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The order of the superconducting phase transition is a classical problem. Single-component type-2
superconductors exhibit a continuous “inverted-XY” phase transition, as was first demonstrated for
U(1) lattice London superconductors by a celebrated duality mapping with subsequent backing by
numerical simulations. Here we study this problem in multiband U(1) London superconductors and
find evidence that by contrast the model has a tricritical point. The superconducting phase transition
becomes first-order when the Josephson length is sufficiently large compared to the magnetic field
penetration length. We present evidence that the fluctuation-induced dipolar interaction between
vortex loops makes the phase transition discontinuous. We discuss that this mechanism is also
relevant for the phase transitions in multicomponent gauge theories with higher broken symmetry.

The problem of the order of the superconducting phase
transition beyond mean-field approximation is more than
40 years old. In1 it was observed that if phase fluctua-
tions are neglected in the Ginzburg-Landau model, fluc-
tuations of the vector potential make the superconduct-
ing phase transition first-order (see also2). This scenario
applies only for strongly type-1 superconductors, as was
demonstrated by later works3–5. These works considered
a lattice London model, neglecting fluctuations of the
modulus of the order parameter but taking into account
phase fluctuations. It was demonstrated that the super-
conducting phase transition beyond mean-field approxi-
mation is caused by the proliferation of vortex loops with
short-range interaction set by the magnetic field penetra-
tion length λ. For low temperatures only small vortex
rings are thermally excited, while at Tc the thermally
excited vortex loops loose their line tension and extend
throughout the entire system.

In Refs.3–5 a duality mapping was established between
the statistical problem of the normal state above Tc in
a superconductor and a statistical description of a su-
perfluid state below Tc, such that the temperature axis
is reversed, see also6. Thus the phase transition in the
lattice London superconductor is called the “inverted-3D
XY” transition. The London limit approximation is justi-
fiable for extreme type-2 superconductors. The question
at what parameter values of the Ginzburg-Landau model
the inverted-3D XY phase transition turns into first-order
has subsequently been studied using various approaches.
Some of the attempted analytical approaches7 suggested
that the continuous phase transition extends slightly
into the region where the Ginzburg-Landau parameter
κ is smaller than 1 (or, equivalently, in traditional units

smaller than 1/
√

2). However this approach was based
on uncontrollable assumptions, and thus numerical simu-
lations were required to address that question. Early nu-
merical work were consistent with the existence of a tri-
critical point8, as well as one-loop renormalization-group
calculations9. The largest-scale Monte Carlo simulation
performed so far10 suggests that the continuous phase
transition indeed extends slightly into the region of κ < 1.

All these works suggested that in London model (which
corresponds to taking extremely type-2 limit) the phase
transition is continuous.

Recently there has been a surge of interest to mul-
ticomponent U(1) × U(1) and SU(2) generalizations of
this problem in the context of multicomponent super-
conducting condensates11–13 and of deconfined quantum
criticality proposals where such Ginzburg-Landau models
were argued to arise as an effective field theory14–17. Ini-
tially it was suggested that SU(2) as well as U(1)×U(1)
superconductors with equal phase stiffnesses possess a
continuous phase transition from a state with fully bro-
ken symmetries to a normal state in a novel universal-
ity class14,15,18, but later analysis revealed first-order
phase transitions13,17,19–24 in such systems. The flow-
gram method proposed in21 shows that the phase tran-
sition remains first order in the limit of infinitesimally
small electric charge. First-order phase transitions were
also found in U(1) × Z2 systems, where a Z2 symmetry
associated with broken time-reversal symmetry is caused
by a frustrated intercomponent coupling25.

Most of the superconductors which are of great cur-
rent interest are multiband superconductors26–28. In the
London limit multiband superconductors are described
by several phases coupled by a Josephson interaction28.
Here we consider the problem of the phase transition in
a multi-component London superconductor with conden-
sates ψa = |ψa| exp(iθ(a)) (a = 1, 2, ...), with constant
|ψa|, described by the free-energy density

f =
1

2

∑
a

|ψa|2(∇θ(a) + eA)2 +
1

2
(∇×A)

2

−
∑
a>b

ηab|ψa||ψb| cos(θ(a) − θ(b)), (1)

where e is the electric charge coupling and ηab determines
the strength of the Josephson phase-difference-locking
term between bands a and b. We are interested here in
the case where the Josephson coupling breaks the sym-
metry explicitly to U(1), and to restrict the parameter
space we will consider ηab = η. In29 a duality map-
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ping was discussed for a class of U(1) multi-band mod-
els. Namely, it was discussed that the dual version of
the model is described by proliferation of a single kind of
directed loops. That indicates that if the phase transi-
tion is continuous then it should be in the “inverted-3D
XY” universality class. However it was established re-
cently that intermediate-length-scale interaction in the
directed-loops model can make the phase transition first-
order30. Thus the origin of the phase transition in multi-
band models requires a careful study.

