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Abstract

We study resonant translational, breathing and twisting modes of transverse magnetic domain

walls pinned at notches in ferromagnetic nanostrips. We demonstrate that a mode’s sensitivity to

notches depends strongly on the mode’s characteristics. For example, the frequencies of modes that

involve lateral motion of the wall are the most sensitive to changes in the notch intrusion depth,

especially at the narrow, more strongly confined end of the domain wall. In contrast, the breathing

mode, whose dynamics are concentrated away from the notches is relatively insensitive to changes

in the notches’ sizes. We also demonstrate a sharp drop in the translational mode’s frequency

towards zero when approaching depinning which is confirmed, using a harmonic oscillator model,

to be consistent with a reduction in the local slope of the notch-induced confining potential at its

edge.

PACS numbers: 75.60.Ch, 75.78.Fg, 76.50.+g
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I. INTRODUCTION

Domain walls (DWs) are (typically nano-scale) transition regions which separate oppo-

sitely oriented magnetic domains in ferromagnetic materials. Many promising future appli-

cations of DWs rely on the current-driven displacement or resonant excitation of DWs in

ferromagnetic nanostrips, the latter representing a type of DW conduit. The range of DW

applications is broad and includes spintronic memristors which use DW displacements to

control device resistances1,2, next generation logic3 and data storage4 devices (the latter often

relying on DW-based shift registers5) and even devices for the capture and transport of mag-

netic microbeads with envisioned use in biotechnology6,7. Resonant DW excitations8 refer

to resonant precessional magnetization dynamics localized at a DW8–21. These excitations

have been shown to have the potential to be exploited in numerous areas of device-focused

research, including the design of radiofrequency electronic oscillators22, enabling control

over spin wave propagation in magnonic devices23,24 and assisting with DW motion25–29 and

DW depinning11,12,30–32, the latter via resonant excitation of a DW within a pinning (or

‘trapping’) potential.

The ability to exploit resonant phenomena in applications will however rely on successful

control of the resonant modes of DWs. It is known that large geometrical constrictions

such as notches (also widely used for positional control5,33–36) in micron-scale strips can

be used to tune the frequency of a DW’s translational mode22. For smaller37 device ge-

ometries however, uniform fabrication of small notches may become challenging since the

notches’ dimensions will likely become comparable to those characteristic of edge roughness

or lithographic defects.

In this work we show how different DW resonances have different sensitivities to notches

and that these sensitivities can be linked to the nature of the mode and the structure of

the DW. For example, modes which involve either local or global translation of the wall

can be highly sensitive to the presence, size and position of the notch. Our work focuses

in particular on the resonant properties of pinned head-to-head transverse domain walls

[TDWs, Fig. 1(a)] which arise in thin, narrow, in-plane magnetized strips38. Here, the

TDWs are pinned at triangular notches located on the edges of the strip. We use a numerical

eigenmode method to study three TDW resonances, corresponding to translational10,11,22,39,

twisting16,40 and breathing10,41–45 excitations of the TDW. The latter mode has recently
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been studied for oscillator applications46 and we demonstrate that this mode has the lowest

sensitivity to changes in notch depths, making it an appealing choice when fabricating devices

with robust resonant frequencies. The eigenmode method we use also enables the study of

the translational mode in the vicinity of the static depinning field where we find a sharp

drop off in this mode’s frequency. This dramatic change in frequency can be linked directly

to the position-dependence of the slope of the notch-induced confining potential which, as

done in experiment13,47, we probe by field-induced displacements of the TDW within the

potential.

II. MICROMAGNETIC SIMULATION METHOD

Many numerical studies of resonant modes in confined geometries use time domain (‘ring-

down’) methods in which Fourier analysis of precessional magnetization dynamics is em-

ployed to extract resonant mode frequencies and spatial profiles. These methods require

the system to be subjected to an external excitation16,40,48–50, often a pulsed magnetic

field. In contrast, eigenmode methods51,52 enable a direct calculation of resonant magnetic

modes from a system’s equilibrium magnetic configuration, m0(r) (as do dynamical matrix

methods53). This enables the observation of the full mode spectrum without requiring care-

ful choice of the ringdown excitation’s symmetry. It also enables us to study DW modes

at fields which are in the close neighborhood of the static depinning field where excited

translational resonances could otherwise resonantly depin11,12,30–32 the wall.

Our simulations were run on a Permalloy strip having saturation magnetizationMS = 860

kA/m and exchange stiffness Aex = 13 pJ/m. The strip has tapered ends and two central

notches for TDW pinning [Fig. 1(a)]. Unless otherwise noted, the notches are located at

x = 0, the strip thickness is 5 nm and the total length is 750 nm. Simulations were run

using the finite element micromagnetic package, Finmag, which is the successor to Nmag54

and is based on a similar design.

