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Observation of replica bands in the ARPES spectra of single-layer FeSe on strontium titanate substrate revealed a 
phonon component contribution to mechanisms behind its high CT superconductivity. We study the interaction of 

the in-layer FeSe electrons with the electric potential of the longitudinal (LO) modes at the surface of bulk SrTiO3. 
A two-dimensional system of charges at the FeSe/SrTiO3 interface includes both the itinerant and immobile 
electrons. The latter change significantly the interface characteristics, increasing screening at the substrate surface 
and thereby reducing the strength of the electron-LO phonon interaction. In what follows, the dielectric constant 
serves as a free parameter and is determined using  the ARPES measurements of the replicas. Two-dimensional 
Coulomb screening is accounted for in the random phase approximation. It is shown that the model is applicable 
overthe  entire range of the parameters typical for current experiments. The estimates from this model make possible 
the conclusion that the LO-phonon mediated pairing alone cannot account for the temperatures of the 
superconducting transitions CT  in the single-layer FeSe/SrTiO3 reported in these experiments. This does not exclude 

that the LO-phonons mechanism can become more significant in differently and better prepared single layer FeSe 
films. Available experiments are briefly discussed. Thus far no measurements exist on the dependence of CT on the 

concentration of electrons doped into the in-layer FeSe band.  

Introduction. The recent discovery of superconductivity in a single layer of FeSe deposited on a strontium 
titanate substrate (STO) [1] with superconducting transition temperatures up to 110K [2] is of great 
interest both on practical and on theoretical grounds. On the practical side, it opens new prospects in 
applications, including, in particular, the engineering of interfaces and films exhibiting superconductivity. 
On the theorical side, the whole manifold of experimental data reveals evidence that a phonon mechanism 
is undoubtedly at work, thereby challenging the forty-years-old consensus in the literature regarding 
stringent limitations on superconducting transition temperatures of the achievable with phonons [3]. 

In what follows, we undertake attempts to reveal the basic factors that control both the normal and 
superconducting properties of single-layer FeSe/STO. Observation of replica bands in angle-resolved 
photoemission spectroscopy (ARPES) data [4, 5] made self-evident the coupling between electrons and a 
high frequency surface phonon mode. In general terms, the idea that surface modes may be responsible 
for pairing between the in-layer FeSe electrons was of course put forward in the literature. To be specific, 
we focus on the interaction of electrons with the longitudinal (LO) surface polar modes on the charged 
STO substrate.  

This problem cannot be addressed without making some suppositions regarding the structure of the 
interface and the mechanisms responsible for the electronic doping of the FeSe-layer. In current 
experimental literature [1, 2, 4-9] the procedures for sample preparation begin with annealing the 
substrate in a vacuum in order to produce oxygen vacancies and to form, thereby, a charged two-



dimensional layer at the SrTiO3 surface. The unit-cell-thick FeSe layer is then deposited by molecular 
beam epitaxy (MBE). It seems that only a fraction of the charges are transferred into the conduction band 
of the single FeSe layer after the deposition. The rest stay on the surface of SrTiO3 [5-7, 9 and 10]. While 
solution of the problem of electrons interacting with the electric fields inherent in LO polar modes on the 
surface of a dielectric is well known [11], in the present case it becomes complicated by changes in the 
dielectric properties of the surface caused by the immobile charge remaining on the substrate. The 
presentation below is an attempt to account for these peculiarities in the phenomenological model by 
generalizing the standard approach [11]. 

Although from observation of the replica bands [4] one can infer that the interaction between electrons 
and the surface optical phonons is among the key features in the system, there remains the question 
whether the mechanism of the LO phonon-mediated pairing alone can lead to so high a CT  as observed in 
single-layer FeSe/STO (1UCFeSe/STO) [2]. In the framework of our suggested approach we derive the 
expression for the intensity of the replica bands that makes it possible to analyze measurements [4] 
quantitatively. Within the range of parameters revealed by this analysis the answer is negative. This 
conclusion agrees with the one in [4]. Nevertheless, when acting in concert with other mechanisms, the 
contribution from the LO surface phonons is found capable of significantly enhancing CT  compared to its 
value in bulk FeSe. Note in passing that the particular mechanism of superconductivity in the latter is 
currently under debate (see, e.g. [12, 13]).  