We begin by examining the two-band case, then with-
out loss of generality η can be taken to be non-negative,
such that in the ground state θ(1) − θ(2) = 0. From
the free energy two characteristic length scales can be
identified: the first one is the London magnetic penetra-
tion depth λ and the second one is the Josephson length
ξJ , the latter at which the system restores the ground
state from small deviations in the phase difference. As
previously mentioned, the London model is justified for
strongly type-2 multiband superconductors, where the
coherence lengths associated with the densities are much
smaller than λ and ξJ . The Josephson length ξJ can be
identified by writing θ(1)(x) − θ(2)(x) = δ(x), imposing
the condition δ(0) = δ0, and expanding the Josephson
term. Then the system recovers ground state value of the
phase difference according to the exponential law δ(x) =

δ0 exp (−x/ξJ) with ξJ =
√
|ψ1||ψ2|/(η(|ψ1|2 + |ψ2|2)).

The standard expression for the magnetic field penetra-
tion depth is λ = 1/(e

√
|ψ1|2 + |ψ2|2).

When η = 0, the model has U(1) × U(1) symmetry.
As mentioned above, the phase diagram of such a sys-
tem have been previously studied, in two dimensions11,
three dimensions in an external field12,31,32 and three-
dimensional cases without an external field13,21. In three
dimensions, at a low but non-zero value of the coupling
constant e, the model exhibits a single first-order phase
transition from the U(1)×U(1)-state to the normal state.
For large electric charges there are two phase transi-
tions. The reason for occurrence of the second phase
transition is the following: at a lower critical temper-
ature a proliferation of bound states of vortices with
winding in both phases takes place: i.e. vortices for
which ∆θ(1) ≡

∮
σ
∇θ(1) = 2π, ∆θ(2) ≡

∮
σ
∇θ(2) = 2π

where the integration path σ encloses two cores, such
vortices are denoted by (1,1). The “elementary” vortices
in the individual condensates are bound into these com-
posite objects through the coupling to the vector poten-
tial. In the resulting state the individual phases θ(a) are
disordered but the phase difference is ordered11–13,21,31.
This state is called a metallic superfluid, paired state
or super-counter-fluid. At elevated temperatures the
transition into the normal state is driven by the pro-
liferation of individual (also termed fractional) vortices
∆θ(1) ≡

∮
σ
∇θ(1) = 2π, ∆θ(2) ≡

∮
σ
∇(2) = 0, denoted by

(1, 0) and ∆θ(1) ≡
∮
σ
∇θ(1) = 0, ∆θ(2) ≡

∮
σ
∇θ(2) = 2π,

denoted by (0, 1). For the properties of the individual
and composite vortices in this model see11,33.

It has been pointed out that the existence of the paired

states in multicomponent gauge theories is related to
first-order phase transitions21. Indeed, even at the level
of mean-field analysis the direct U(1) × U(1) or SU(2)
phase transitions are first-order in the vicinity (on the
phase diagram) of the paired state. However mean-field
analysis is qualitatively wrong for this problem in gen-
eral, failing to capture first order phase transition hap-
pening in the e → 0+ limit. By contrast, the model
(1) shares the same symmetry as single-component su-
perconductors, indeed the Josephson coupling is a singu-
lar perturbation that breaks the symmetry explicitly to
U(1).