Magnetic eigenmodes are determined from m0(r) with Finmag using a method similar

to that described by d’Aquino et. al.51 It is valid for small time-dependent oscillations,

dm(r, t), around m0(r) and has been used recently to model ferromagnetic resonances in

magnonic crystals55. The basic principle is to linearize the (undamped) LLG equation around

the equilibrium state m0(r), resulting in a linear system of ordinary differential equations
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(ODEs) for the oscillations dm(r, t) which has has the form ∂
∂t
dm(r, t) = A · dm(r, t) with

a matrix A ∈ R3N×3N , where N is the number of nodes in the finite element mesh56. This

system of ODEs has a full set of solutions of the form dm(r, t) = ei2πftv(r). Each solution

vector v ∈ C3N represents an eigenmode of the nanostrip corresponding to the frequency f ;

its complex coefficients encode the local amplitudes and relative phases of the eigenmode

at the mesh nodes. In theory, the eigenfrequencies f are purely real. However, due to the

formulation of the problem as a non-Hermitian eigenvalue problem the eigensolver returns

complex solutions with a small imaginary component due to numerical inaccuracies. We

quote the real parts of f . Eigenmodes localized at the TDW can be identified by visual

inspection of the spatially resolved eigenvectors. Either the dynamic component, dm(r, t),

may be inspected alone or it can be scaled and added to m0(r), enabling a visualization of

the actual TDW dynamics for each mode (e.g. see mode animations57).

To find m0(r), the system was initialized with a trial head-to-head TDW configuration

centered on x = 0 and allowed to relax with damping parameter α = 1, typically until

dm/dt < 1◦/ns at all points in the strip. For a strip width of 75 nm and a thickness of 5 nm,

using the stricter criterion dm/dt < 0.1◦/ns resulted in changes in the mode frequencies of

1.1 Mhz or less (≤ 0.04%). The relaxed configuration was a pinned TDW for all studied

geometries38. Note that the TDW [Fig. 1(a)] is wider at the +y side of the strip which will

be important for determining TDW-notch interactions.

We used a non-uniform finite element meshing with a characteristic internode length of

lmesh = 3 nm at x = 0 (less than the NiFe exchange length58 of 5.7 nm). There was a smooth

transition to lmesh = 8 nm at the ends of the strip. This reduces computational time and

memory use. However, a post-relaxation mesh coarsening55 could potentially be applied to

future studies. We note that except for those simulations in which magnetic fields close to

the DW depinning field are applied, the error in the mode frequency associated with the

non-uniform meshing was less than 1%. However, as a result of the non-uniform mesh, we

present results only on those modes which are localized on the TDW near the center of the

strip since modes associated with the domains themselves will be in regions with lmesh close

to or larger than the exchange length. This said, such modes (typically multiple GHz) can

also be excited in experiment together with the DW modes21.
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III. TDW MODES

The three lowest frequency TDWmodes correspond to translational, breathing or twisting

deformations. In Figs. 1(b-d) these three calculated modes are shown (as a snapshot of the

mode’s dynamic component, dm(r, t) at a time such that dm(r, t) is large) for a 75 nm

strip with symmetric, triangular notches, each with width, wnotch = 20 nm and a depth of

intrusion into the strip, dnotch = 10 nm. The translational mode (2.70 GHz) corresponds to

an oscillatory, side-to-side motion of the TDW away from the notches [Fig. 1(b)]. For the

breathing mode10,40–45 [6.57 GHz, Fig. 1(c)], dynamics are concentrated at the edges of the

domain wall with the excitations mirrored around x = 0. The dynamics of this mode result

in an oscillatory change in the TDW’s width as a function of time. For this strip width,

the highest frequency mode is the 7.03 GHz twisting mode [Fig. 1(d)]. This mode involves

the TDW’s two ends (near the top/bottom of the strip) moving laterally but in opposite

directions. Idealizing the TDW as a string crossing the nanostrip, this mode has similarities

to a standing wave with a zero-displacement node (dm ≈ 0) near y = 0. As shown below,

and in contrast to what is observed for the translational mode, a finite frequency for the

breathing and twisting modes is non-reliant on confinement (i.e. they are intrinsic f > 0

TDW excitations). Indeed, Wang et al.40 have observed what appear to be similar breathing

and twisting modes for unpinned TDWs.