The model.Assume for the start that the interaction of electrons with a high frequency optical surface 
mode is the sole mechanism of superconductivity in this system. With that assumption, the main 
unconventional theoretical feature is the inverted ratio between the Fermi energy FE and the 

characteristic LO phonon frequency. In traditional metals the typical frequency 0ω  of the phonons 
contributing to pairing has the same order of magnitude as the Debye temperature. The latter usually 
equals a few hundred Kelvin and is some two orders of magnitude smaller than FE which is of order 

of1eV . This results in a transition temperature that is also rather small, of order one tenth Dθ , (a few 

Kelvin). In lead (Pb) 7.2CT K� . 2~ 10C DT θ− typical for most metals of the main groups. For the 

material of interest here, single layer FeSe/STO, 60FE meV≈  , 0 80meVω ≈ and CT is  between 
50K and 100K  [2, 4 and 9]. from  in Lead (Pb) that is 

The ratio 0/ 1/ 8CT ω ≈  (with 110CT K≈  [2]) suggests that interactions in the system responsible for 
pairing are not weak. In metals the extension of the BCS weak coupling model to the case of 
arbitrarily strong interactions is realized by the set of the well- known Eliashberg equations [14]. 
However, these equations are applicable only in the so called adiabatic limit, that is, at the condition 
that the Migdal parameter 0 / Fr Eω= is small 0 FEω << [15].  

With the Migdal adiabatic provision severely violated in the new system, the discussions below must 
inevitably acquire a qualitative character. In a crude approximation, however, one might formally 
consider that the one eighth ratio of 0/ 1/ 8CT ω ≈  is caused by a suffuciently small coupling 
parameter λ  in the BCS-like expression for the temperature of the superconducting transition: 

(2 / )exp( 1 / )CT const W γ π λ= × − .   (1)  

We show below that the electron-optical phonon interactions mechanisms cannot explain 100CT K≈ , 
so indeed the corresponding coupling parameter λ must be small. Accordingly, for single-layer 



FeSe/STO we adopt an idealized weak coupling model for the two-dimensional parabolic band of 
electrons at the Μ -point of the Brillouin zone (BZ) [4,5 and 9]. For simplicity's sake, we begin by 
assuming  the extreme “anti-adiabatic” case 0 FEω >> .  

Interaction of two-dimensional electrons with longitudinal surface optical phonons. Interaction 
between electrons and the electric potential generated by LO phonons in polar crystals is described by 
the Fröhlich Hamiltonian: 

CP F u=
r r

    (2) 

where P
r

and ur are the polarization and the lattice displacement, respectively. In particular, the well-
known case is the interaction between the surface optical phonons and electrons on the surface of a 
clean dielectric [11]. The coefficient CF equals:  
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0κ and κ∞ are the static and the optical dielectric constants of the bulk. In (3) i
SLOω  is the frequency 

of one of the SLO phonon modes. The matrix element for the scattering of two electrons via virtual 
exchange of a surface phonon is: 
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In Eq. (4) ( )i
SOPD q is the phonons Green function in the thermodynamic technique [16]: 
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In (4,5) q p k= −
rr r

and n mε ε− are the momentum and the frequency that two electrons exchange upon 

scattering. In bulk, the well-known relation between LOω the frequency of the LO and the frequency

TOω  of the soft transverse optical phonons is 0/ /LO TOω ω κ κ∞= ; according to [11], and from here  

the frequency SLOω of the surface phonon 0/ 1/ 1SLO TOω ω κ κ∞= + + . 

As mentioned in introduction, for the problem in hand inconsistencies between experimental results 
and their interpretation seem to come about from incomplete understanding of the doping 
mechanisms. Without entering into excessive details of awhat is the customary doping protocol, it is 
worthwhile to enumerate the main steps. A carefully prepared TiO2-terminated SrTiO3 substrate is 
annealed in vacuum at high temperature, thereby creating oxygen vacancies at its surface and forming 
a charged surface layer hosting a two-dimensional electron system on the titanium 3d t2g –levels [1, 2, 
4-9]. It is worthwhile to note that the layer of FeSe is deposited by molecular beam epitaxy (MBE) 
after, i.e., on top of an annealed surface. A fraction of the electrons from the charged SrTiO3 surface 
go over into the single-layer FeSe conduction band; however, some undoubtedly remain embedded in 
a thin surface layer on the substrate. Experimentally, it is firmly established that the results do not 



depend on whether SrTiO3 is insulating in bulk or Nb-doped. From this also follows the corollary that 
the conducting FeSe layer and the interfaces make a whole (see e. g. [5-7]). 