By discretizing the model (1) onto a cubic grid of size
L, rewriting the gradients with finite differences, the ki-
netic energy terms into XY-model cosines, and inserting
the previously identified length scales, we obtain the lat-
tice Hamiltonian for the two-band case

H =
∑
i

[∑
a

∑
µ

−|ψa|2 cos(θ
(a)
i+µ̂ − θ

(a)
i +Aiµ)

+
1

2
λ2(|ψ1|2 + |ψ2|2)

∑
µ

[∆×A]2iµ+

− 1

ξ2J

|ψ1|2|ψ2|2
|ψ1|2 + |ψ2|2

cos(θ
(1)
i − θ

(2)
i )

]
, (2)

where i is a lattice site index, µ = x, y, z and [∆×A]iµ =
Aiµ′ + Ai+µ̂′,µ′′ − Ai+µ̂′′,µ′ − Aiµ′′ is the discrete lattice
curl, where we have denoted x′ = y, y′ = z and z′ = x.
We simulate the temperature-driven phase transitions of
the Hamiltonian (2) with a parallel tempering Metropolis
Monte Carlo algorithm34–36 and use periodic boundary
conditions. The trial moves consist of selecting a site at
random and proposing new values for all five site degrees
of freedom (two phases and three vector potential com-
ponents). The phases are updated by drawing random
numbers between 0 and 2π, and the components of the
vector potential are updated by adding (either positive
or negative) random numbers to the old values. Parallel
tempering swap trial moves between adjacent tempera-
tures are attempted with a fixed frequency35,37 of once
every sweep. To collect data we perform simulations of
at least 106 sweeps and we perform the simulations with
linearly distributed temperatures.

We begin by determining how a finite Josephson cou-
pling term affects the maximal value of the heat capac-
ity and the corresponding temperature. We consider the
case of twin bands |ψ1|2 = |ψ2|2 = 1 with λ2 = 0.2
and vary η over several orders of magnitude. Fig. 1
shows the maximal value of the calculated heat capacity
as well as the corresponding temperature, taken to be
the critical temperature for two system sizes. Each point
on the curves corresponds to a simulation and the lines
are guides to the eye (note however that the tempera-
ture curves overlap). The simulations have a fixed set
of temperatures each, chosen manually to cover the heat
capacity peak.

As is seen in Fig. 1, the heat capacity peak is larger
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FIG. 1. The maximum of the calculated heat capacity (left
vertical axis, blue) and its corresponding critical temperature
(right vertical axis, red) for L = 24 (circles) and L = 36
(triangles), with Josephson coupling η varying over several
orders of magnitude.

in the region where the Josephson interaction is small.
As the Josephson interaction is increased, the Joseph-
son length becomes smaller as does the magnitude of the
heat capacity peak. In the right-most region where the
Josephson length is smaller than the magnetic penetra-
tion depth, the magnitude of heat capacity peak is not
visibly different for the two system sizes. The critical
temperature raises as the heat capacity peak diminishes
and is not visibly affected by changing the system size.
The behavior of the displayed quantities suggests that
the left-most and right-most points of Fig. 1) represents
two distinct physical regimes.

For the left-most point in Fig. 1 (with η = 0) the
symmetry of the system is U(1) × U(1), which, as pre-
viously mentioned, is known to have a first-order phase
transition19,21,38. This, combined with the observation
that the heat capacity maximum grows substantially
with the system size in the region of finite and small η,
suggests that the phase transition is of first-order also for
finite η in the region with λ < ξJ . In the region of λ > ξJ
however, any growth in the heat capacity maximum with
system size is not visible in Fig. 1, suggesting there is
a tricritical point and a continuous phase transition for
λ > ξJ .

We consider first the scaling properties for η = 10−3

(with ξJ ≈ 23) which is in the λ < ξJ -region of Fig. 1.
The internal energy histogram at the phase transition is
seen in Fig. 2 a) to be bimodal, and the bimodality is
enhanced by increasing the system size. The free-energy
barrier ∆F = (βc)

−1 ln(Pmax/Pmin) (βc is the inverse
critical temperature and P the energy distribution) is
seen in Fig. 2 b) to be proportional to L2 and the la-
tent heat ∆H (i.e. the distance between the peaks) is
seen in c) to not vanish, indicating a first-order phase
transition39,40. By contrast, we observed no bimodal fea-
tures or tendencies for any system with λ > ξJ .

We find that when the Josephson interaction is in-
creased, the system size required for a bimodal energy
distribution to develop also increases. This makes it com-
putationally difficult to reproduce the scaling results of
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FIG. 2. For η = 10−3 the scaling behavior of the energy
histograms (normalized distributions of the internal energy
per site U/L3) at the phase transition is indicative of a first-
order phase transition. The histograms for various lattice
sizes are shown in a), the free-energy barrier ∆F is shown in
b) and the latent heat ∆H in c).