We now confirm that the frequencies of the translational and breathing modes obtained

using the eigenmode method have good consistency with those obtained via a time domain

ringdown method. To do this, we applied external excitation fields to the system which

had the correct symmetry to couple to each of these two modes (we note however that we

were not able to efficiently excite the twisting mode either with uniform or non-uniform

excitations59). For the translational mode, we applied an excitation field in the x direction:

x-fields will displace the wall and thus can be used to couple to the translational mode.

For the breathing mode, we applied a field in the y direction which acts to increase the

TDW width, thus coupling to the breathing mode’s width oscillation. Fourier analysis of

the resultant ringdown dynamics (mx(t) for ftrans and my(t) for fbreathe) at a strip width of

80 nm demonstrated successful field-induced excitation of the translational and breathing

modes at ftrans = 2.6 ± 0.1 GHz and fbreathe = 6.4 ± 0.1 GHz. These frequencies are in

good agreement with the eigenmode results of ftrans = 2.61 GHz and fbreathe = 6.38 GHz
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for w = 80 nm [as per Fig. 5 which will be discussed later with regards to strip-width

dependence of the mode frequencies].

Although this work does not attempt to address spin torque driven auto-oscillations

associated with the TDW modes, radiofrequency magnetic fields (or effective fields associ-

ated with spin torques) having symmetries as discussed above can be used experimentally

to drive the breathing and translational modes. This could be achieved using x or y ori-

ented (real or effective) magnetic fields generated by striplines18 (x or y), Oersted fields

due to in-plane current injection60 (y) or tailorable61 Slonczewski or field-like spin torques

(x or y) under perpendicular current injection in magnetic tunnel junctions (MTJs)21,62–64

and all-metallic magnetoresistive stacks65. Indeed, Lequeux et al21 recently observed the

translational mode under microwave frequency current injection in a MTJ. Numerous other

studies have also demonstrated the excitation of the translational mode using spin torques

due to in-plane current injection8,11,22 and new possibilities exist with regards to the use of

spin-orbit torques66–68.

A. Notch dependence

We now examine the dependence of the modes on the size of the notches used to pin

the TDW. The translational and twisting modes both involve some movement of the TDW

away from the energetically favorable x = 0 position. This can either be a global side-to-side

movement of the TDW (as for the translational mode) or a local side-to-side movement (as

for the twisting mode where out of phase lateral TDW movements arise at opposite edges of

the strip). Lateral movement has strong implications for notch sensitivity: both the twisting

and translational modes have a strong dependence on the notch size. In contrast, dynamics

of the breathing mode are concentrated at the lateral edges of the TDW structure (and thus

away from the central notches) which results in a much weaker sensitivity to the notch and

changes to it.

To demonstrate the different sensitivities of each mode to notch size, we have plotted

each TDW eigenfrequency in Figs. 2(a,b) as a function of the notches’ intrusion depths

for a 75 nm wide strip with a 20 nm (= wnotch) wide notch. Here, both notches have the

same geometry on the two sides of the strip. One will notice immediately that the twisting

and translational modes (i.e. those with a translational nature) are highly dependent on
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dnotch. The translational mode’s frequency, ftrans, decreases smoothly with dnotch, going to

zero at dnotch = 0 [Fig. 2(a)]. This latter result is consistent with the wall being free to

translate laterally at ftrans = 0 in the absence of pinning (i.e. dnotch = 0 corresponds to

a smooth-edged strip with no notches). The twisting mode frequency, ftwist, also depends

quite strongly on dnotch, reducing by ∼40% (∼ 2 GHz) when changing dnotch from 20 nm to

0 nm [Fig. 2(b)]. In contrast, the breathing mode frequency, fbreathe, changes by only 1.5%

over the same range of dnotch values [Fig. 2(b)]. Note also in Fig. 2(b) that fbreathe and ftwist

remain finite at dnotch = 0, consistent with these modes being intrinsic TDW excitations

for which the observation of a finite eigenfrequency is non-reliant on notch-induced, lateral

TDW confinement.

Despite both notches being geometrically identical, one can see from the mode snapshots

in Figs. 1(b,d) that both the twisting and translational modes’ dynamics are largest at

the wide end of the TDW. This suggests that this end of the TDW has a weaker lateral

confinement than the narrow end of the TDW. This is confirmed in Fig. 3 which shows a

TDW being pushed away from the notches under the action of a magnetic field, H , applied

along the x axis (H < Hdepin, the static depinning field). It is indeed the less strongly pinned

wide end of the TDW which is displaced furthest from the notch. To see what effect notches

at each end of the wall have on the modes, we show in Figs. 2(c,d) results obtained while

varying dnotch on only one side of the strip (either at the wide end or at the narrow end of the