The experimental discovery , consistent with the above considerations, that finalizes the model is the 
disclosure of a threshold in concentration for the doped carriers to appear at the chemical potential [6- 
8]. Such a threshold signifies the existence of the mobility edge; only at concentrations above the 
threshold can the carriers start manifesting themselves in itinerant conductivity and 
superconductivity. Whether the concentration for the onset of the threshold can be controlled by a 
specific annealing protocol remains unclear from [8], but the very fact that such a threshold exists is 
critically important. At concentrations exceeding the threshold the itinerant and immobile carriers 
coexist and it becomes necessary to keep in mind that all phenomena in the conducting 
1UCFeSe/STO-interface take place on a reconstructed dielectric background. Because the dielectric 
constant 0κ of SrTiO3is very large ( 0 1000κ = at 100T K=  [17]), the local states below the 
mobility edge possess large dipole moments that contribute significantly into the polarization.  

Below we hypothesize that the interactions between two-dimensional electrons and the optical 
phonons in 1UCFeSe/STO have the same form as given by the expressions (3- 5) with the difference 
that the parameters 0κ and κ∞ must be redefined to account for the inevitable change in the dielectric 
characteristics of the SrTiO3 surface after annealing and deposition of the FeSe-layer . Therefore, in 
what follows, in all expressions 0κ% and κ∞% are the model parameters that may depend on details of 
the specific experiment.  

We return to the expression of the matrix element for scattering of two electrons by each other via 
virtual exchange of the surface LO phonon. Together with the term corresponding to common 
scattering of two electrons via the direct electron-electron Coulomb interaction, the total matrix 
element (4) acquires the form: 
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Summation is on the number N  of optical phonons in the system. We assume 3N = , because there 
are three infrared-active LO phonon modes at the Γ -point of bulk SrTiO3 [18], each with a frequency 

i
LO CTω > [19]. The factor 2

iV accounts for the property that in multi-mode polar crystals  coupling of 

the optical phonons with electrons generally differs from that in Eq. (4) and the coefficients 2
iV  have 

a more complicated form than in (4, 5). Nevertheless, in SrTiO3 among all phonon modes, one LO 
mode exhibits a giant gap between its frequency and the frequencies of all the transverse optical (TO) 
phonons [17, 19]. Therefore, the contribution from this mode into (6) can be taken as before in the 
same form as in Eq. (4). In particular, it compensates the direct Coulomb repulsion in Eq. (6) at
| |n m LOε ε ω− << .  

The rest of the LO phonons in (6) contribute to the matrix element for electron-electron scattering. 
We emphasize that the latter corresponds to the attractive interaction. Besides, as 0κ of SrTiO3is very 

large ( 0κ κ∞>> [18]), we retain in the denominators (6) only the terms with an “optical” 1κ∞ +% . 

We apply these considerations to the interaction between the band electrons in the FeSe layer and the 
LO phonons at the 1UCFeSe/STO interface. With the simplifying assumption of the extreme “anti-
adiabatic” case, 0 FEω >> , the term 2( )n mε ε−  in the denominator of ( )i

SLO n mD ε ε− can be omitted. 



The matrix element of the interaction between the two electrons in the FeSe conduction band 
becomes:  
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Here the notation 22α  is introduced for the sum of 2
iV  over all other LO phonon modes; 2 1α <  is 

one of the parameters in the model; the second parameter is κ∞% -the optical dielectric constant 
renormalized by the presence of electrons embedded into the interface layer.  

The Coulomb interaction is screened by the two-dimensional gas of  FeSe-electrons. Restricting 
ourselves to the so-called random phase approximation (RPA), the denominator in (7) becomes: 

2| | | | 4 / ( 1)p k p k e m κ∞− ⇒ − + +
r rr r

h .   (8) 

Instead of (7), one obtains: 
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Generally, the 2D-screening depends on many structural details of the conducting layer [20]. Use of 
RPA-type expressions (8, 9) can be justified in the “dense plasma” limit, i.e., when the kinetic energy 
of carriers prevails over the Coulomb interaction. In that case the inverse Thomas-Fermi radius 

1
TF TFk r −≡  must be small compared with the characteristic momentum Fp . For the former from Eq. 

(8) one finds 24 / ( 1)TFk e m κ∞= +h . For the experiments of interest, the following inequality holds:  

2( ( 1) / ) 1Fp e mκ∞ + >>h . (10)  