Fig. 2 for systems where the Josephson length is much
smaller than the box length. To further test these phe-
nomena we consider a three- and four-band models with
|ψi|2 = 1 with a Josephson coupling which locks all the
phase differences to zero in the ground state. In such
a system we find that the first-order phase transition
becomes stronger and the measurement of bimodal en-
ergy distributions for ξJ � L is possible. In Fig. 3 is
shown the first-order scaling of the energy histograms for
a three-band model with η = 0.03 such that ξJ ≈ 3.3 up
to L = 44, more that ten Josephson lengths. The results
of Fig. 3 are 106 sweep simulations with λ2 = 0.1. In
Fig. 4 is shown simulation results for a four-band model
with an even stronger Josephson coupling of η = 0.07,
and λ2 = 0.075. The four-band results are 2 · 106 sweep
simulations with sampling during the last 500000 sweeps.
With the growing number of components we find stronger
signatures of the first order phase transitions.

Consider next the scaling properties for the two-band
model at the point η = 100.5 which is in the region of
λ > ξJ in Fig. 1 (with ξJ ≈ 0.40). In Fig. 5 it is seen
that the energy cumulant VL = 1−〈U4〉/(3〈U2〉2) has for
η = 10−3 a minimum that is persistent against scaling,
as it should for a first-order transition41. For η = 100.5

however, the energy cumulant has no distinct minimum,
a behavior which is consistent with a continuous phase
transition where the energy cumulant reaches the triv-
ial limit of 2/3 everywhere in the thermodynamic limit.
Indeed, in the limit of strong interband coupling the sys-
tem should recover the standard 3D inverted-XY phase
transition like in a single-component model4,5.

We interpret the results as suggestive to an emergent
attractive interaction between vortex lines. Indeed it has
been recently demonstrated that in a single-component
directed-loops (j-current) model, a modification of the
vortex interaction potential from short-range repulsive
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FIG. 3. First-order scaling of the energy histograms for the
three-band model also hold when ξJ � L, here ξJ = 3.3 with
scaling up to L = 44.
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FIG. 4. First-order scaling of the energy histograms is more
pronounced for a four-band model.

to short-range non-monotonic asymptotically attractive,
causes a conversion of the inverted-XY transition to a
first-order one30. Indeed the model under considera-
tion here features fluctuation-induced attractive inter-
vortex forces. Indeed, if the Josephson coupling is set
to zero, a fractional vortex has a logarithmically di-
vergent energy while co-directed individual vortices in-
teract logarithmically at large distances. For a two-
dimensional cross-section of a pair of fractional vortices
in the two-component model with |ψ1|2 = |ψ2|2 = |ψ|2
and phase winding in the first condensate, the interaction
energy11,33 is:

Eint(1,0)+(1,0) = π|ψ|2 log
R

r
+ π |ψ|2K0(r/λ). (3)

The interaction between (1, 0)- and (0,−1)-vortices con-
tains an attractive logarithmic part and a repulsive ex-
ponentially screened part:

Eint(1,0)+(0,1) = −π|ψ|2 log
R

r
+ π|ψ|2K0(r/λ). (4)
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FIG. 5. Scaling behavior of the heat capacity (left column)
and energy cumulant (right) for η = 10−3 (with λ < ξJ , blue
lines) and η = 100.5 (with λ > ξJ , red lines), indicates a first-
order and a continuous phase transition respectively. Shaded
regions around curves correspond to estimated errors.

In the absence of fluctuations, a composite vortex line
is an axially symmetric object with finite energy per unit
length. The attractive and repulsive forces cancel in the
small separation limit11,33, however at separations larger
than λ a pair of co-directed fractional vortices can be
mapped onto an electric dipole. Due to the long-range
nature of the dipolar interaction, the thermal splitting
of composite vortices into fractional vortices will lead
to long-range attractive, short-range repulsive interac-
tion. When a non-zero Josephson coupling is included,
the interaction between fractional vortices is changed to
linearly attractive at distances larger than ξJ

33. Then
the splitting fluctuations of fractional vortices are largely
confined within the range ξJ . The Josephson coupling
also changes the dipolar interactions: the phase differ-
ence mode becomes massive and dipolar forces become
short-range with the range again set by ξJ .