TDW) while keeping the other notch’s intrusion depth fixed at 10 nm. We indeed find that

ftrans is most sensitive to changes of dnotch at the narrow end of the wall, that notch being

dominant in determining ftrans (and in generating pinning). For example, reducing dnotch

from 10 nm to 2 nm at the narrow end of the wall [filled circles in Fig. 2(c)] generates a very

strong, 40% reduction in ftrans. This reduction in ftrans is accompanied by a transition to a

more pure translation of the TDW structure in its entirety rather than an excitation in which

the highest amplitude dynamics occur at the wide end of the TDW [as in Fig. 1(a)]. This

occurs since both ends of the wall now experience a relatively weak pinning. If we change

dnotch only at the wide end of the wall however, we observe much weaker changes in ftrans

[crossed open circles in Fig. 2(c)] with similar trends seen for ftwist. The dnotch-dependence

of fbreathe again remains very weak.

To test the limits of the dnotch-insensitivity of fbreathe, simulations were run with the notch

at the wide end of the wall displaced away from x = 0 for the 75 nm wide strip. This did
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lead to small changes in fbreathe (dnotch = 10 nm, wnotch = 20 nm) with some distortion of the

breathing mode observed when the notch was right at the edge of the TDW. However the

maximum frequency change still remained within 3% of the value observed for two laterally

centered notches. We also looked at the percentage variation of fbreathe for two other strip

widths for centrally located notches (60 nm and 100 nm wide strips again having a 5 nm

thickness). We found the lowest sensitivity occurred for larger strip widths where the notch

intrudes comparatively less far into the strip and thus presumably generates the weakest

change to the energy landscape that is experienced by the TDW (confirmed in Sec. IIIC for

the translational mode). Reducing the thickness of the layer also led to a further reduced

sensitivity. This can be seen in Fig. 4(b) where we again plot resonance data for 60 nm

and 75 nm wide strips but this time with a reduced (2.5 nm) strip thickness. An important

point to note from Fig. 4 is that the breathing mode remains highly insensitive to changes

in the dnotch of small notches for all studied strip widths. Indeed, we see the largest changes

in fbreathe when dnotch becomes larger than about 12 nm suggesting that small defects should

have only a very minor effect on the breathing mode. In contrast, the other two modes

exhibit the highest sensitivity to changes in the notch intrusion depth when that depth is

already small (Fig. 2).

We briefly note that changes in the width of the notch (for a fixed notch depth of 10

nm) yielded only weak changes for fbreathe and ftwist. Over a range of notch widths from

5 nm to 50 nm we observed ∆ftwist ≤ 3 % and ∆fbreathe ≤ 2 %. The change in ftrans was

also quite small when reducing the notch width below 20 nm (∆ftrans ≤ 6 %). However,

broadening the notch to 50 nm led to a strong reduction in ftrans of > 60 %, presumably

due to a strongly reduced confinement by the broader notches (the effect of confinement on

ftrans is discussed further below).

B. Strip width dependence

When holding the notch geometry constant (wnotch = 20 nm and dnotch = 10 nm), an

increasing the strip width generates an reduction in each of the TDW mode frequencies

[Fig. 5(a)]. The breathing and twisting modes remain highest in frequency and their similar

frequencies, coupled with slightly different width dependencies, results in a mode crossing

which occurs at w = wc ≈ 88.4 nm for this 5 nm thick strip [Figs. 5(b)]. At w ≈ wc,

8



a translational mode as well as two other distinct TDW modes are found with the latter

appearing as ‘hybrid’ twisting-breathing modes [e.g. Fig. 5(c)]. However, their hybrid nature

is due to the arbitrary basis chosen by the eigensolver: each hybrid mode can in fact be shown

to be a linear combination of the ‘pure’ orthogonal twisting and breathing eigenmodes (see

Appendix A). Indeed, we expect no coupling between different modes due to the exclusion of

damping and non-linear terms in our approach51. The hybrid nature of the modes remains

clearly identifiable via visual inspection for |w − wc| <
∼ 1.5 nm. However, as |w − wc|

increases, the computed modes become more ‘pure’ (i.e. a dominant breathing or twisting

characteristic). In Fig. 5(b), all modes at w 6= 88.4 nm are labeled either as twisting or

breathing with the label corresponding to the mode which is dominant. Analogous hybrid

modes were also calculated for a similar geometry using the mode solver in the SpinFlow3D

simulation package. Some details on this solver have been given previously52.

C. Width dependent confinement and its effect on the translational mode

We now turn specifically to the width dependence of the translational mode which will be

shown to be linked to the width-dependence of the notch-induced confinement of the TDW.

Note that some qualitative models for the higher frequency breathing and twisting mode

frequencies as a function of strip width are given in Appendix B.