Weak-coupling expression for the superconducting transition temperature. The temperature of the 
superconducting transition is determined by the eigenvalue of the homogeneous equation for the gap 
parameter ( )pΔ r  (see [16] and the brief derivation in the Appendix). In the notation of (9) it is: 
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The Cooper instability originates from the logarithmic divergence related to blocks of the two Green 
functions 2 2 1( ) ( ) ( ) [ ]mk G k G k ε ς −Π ≡ − = + in (11). (From now on 2 2( ) / 2 ( )F F Fk p m v k pς = − ≈ −

r
). As 

was pointed out above, at SLO FEω >> , the dependence on the energy variable in (5) can be omitted 

so that ( , | , ) ( )scr n m scrp k M p kε εΜ ⇒ −
r rr r

.  Performing the summation in (11) and substituting the 

explicit expression (9) for the integral kernel ( )scM p k−
rr

results in the integral equation: 
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(ϕ  is the angle between two vectors pr  and k
r

).  



Let the vector pr  in (12) be on the Fermi surface. With the notation Δ  for the average value of ( )kΔ , 
rewrite the right hand side of (12) as: 
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The integral over the angle ϕ  in front of the logarithmic singularity in Eq. (13) at 0ς =  determines 
the exponential factor in the weak coupling expression (2 / )exp( 1 / )CT const W γ π λ= × −  for the 
transition temperature. In (13) W  is a characteristic energy scale. That is, if the interaction kernel 
decreases at large energies, W is the order-of-magnitude cutoff parameter in the integration over ς  
on the left in Eq. (13). (Strictly speaking, ( )kΔ  also depends on the energy variable kς ). In our 
example of the extreme “anti-adiabatic” case 0 FEω >>  it is self-evident that FW const E= × . (The 
exact value of ~1const can be determined only by solving the integral equation (12) explicitly). 

Defining the effective Bohr radius 2 2( 1) /Ba e mκ∞= + h , inequality (10) becomes in this new notation: 

1F Bp a >> .    (14) 

Introducing the dimensionless parameter ( / ) / 2F Bx p a= h and with the λ in Eq. (13) written as
2 ( )xλ α λ≡  one obtains: 
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For the transition temperature: 

2 2 2 2 2 2( ) ( / 2 )exp[ 1 / ( )] (2 / ) exp[ 1 / ( )]C F BT x const p m x const ma x xα λ α λ= × − ≡ × −h .  (16)     

For illustration purpose, take 2 1α = . The two functions ( )xλ , and 2( ) exp[ 1 / ( )]t x x xλ= − are plotted 
in Fig. 1a, b. The maximum in ( )t x is obviously due to competition between two factors: at a given 

Ba  the transition temperature initially increases with an increase in carriers concentration; at the same 
time, screening tends to reduce the effective interaction constant ( )xλ .  



 
 
 
Fig.1a. The exponential factor in the weak coupling expression exp[ 1 / ( )]CT const W xλ= × −  for the 
transition temperature, ( )xλ Eq. (15) as function of the dimensionless parameter / 2F Bx p a= h ; ( Fp -the 
Fermi momentum; 2 2( 1) /Ba e mκ∞= + h -the effective Bohr radius). 
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Fig.1b. The function 2( ) exp[ 1/ ( )]t x x xλ= − . See expression (16) for the superconducting transition 
temperature 2 2 2( ) ( / 2 )exp[ 1 / ( )] (2 / ) ( )C F BT x const p m x const ma t xλ= × − ≡ × h .  
 

 

Replica bands. The intensity of the ARPES spectra is proportional to the spectral function ( , )A pε r  
related to the imaginary part of the retarded Green function 1( ; ) [ ( ) ( ; )]RG k k kω ω ε μ ω −= − + − Σ

r r r
as: 
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r
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r r r .      (17)  

In the general expression (17) for ( , )A pε r we confine ourselves to the intermediate states with one 
optical phonon. Correspondingly, for the self-energy in (17) we consider the diagram containing only 
one line of the phonon Green function. The analytical continuation of the expression ( , )pεΣ r :  
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on the thermodynamic axis to the real frequency axis defines the retarded self-energy part ( , )R pεΣ r as 
(see [16]): 
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Making use of the expressions for { }Im ( , ) ( / 2) ( ) ( )SLO SLO SLOD kω π ω δ ω ω δ ω ω= − − − +
r

 and for
Im ( , ) ( ( ) )RG p pε πδ ε ε μ= − − +r r , one obtains: 
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At low temperatures ,F SLOT E ω<<  Eq. (20) simplifies to: 

3 2Im ( , ) ( / 2 ) ( ) ( ( ) )R SLO scr SLOp d kM k p kε ω π δ ω ε ε μΣ = − − + − −∫
r r rr r . (21)  