The results of our simulations suggest the scenario of
a first-order phase transition originating in an attractive
vortex interaction, i.e. in that case the superconducting
phase transition beyond mean-field approximation is as-
sociated with proliferation of directed loops with induced
dipolar attractive forces. These forces should tend to in-
duce formation of polarized vortex clusters and phase
separation. In the three-component case elementary vor-
tices can be mapped onto Coulomb charges of different
“colors”29. In that case the dipolar forces are stronger
and we observe a more pronounced first-order phase tran-
sition. On the other hand we found no signatures of
a first-order transition where the Josephson length is
smaller than the magnetic field penetration length and
the model can be approximated by single-species repul-
sively interacting directed loops. Note that a similar
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fluctuation-induced dipolar interaction between topolog-
ical defects exists in gauge theories which break higher
symmetry as well (U(1) × U(1) or SU(2)), where first-
order phase transitions were also reported13,17,19–22,24.
Indeed for the U(1) × U(1) models the composite vor-
tices are the lowest-energy topological excitations for any
non-zero value of electric charge. Also in the SU(2)
case one has composite vortices and Hopfions42,43 which
should have attractive interaction. If electric charge is
decreased, the length scale at which the dipolar interac-
tion sets in is increased, so in this scenario it requires
a larger system to detect first order phase transition at
low electric charge. Yet, the composite vortices are the
lowest energy topological defects at any non-zero value
of electric charge and cannot be a priori neglected. The
energy of topological defects is indeed different in models
that have global symmetry, such as U(1) × U(1) which
can have composite vortices due to dissipationless drag
interaction. There, in contrast to the gauge theories, de-
spite the existence of a paired phase44,45, there is indeed
a tricritical point and a continuous phase transition at
low inter component coupling21,38,46.

In conclusion, we have reported that in the Lon-
don limit U(1) multiband superconductors can have a
fluctuation-induced first-order phase transition in zero
external field, in contrast to the inverted-XY phase tran-
sitions in single-band U(1) London models3–5. We argued
that the mechanism responsible for driving the phase
transition to first-order is fluctuation-induced dipolar in-
teractions between composite vortices. The mechanism
should also apply for other multicomponent gauge theo-
ries.

Appendix A: Details of the numerical discretization

The system is discretized onto a square three-
dimensional lattice L×L×L with isotropic grid spacing

h and periodic boundary conditions imposed in all direc-

tions. Every site i has the phases θ
(1)
i , θ

(2)
i and the three

components Aix, Aiy and Aiz of the vector (A)i. The
phase gradients are discretized by the finite difference ap-

proximation [∇θ(a)]iµ = (θ
(a)
i+µ̂ − θ

(a)
i )/h with µ = x, y, z,

so that the kinetic energy density on site i can be written∑
µ(θ

(a)
i+µ̂ − θ

(a)
i + hAiµ)2/h2. The magnetic field energy

density term on site i is calculated from the definition of
a curl as an infinitesimal circulation. Using the notation
x′ = y, y′ = z and z′ = x, we can write the circula-
tion around the plaquette P with corner in i, with area
h and normal µ̂ as ((∇ × A) · µ̂)i ≈ (h−2

∮
P
A · dr)i =

h−2(hAiµ′ + hAi+µ̂′,µ′′ − hAi+µ̂′′,µ′ − hAiµ′′). Denoting
Aiµ′ +Ai+µ̂′,µ′′ −Ai+µ̂′′,µ′ −Aiµ′′ = [∆×A]iµ we obtain
λ2
(
(∇×A)2

)
i

= λ2
∑
µ((∇×A) · µ̂)2i = (λ/h)2

∑
µ[∆×

hA]2iµ/h
2. We may furthermore rewrite the Josephson

term as ξ−2J cos(θ(1)− θ(2)) = (h/ξJ)2 cos(θ(1)− θ(2))/h2.

Since all terms in the Hamiltonian contains the factor
1/h2, both length scales appear in the units of h, and
we can absorb h into A, we may set h = 1 without loss
of generality. After rewriting the kinetic energy terms
into cosine XY -terms (cos(x) ≈ 1− x2/2) we obtain the
Hamiltonian (2).
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