The frequency of the translational mode of the pinned TDW, ftrans, as a function of

H < Hdepin is shown for a number of strip widths in Fig. 6 (again we use wnotch = 20 nm

and dnotch = 10 nm). Note that for fields above the depinning field (i.e. H > Hdepin), the

system’s relaxed configuration is that of a quasi-uniformly magnetized strip with the TDW

having been displaced towards the end of the strip and annihilated during the simulation’s

relaxation stage (i.e. the moment where we first determine m0(r)). As such, there is no TDW

mode data above Hdepin (since no TDW is present). For all strip widths, ftrans shows a weak

negative monotonic dependence on H for small H/Hdepin. However, ftrans drops sharply to

zero (i.e. again going toward the case of a free TDW) as H → Hdepin. DW resonant frequency

reductions near depinning have been previously observed experimentally13,47. Note that

for H ≈ Hdepin, ftrans exhibits a stronger sensitivity to the relaxation parameters of the

simulation, requiring the use of a smaller dm/dt near Hdepin. ftrans as well as the determined

value of Hdepin itself is also more sensitive to the non-uniform meshing than the undeformed
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TDW at H = 0. For example, a slightly higher Hdepin (< 1% relative change) was found

when using lmesh = 3 nm throughout the structure at w = 60 nm revealing some influence

on the f versus H plot from the non-uniform meshing. This influence is highest for the

strongly deformed walls near Hdepin where ftrans varies quickly with H .

As Hdepin is approached, ftwist also drops in frequency [Fig. 6(b)] which may, in part, be

due to the wide part of the TDW being away from the upper notch (as per Fig. 3). This

shifts the wall-concentrated dynamics at the upper edge of the strip away from the notch

[Fig. 6(c)]. We have already seen that strongly reducing the size of the upper notch for an

undisplaced wall reduces ftwist [Fig. 2(d)] and the case of the displaced wall is somewhat

analogous as the upper part of the wall is now far from the notch (i.e. we effectively have

dnotch → 0 at the location of the upper end of the TDW). Unlike ftrans, ftwist remains finite

near depinning, analogous to the finite ftwist observed for dnotch = 0 in Fig. 2(b). The

breathing mode again shows a very weak change in its frequency even near depinning where

the spatial profile of the mode is strongly deformed [Fig. 6(d)] with respect to the case of a

non-displaced wall [Fig. 1(c)]. Once again this highlights the robustness of fbreathe (to notch

geometry and now in-plane-field-induced deformation).

In Fig. 6 an increased ftrans can be observed at small strip widths (a trend which has

already been seen in Fig. 5(a)) and this is accompanied by an increasedHdepin. To understand

this, we will take the previously used approach of modeling a parabolic, notch-induced

TDW confining potential12,22,31,69,70. This results in a spring like behavior of the DW with a

restoring force of−kNx where kN is the pinned TDW’s spring constant and x its displacement

from the center of the strip. The equilibrium position of the TDW at a given H is determined

by a balance between this restoring force and the effective force due to the applied magnetic

field31,70. This force can be estimated from the x-derivative of the change in Zeeman energy

for the displaced TDW: 2µ0wtMSH where t = 5 nm is the strip thickness and µ0 = 4π×10−7

H/m. Note that we neglect the locally altered strip width at the notch.

To extract kN , in Fig. 7(a) we plot the equilibrium position for the domain wall versus

H for the data shown in Fig. 6. The position of the field-deformed TDW (see, e.g., Fig. 3),

x, was determined from the spatially averaged x-component of the magnetization along the

strip31,70. For low field, there is good linearity between x and H , indicative of a close-to-

parabolic pinning potential. At larger fields however, there is a faster than linear growth in

the xTDW, the effect of which will be discussed further below. From the data in the linear
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region (which has slope dx/dH = glinear), we can estimate a value for kN :

kN = (2µ0wtMS)(x/H)−1 = (2µ0wtMS)g
−1
linear (1)

which, plotted in Fig. 7(b) versus the strip width, reduces with increasing strip width. At

small widths, this results in a stiffer domain wall (there, the notch, which has a fixed size

here, makes a larger relative intrusion into the strip).