In practice, to improve resolution, the weak-intensity bands are usually analyzed by taking the second 
derivatives of the ARPES spectra. Following [4], consider the second derivative 
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leaving after the integration by parts only the most singular terms in ( )scrM k
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Eq. (9), we find:   
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Assuming the integral converges at 24 / ( 1) 4 / B Fe m a pκ∞ + = <<h h one finally obtains:   
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Discussion. The experimental facts available thus far [1, 2, 5-8] are not specific enough to admit a 
detailed comparison with the theoretical results above, the more so, as no quantitative measurements 
of the dependence of CT on the carrier concentration at the single-layer FeSe/STO were established 
with any degree of confidence (see e.g. [6-8]; the field effect has been observed in [6]).  

The possibility for a more quantitative discussion presents itself in connection with the question 
regarding the origin of replicas [4].  

There are two independent physical characteristics beside 2α that enter into the theoretical 
expressions (7, 9, 12 and 13): Fp and the effective Bohr radius 2 2/ ( 1)Ba e m κ∞= +h . The values of

Fp are available directly from the ARPES spectra and define the surface density of electrons
2 2( / 2 )s Fn p π= h . The effective Bohr radius (and, hence,κ∞ ) will be now evaluated indirectly 

making use of the ARPES measurements[4].  

It was stressed in [4] that to account for the very accurate one-to-one correspondence between the 
dispersion of the electron energy bands and that of the replicas, especially at the Μ -point of the BZ, 
the electron-phonon interaction must be peaked at small momentum transfer | |qr . Compare now

8 1
0 0.1 10q cm−≈ × , the experimental error for the replica-widths [4], with the value of cutoff

2 14 / ( 1) 4 Be m aκ −
∞ + =h h in the denominator of Eq. (22). Comparison gives 14 b oa q− � , or 



840 10Ba cm−×� . With the band mass 2 em m≈ from [4] one finds ( 1) 160κ∞ + � (in the dielectric 
SrTiO3 5.2κ∞ � [18]).  

On substitution of 8 1/ 0.3 10Fp cm−≈ ×h , the dimensionless parameter becomes ( / ) / 2 6F Bx p a= =h . 
The inequality (14) is fulfilled when / 12 1F Bp a = >>h .Because of this, the applicability of the 
approach to the analysis above is justified.  

From here one now obtains (6) 0.25λ ≈ (see Fig.1a). The substitution of this value into Eq. (15) leads 
to ( ) 0.02 12C FT x const E const K≈ × × = × ( 60FE meV≈ [4, 9]). Therefore, assuming 1const � , the 
interaction of electrons with LO optical phonons alone cannot account for 58 7CT K= ± reported in 
[4].  

If there are two mechanisms contributing to the Cooper pairing, the gap equations (12, 13) must be 
rewritten:  

2 2

1 2
0 0

2 1( ) ( , ) ( ) ( )
2 2| | 4 /

E

k k

k

d e m d dp K p k th k th k
T Tp k e m

π

π

ς ς α ϕ ς ς
ς πκ ςκ

∞

−∞ ∞

Δ = Δ + × Δ
− +∫ ∫ ∫

% r rr
rr% h

 .  (24) 

In (24) ( , )K p k is now the kernel related to that specific pairing mechanism that, hypothetically, 
supports superconductivity in bulk FeSe. One view popular in the literature is that superconducting 
pairing in bulk FeSe is mediated by antiferromagnetic fluctuations (see, for instance, [13]). In the case 
of such a mechanism the characteristic cutoff energy in the first integral to an order of magnitude 
should be the same ~ FE E% . Assuming the weak-coupling expression 0 exp( 1 / )C FT E ν≈ − in bulk FeSe, 
with 0 8CT K� and 650FE K≈ one finds from this 1

0[ln( / )] 0.23F CE Tν −= ≈ . Inserting ( ) 0.25xλ ≈ and 
0.23ν ≈ gives the total 0.48totλ ≈ in the exponent; upon substitution into exp( 1 / )C F totT E λ≈ − one finds 

for CT  a reasonable estimate ( ) 88CT x const K≈ × . 

If, instead being of magnetic origin, 0 8CT K� in bulk FeSe could be caused by a commonplace phonon 
pairing with the Debye temperature 200D Kθ ≈ , for ν it would follow that 1

0[ln( / )] 0.31D CTν θ −= ≈ . 

