol-
ume fraction fopt in the range 0.016HC2 < B < 0.2HC2.
Within this range the optimal size monotonically de-
creases with the increasing magnetic field from ∼ 4.5ξ to
∼ 2.5ξ. This indicates that the typical scale of disorder
has to be comparable with the intervortex spacing which
decreases as 1/

√
B. The optimal volume fraction has a

weak, non-monotonic dependence on the field strength,
but stays within the range of 17–22%. The magnetic-field
dependence of the maximum critical current achieved for
the optimal parameters is shown in Fig. 2(b).

To characterize the structure of the pinned vortex

Figure 2. (a) The magnetic field dependence of the optimal
diameter (left axis) and volume fraction (right axis). (b) The
maximum critical current for optimal parameters for different
magnetic fields in reduced units. The right axis shows this
current normalized to the depairing current.

states, we extracted the field-induced vortex lines from
the order parameter [40] and performed a detailed anal-
ysis of these configurations. We analyzed trapped vortex
configurations at the final currents of the simulation se-
quences which are below the corresponding critical cur-
rents. Figure 1(d) shows a representative configuration
for B = 0.016HC2 imaged by the order-parameter isosur-
faces |ψ(r)| = 0.1. Both particles and vortex lines can
be seen as regions of suppressed order parameter. We
found that the vortex arrangements typically are quite
disordered, which is partly caused by the interaction of
the vortices with randomly arranged particles and partly
by incomplete equilibration. Vortex lines traced from
this order-parameter distribution are shown in Fig. 1(e).
They are split into line segments located inside the par-
ticles and in superconducting material, as illustrated by
blue and red lines, respectively.

We extracted several parameters characterizing trap-
ped configurations: (i) The fraction of particles occu-
pied by vortices, ffill, (ii) the fraction of particles double-
occupied by vortices, f2, (iii) the fraction of the total line
length located outside particles, ffree = `outside/`total,
(iv) the average length of line segments trapped between
neighboring particles, Lt, see inset in Fig. 3(c), and
(v) the average particle-to-particle displacement in the
direction of motion, ul = uy, and in transverse direction
ut = ux. These parameters are not independent. Indeed,
the number of particles holding a given vortex line can be
estimated as ffreeLz/Lt meaning that the total number
of occupied pins is NvffreeLz/Lt, where Nv is the total
number of vortex lines. As fraction of pins f2 is holding
two vortex lines, we can estimate the occupied fraction
as ffill ≈ NvffreeLz/[Np(1 + f2)Lt]. We checked that the
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Figure 3. Evolution of parameters characterizing pinned
vortex-line configurations with increasing nonsuperconduct-
ing volume fraction f for a = 4ξ and three magnetic fields.
The plot (a) shows the fraction of particles occupied by vortex
lines, ffill. The plot (b) presents the length fraction of vor-
tex segments outside the particles, ffree. Dashed line shows
the volume fraction occupied by superconducting material,
1−f . The plot (c) shows the average geometrical parameters
characterizing pinned line segments as illustrated in the in-
set, the segment length Lt (left axis) and typical pin-to-pin
line displacements in the direction of motion, ul, and in the
transverse direction, ut (right axis). The parameters Lt and
ul are defined in the inset. In all plots arrows mark locations
of the maximum critical current.

extracted parameters satisfy this consistency condition.
Particle fraction occupied by the vortex lines, ffill, nat-

urally characterizes the efficiency of pin utilization. Fig-
ure 3(a) shows the dependence of this parameter on the
nonsuperconducting volume fraction f for a = 4ξ and
three magnetic fields. As expected, this parameter in-
creases with the magnetic field and decreases with the
number of particles. For B = 0.1HC2 almost all particles
are occupied. We also found that for this field typically
3–5% of particles hold two vortex lines without any sys-
tematic dependence on the particle density. For smaller
fields the number of double-occupied particles is negli-
gible. An noteworthy feature is that for small fields a
significant fraction of particles remains unoccupied even
for very low particle densities.

The efficiency of the vortex trapping by the particles
can be characterized by the free-segment length fraction

of the vortex lines, ffree, plotted in Fig. 3(b). A natural
upper limit for ffree is the volume fraction occupied by
the superconducting material, 1−f , shown by the dashed
line. This limit would be realized if there were no corre-
lations between particles and vortices. We can see that
for pinned configurations ffree is significantly below this
limit since particles trap vortices. Notably, ffree drops
below 50% when particles occupy only 5% of the volume
for B = 0.016HC2. The free-segment fraction monotoni-
cally increases with the magnetic field, because the vor-
tex lines compete for the particles. We observe that the
maximum critical current is realized for ffree = 21–25%
which only weakly depends on the magnetic field.

For strong pinning sites the vortex lines split into
finite-size segments hanging in between neighboring
sites [5, 6, 8]. Figure 3(c) shows the behavior of the aver-
age length parameters in units of ξ characterizing these
free-line segments, the segment length Lt and pin-to-pin
line displacements in the direction of motion, ul, and
in the transverse direction, ut. The length Lt rapidly
increases with decreasing particle density and with in-
creasing magnetic field. While the displacements ul,t also
increase with decreasing f , they only weakly depend on
the magnetic field. As expected, for small particle den-
sities the vortices stretch between pinning sites preferen-
tially in the direction of motion [5, 6, 8] meaning that
ul is larger than ut. These parameters, however, become
almost identical for f & 0.15. At the particle density
corresponding to the maximum of the critical current all
three parameters, Lt, ul, and ut, are close to ξ for both
magnetic fields.

In summary, we conducted a systematic study of vor-
tex pinning by randomly distributed metallic inclusions
within the superconductor using large-scale numerical
simulations. Using this approach enables us now to pre-
dict optimal parameters for highest critical currents. We
also analyzed statistical properties of pinned vortex ar-
rays and revealed several nontrivial structural properties
of the optimally-pinned states. Our general observation
is that there is no universal optimal pinning configuration
for all magnetic fields. Thus, for best performance in a
given application, pinning landscapes should be designed
taking into account relevant magnetic fields.
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