We can now use the values of kN to estimate ftrans at H = 0 and compare to the data in

Fig. 531,70:

ftrans =
1

2π

√

kN
mw

. (2)

Here, mw is the mass (e.g.8,39,71) of the TDW. Note that an increased resonant frequency is

observed for smaller widths [Fig. 6] where kN is higher [Fig. 7(b)]. Thus we can immediately

see that our results are qualitatively consistent with the trend suggested by Eq. (2), at least

under the assumption of a w-independent mass. To obtain numerical values for ftrans how-

ever, we must estimate the mass for which we use the damping-free (α = 0) expression31,70

(a similar expression is given by Krüger72):

mw =
2µ0wt

γ2(Nz −Ny)∆
. (3)

γ = 2.210713 × 105 m/A.s and ∆ = ∆T is the Thiele DW width73 [field dependent, as

per Fig. 7(c)] which is defined by 2/∆T = 1/(wt)
∫

V
(dm/dx)2 where V is the nanostrip

volume. Ny and Nz are the demagnetizing factors for the TDW in the y and z directions.

To calculate these factors, we used expressions given by Aharoni74, treating the TDW as a

uniformly magnetized slab with a length in the y direction equal to the strip width, a height

in the z direction equal to the strip thickness and a width in the x direction of ρ∆T (H = 0).

ρ, a scaling factor, is the only free parameter since the strip width and strip thickness are

fixed. It sets the width of the rectangular prism used for the demagnetizing field calculation

as a fraction of the Thiele width.

As can be seen in Fig. 7(d), good agreement between the eigenmode simulation at H = 0

and the spring model [Eq. (2)] is found for the four studied thicknesses when using ρ = 1
3
.

This means that the slab used for the demagnetizing factor calculation is ∼ 10 nm wide in

the x direction, essentially covering a central narrow slice of the TDW structure where the
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magnetization is quasi-uniformly magnetized in the y-direction [Fig. 8(a)] and thus close to

our original model of a uniformly magnetized slab. Note that the magnetization undergoes

an almost complete rotation from being aligned along +x to −x over a much larger distance

∼ π∆T [Fig. 8(a)]. It is however the central region of the TDW which appears to be the

relevant part in this approach.

The effective width of the pinning potential, Lpin, defined here as the maximum dis-

placement of the TDW measured before depinning [Fig. 7(a)], increases with ∆T [read from

Fig. 8(b)] and thus with strip width. However, the depinning field (the field at which the

wall can escape from the pinning potential) is smallest in these wide strips [Fig. 6(a)]. Thus,

although the pinning potential has a larger effective width when the strip width is high [in-

creasing by a factor of ∼1.4, Fig. 7(c)], it appears to be the wide strips’ reduced kN [which

changes more strongly with width, reducing by a factor of ∼2, Fig. 7(b)] which is dominant

in determining the wide strips’ reduced depinning fields (and reduced ftrans).

Finally, we address the faster than linear growth in the TDW position versus H [Fig. 7(a)]

which is a result of the pinning potential having a reduced steepness near its edge47. We can

show that Eq. (2) remains valid in describing ftrans at x 6= 0 (i.e. even in the non-parabolic13,47

part of the potential) if we replace kN by a local effective spring constant

kN,eff(x(H)) =
2µ0wtMS

dx/dH
. (4)

In Fig. 9
√

(dxTDW/dH)−1 (∝ ftrans as per Eq. (2)) has been plotted versus the simulated

values of ftrans for all studied strips. We have neglected any field-induced change in the TDW

mass (mw = mw(H = 0)) and have used a numerical derivative of the data in Fig. 7(a) to

determine dxTDW/dH . We find a high degree of linearity over the full field range for all strip

widths. This confirms the continued validity of Eq. (2) and demonstrates that the sharp

drop-off in ftrans near Hdepin (Fig. 6) can be linked with a change in the local gradient of the

pinning potential at its edge, the latter determining the resonant frequency of the displaced

TDW in the small oscillation limit. Note that from Eq. (2), we expect that the slope of the

data in Fig. 9 will be 2π
√

mw(H = 0)/2µ0wtMs. We have plotted the ratio of the predicted

slope to the fitted slope in the inset of Fig. 9(d) where we indeed find consistency to within

2.5%.
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IV. CONCLUSION

We have numerically calculated eigenmodes of transverse domain walls (TDWs) which are

pinned at triangular notches in in-plane magnetized nanostrips. This enabled the study of

translational, twisting and breathing resonances of TDWs and the effect that notch geometry

and field-induced TDW displacements have on these modes.

The twisting and translational modes both involve either local or global lateral translation

of the wall structure within the notch-induced pinning potential. This leads to a clear

sensitivity to changes in the intrusion depth of the notches especially to that of the notch at

the narrow end of the TDW structure which has a dominant role in laterally confining the

TDW. The breathing mode, which is characterized by dynamics concentrated at the lateral

edges of the TDW (and thus away from the notches), was relatively insensitive to changes

in the notch intrusion depth and width. For example, when varying the notch intrusion

depth from 0 to 20 nm, the largest change in the mode’s frequency was 3% (observed for

the narrowest studied strip width of 60 nm). Based on our results, this sensitivity may be

able to be further reduced by using a thinner or wider strip.