As D FEθ << , in this case Eq. (24) must be solved separately for ( )kΔ
r

in the two energy intervals 
[0, ]Dθ and[ , ]D FEθ . Simple calculations lead to the renormalized

1( ) ( )[1 ( ) ln( / )] 0.36ren F Dx x x Eλ λ λ θ −= − ≈ and to 0.67totλ ≈ ; one then finds
exp( 1 / ) 45C D totT const const Kθ λ≈ × − = × .  

These estimates, although crude for ultimatequantitative conclusions, do not contradict the possibility 
that the record 109CT K�  [2] may be explained as caused by the enhancement of the bulk 0 8CT K� . 
On the theory side, it would be enough, as an example, to assume ( / 2 ) 4F Bx p a= h �  and (4) 0.32λ ≈
(see Fig. 1a). Note in passing that the value of / 8F Bp a h � would satisfy the inequality (14) as well.  

With two independent parameters Fp and Ba  there is only one dimensionless parameter in the theory
/ 2F Bx p a= h . Post factum, from the above discussion one concludes that in the main part of the

( , )F Bp a -phase diagram in Fig.1a, b the use of RPA in Eqs. (8, 9) is warranted by the inequality (14). 
(Thus, a maximum of the function 2( ) exp[ 1 / ( )]t x x xλ= −  in Fig.1b is at 5x � ( / 10F Bp a h � )).  At 
the level of current experiments [4] it may be possible to test Eq. (23). Namely, the second derivative 



of the replica band intensity (23) does not depend on x  while ( )CT x decreases with increasing x (recall 
that ARPES can directly measure Fp ).  

The second parameter ( 1)κ∞ + , intuitively, seem to be related to the particulars of the sample 
preparation procedure. At fixed / 2 6F Bx p a= ≈h [4], reduction of Ba , say, by a factor of three

( / 3)B Ba a→ leads to 108cT const K= ×  in Eq. (16). For that density 14 31.4 10sn cm−≈ ×  in [4] 

must be increased to 15 31.3 10sn cm−≈ × .This formal example is, however, an illustration that by 
establishing better control of doping one may manipulate the superconducting properties of the 
single-layer FeSe/STO.  

In summary, we point out that with the sample preparations methods accepted in the current 
experimental literature the two-dimensional system of charges at the FeSe/SrTiO3 interface inevitably 
includes both itinerant and immobile electrons. Electrons trapped below the mobility edge are 
responsible for the change of the dielectric constant at the substrate surface. The Cooper pairing 
matrix elements in single-layer FeSe/STO are calculated in the model of band electrons interacting 
with the electric potential of a longitudinal (LO) phonon mode at the SrTiO3 surface. The dielectric 
constant at the surface is the free parameter of the model. HERE 

It is shown that the theoretical results are applicable over the entire range of  typical experimental 
parameters. In particular, screening of the Coulomb interaction can be accounted for in the random 
phase approximation. The estimates for the superconducting transition temperature lead to the 
conclusion that the LO-phonon mediated pairing alone cannot account for superconductivity at the 
temperatures reported, for instance, in [4].  The conclusion, however, may not be the ultimate one, as 
the general theoretical expressions  do not contradict the possibility that with better control of doping 
one can enhance further the superconducting properties of 1uCFeSe/STO.  

ACKNOWLEDGMENTS  
 
The author thanks T. Siegrist and C. Beekman for many helpful discussions and for the clarification of a 
number of significant experimental details and A. Migliori for reading the manuscript carefully and  for 
his comment . I am grateful to H. J. Mard for creating the graphic material. The work is supported by the 
National High Magnetic Field Laboratory through NSF Grant No. DMR-1157490, the State of Florida 
and the U.S. Department of Energy. 
 

Appendix  

The onset of superconductivity at the temperature of transition CT  manifests itself in the occurrence of 
the pole in the scattering amplitude of two electrons with zero total momentum and frequency [23]. In 
the notation ( , | , ) ( | )p p p p p p′ ′ ′Γ − − ≡ Γ the amplitude is the sum of all diagrams in the Cooper 
channel:  

 

2
( ,| ) ( ) ( ) ( ) ( ) ( ,| )

(2 ) n

Tp p M p q dkM p k G k G k k p
π ′′ ′Γ = − − ∑ ∫ − − Γ

r
 .      



The superconducting transition temperature  is determined via the eigenvalue of the following 
homogeneous equations. Substitution ( ,| ) ( )p p pψ′Γ → leads to the integral equation for a function

( )pψ : 

   

2
( ) ( ) ( ) ( )

(2 )m

dkp T M p k k kψ ψ
π

= − ∑ − Π∫
r

.    
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