These results may be relevant when choosing which TDW mode to exploit in DW os-

cillators or when aiming to individually or simultaneously excite (multiple) DWs pinned at

different positions within a strip (e.g. in shift registers5,46,75). This is because certain modes

(i.e. those with a translational nature) will be more sensitive to non-uniformity of notch

geometries and/or to the presence of small uncontrolled defects. Our results suggest that

the breathing mode frequency will be the most robust to the introduction of small unwanted

defects or non-uniformity in fabricated notch geometries, especially at larger strip widths or

smaller notch depths. In contrast, having a translational or twisting mode frequency which

is robust to small changes in the notch geometry appears to be reliant on having relatively

large notches.

For a fixed notch geometry, the frequencies of all modes increased with decreasing strip

width, making this an important device parameter to control. In the particular case of the

translational mode’s frequency, its width dependence could be reproduced with a spring

model for notch-induced TDW confinement. Furthermore, the eigenmode method (which

does not rely on the forced driving of the TDW’s resonant dynamics) allowed us to determine

the translational mode frequencies over a wide range of fields, including in the vicinity of

13



the static depinning field where the translational mode frequency dropped sharply towards

zero as the TDW was displaced to the edge of the confining potential. At low applied mag-

netic fields (and thus low TDW displacements), the notch-induced confining potential was

parabolic, enabling us to analytically reproduce the simulated translational mode frequency

at zero field. At large fields (which generated larger displacements of the TDW within the

confining potential), the growth of the pinning potential’s energy with displacement was

sub-parabolic (as seen previously for a vortex DW47). Here the spring model could still

be used to reproduce the translational mode frequencies as long as the local slope of the

pinning potential was used to calculate the spring constant. These calculations required a

DWmass determination with a good match between quasi-analytics and simulation achieved

when using only the very narrow central part of the TDW for the calculation of the TDW’s

demagnetizing factors (critical for the determination of the TDW mass).

Finally, we note that ftrans is finite only in the presence of confinement. In contrast,

fbreathe and ftwist remain large and finite even without a notch or close to the depinning

field, demonstrating an intrinsic f > 0 characteristic, albeit with some (mode-dependent)

sensitivity to the notches’ presence.
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Appendix A: Extraction of pure modes from hybrid modes

To demonstrate that each ‘hybrid’ mode [Fig. 5(c)] is a linear combination of the ‘pure’

orthogonal twisting and breathing eigenmodes, we let v1,v2 be the hybrid mode eigenvectors

14



as returned by the solver (their complex entries encode the amplitude and relative phase of

the magnetization oscillations at each mesh node). To show that these can be reduced to

the ‘pure’ modes we need to find complex scalars a1, a2 such that the linear combination

v = a1v1 + a2v2 represents a breathing or twisting mode. The breathing mode is charac-

terized by being fully symmetric about the y-axis, i.e. the oscillations in the left and right

half of the nanostrip are out of phase by 180◦: v(x, y, z) = −v(−x, y, z). The expression
∫

|v(x, y, z) + v(−x, y, z)| thus measures the deviation from symmetry for an eigenmode v

and we can find the ‘most symmetric’ linear combination by minimizing this with respect to

a1, a2. Since each eigenvector is only determined up to a scalar, we can assume that a1 = 1

(or a2 = 1), reducing the dimensionality of the optimization problem. The obtained linear

combination is confirmed to be an eigenvector corresponding to a breathing mode. Similarly,

the twisting mode can be recovered by using the condition vtwist(x, y, z) = vtwist(−x, y, z).

Appendix B: Modeling the twisting and breathing modes

We detail here two simple qualitative models for the fbreathe andftwist strip width depen-

dencies seen in Fig. 5(a).

The general trend of decreasing ftwist with w for fixed notch geometry is qualitatively

consistent with a string-like mode that is confined across the strip having a single node in

the strip’s center (i.e. with wavelength ∼ 2w and thus a frequency ∝ 1
w
). We plot ftwist versus

1
w
in Fig. 10(a) with reasonable linearity at larger widths.

Liu and Grütter have constructed a model for DW width resonances in magnetic films42

which predicts that fbreathe will be proportional to
√

Keff where Keff is the effective

anisotropy energy associated with the domain wall. For our static TDW (here in a con-

fined geometry rather than a continuous layer), Keff comes from the TDW’s demagnetizing

energy and can be written as 1
2
µ0M

2
SNy (e.g.

76), giving fbreathe ∝
√

Ny. Indeed, this relation

reproduces the observed fbreathe trend relatively well over the entire strip width range, as

calculated for a number of strip width values in Fig. 10. To determine Ny, we used the same

slab approach as used in Sec. III B.
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FIG. 1. (Color online) (a) Zero-field equilibrium magnetization configuration, m0(r), in a 75 nm

wide NiFe strip with symmetric notches (wnotch = 20 nm, dnotch = 10 nm) containing a head-to-

head TDW with my color scaling. The black arrows indicate the local magnetization direction. The

x and y axis origins are also shown. (b-d) Snapshots of the translational, breathing and twisting

modes showing the dynamic component only (dm(r)). The translational mode snapshot (b) uses

my color scaling and is taken when the TDW is displaced to the right (+x) at which point there

is a significant dynamic +mx component. The breathing mode snapshot (c) also uses my color

scaling and is taken at the point during the TDW width oscillation when the width is larger than

its equilibrium value. There is thus a large dynamic +my component at the TDW edges which

broadens the TDW. The twisting mode snapshot (d) uses mx color scaling and is taken at the

point when the wide end of the TDW (+y) is displaced to the right and the narrow end of the

TDW (−y) is displaced to the left. See also animations of the modes56.
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FIG. 2. (Color online) (a,b) TDW eigenfrequencies versus dnotch when varying dnotch for both

notches simultaneously. (c,d) Eigenfrequencies when varying dnotch only at one side of the strip,

either at the wide end or narrow end of the wall while keeping the other notch with dnotch = 10

nm. For all data wnotch = 20.
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FIG. 3. (Color online) Deformed domain wall in a 75 nm strip for Hx = 5530 A/m.
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FIG. 4. (Color online) Percentage change in fbreathe with respect to fbreathe at dnotch = 10 plotted

against dnotch for (a) 5 nm thick strips and (b) 2.5 nm thick strips at various strip widths (see

legends).
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FIG. 5. (Color online) (a) Frequencies of the three TDW eigenmodes as a function of strip width,

w. The notches are symmetric (dnotch = 10 nm, wnotch = 20 nm). At w = 88.4 nm the calculated

modes are ‘hybrid’ breathing-twisting modes (see inset, b). (c) shows snapshots of the amplitude

of the dynamic component (red) of the hybrid modes found for w = 88.2 nm at 6.091 GHz (upper,

primarily a breathing mode) and 6.099 GHz (lower, primarily a twisting mode).
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FIG. 6. (Color online) (a) ftrans versus in-plane field, H (oriented along +x), for strip widths of

50, 60, 75 and 110 nm (dnotch = 10 nm and wnotch = 20 nm). (b) fbreathe and ftwist versus H at

a strip width of 75 nm. (c,d) Snapshots of the amplitude of the dynamic component (red) of the

magnetization for the (c) twisting and (d) breathing modes at a strip width of 75 nm for H = 5530

A/m (i.e. close to depinning).
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FIG. 7. (Color online) (a) Equilibrium TDW position versus H applied along the +x direction.

Solid lines are linear fits to the low field data (typically the first 4-5 points). (b) TDW spring

constant versus strip width calculated from the linear fits in (a) using Eq. (1). (c) Thiele domain

wall width of the H-deformed TDWs versus H. (d) Calculated ftrans (calculated as per the text

using the data in (a,c) and Eqs. (1-3)) versus the simulated ftrans [Fig. 6(a)].
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FIG. 8. (Color online) (a) x-dependence of the x and y components of the magnetization taken at

y = 0 (at the center of the strip). ∆T is the Thiele DW width and ρ is a scaling factor used in the

demagnetizing field calculation. (b) Effective width of the pinning potential (Lpin) estimated from

the maximum displacement of the TDW before depinning (taken from Fig. 7(a)) plotted against

∆T for strip widths of 50, 60, 75 and 110 nm. The largest width strip has the largest ∆T .
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FIG. 9. (Color online) Plot of (dxTDW/dH)−1, proportional to the local effective spring constant,

versus ftrans for field-displaced TDWs in strip widths of (a) 50, (b) 60, (c) 75, and (d) 110 nm.

(dxTDW/dH)−1 and ftrans data were taken, respectively, from Figs. 7(a) and 6. Solid lines are

linear fits to the data assuming a zero x-axis intercept. The inset in (d) shows the ratio of the

slope of the data in (a-c) predicted from the spring model to the measured slope.
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FIG. 10. (Color online) (a) ftwist versus the inverse strip width. (b) fbreathe versus
√

Ny (see text

for Ny calculation) for a number of strip widths. The linear fits have been obtained by constraining

the x-axis intercept to zero.
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