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We use molecular dynamics phonon wave packet (WP) simulations to study acoustic 

propagation and attenuation in amorphous silica (a-SiO2) at frequencies near the Boson peak 

(BP) position and compare them with the results of equilibrium molecular dynamics (EMD) 

simulations. The sound attenuation coefficients obtained from WP simulations are generally 

consistent with those from EMD predictions and have reasonable agreement with the existing 

experimental data. Near the BP position, we found the frequency dependent sound attenuation 

coefficients for longitudinal and transverse modes both follow the Rayleigh-scattering fourth 

power law. Above the BP frequency, however, the propagating phonon is essentially attenuated 

in a-SiO2 within a few nanometers, and the accurate determination of the sound attenuation 

coefficients by the WP simulation becomes challenging. The modeling results provide a 

reference for future experimental investigations of sound attenuation in a-SiO2 thin film using 

narrow-band coherent phonons. 
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I. INTRODUCTION 

One of the universal features of glasses is the Boson peak (BP), which represents an excess 

of vibrational density of states (VDOS) D(ν) over the prediction of the Debye model [1,2]. The 

BP has been observed in neutron scattering experiments [3,4], and is believed to be a 

manifestation of disorder on length scales comparable to interatomic distance and key to a 

fundamental understanding of the vibrational states of glassy and amorphous materials [1,2,5]. 

The nature of vibrational modes associated with the BP is responsible for a number of anomalous 

low temperature thermal properties, such as heat capacity and thermal conductivity in 

amorphous materials [6]. 

The most widely studied glass is amorphous silica (a-SiO2) whose BP is found at a 

vibrational frequency of ~ 1 THz [7]. It is thought that the BP is related to a frequency crossover 

(the Ioffe-Regel or IR crossover) of acoustic phonons [8,9] from a weak to a strong scattering 

regime. Ioffe and Regel pointed out that for electrons the weak-scattering regime terminates 

when the mean-free path becomes equal to the de Broglie wavelength [9-11]. For phonons, the 

IR crossover is reached when the mean free path of the phonons is comparable to their 

wavelength. Above νIR, phonon localization might occur [12-14]. Far below the IR crossover 

frequency (νIR), the sound attenuation which is due to anharmonic phonon interactions is 

proportional to ν2 [14-16]. Near and below νIR, a variety of theoretical models [17-19] predict 

that one will see the onset of the harmonic scattering regime due to disorder in the glass, where 

the sound attenuation follows the Rayleigh-like ν4 law [20].  

Although the Rayleigh-like attenuation near the BP was observed in inelastic x-ray scattering 

(IXS) experiments [8,21], a Brillouin light scattering (BLS) experiment [22] shows the onset of 

the harmonic Rayleigh-like scattering regime occurs at 150 GHz which is much lower than the 

BP position at ~ 1 THz. The BLS result rules out the connection between the BP and the IR limit 



 3

in a-SiO2 [8]. As a result of these inconsistencies, the physical origin of the BP and its relation to 

the IR crossover frequency is still debated. 

Recent advances in experimental techniques have shown the possibility of using high-

frequency acoustic plane waves to probe the vibrational dynamics in glass using coherent 

phonon sources [2,23-25]. In experiment, narrow-band coherent acoustic wave packets are 

thermoelastically launched into a substrate and propagate into and through variable thickness 

glass layers [23]. The attenuation coefficient was determined by comparing the Fourier spectra 

of the transmitted acoustic signals for glass layers of different thickness. This provides an 

alternative method to measure the frequency-dependent sound attenuation coefficients in glass 

near the BP frequency (νBP) directly. To date, however, most of experimental narrow-band 

acoustic attenuation measurements in glass only used longitudinal phonons, and the maximum 

phonon frequency was no more than 740 GHz [25], which is still considerably lower than νBP ≈ 1 

THz. 

In this work, we use wave packet (WP) simulations to study the sound propagation and 

attenuation in a-SiO2 near νBP directly. The WP simulations can mimic the narrow-band sound 

attenuation experiments by launching the plane wave phonon sources with a well-defined wave 

vector and polarization to directly study the sound propagation and attenuation in a-SiO2 thin 

film for both longitudinal acoustic (LA) and transverse acoustic (TA) phonons. One of the 

advantages of the WP simulation is that both TA and LA phonons in a wide frequency range can 

be launched in the simulation and the frequency dependency of sound attenuation coefficients 

near νBP can be explicitly determined from the attenuation of phonon energy in the a-SiO2 thin 

film. We envision that these WP simulation results will provide a reference for future 

experimental investigation of the attenuation of narrow-band coherent phonons in a-SiO2 thin 

film.  
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Additionally, equilibrium molecular dynamics (EMD) simulations are utilized in this work to 

characterize bulk phonon properties including speed of sound, the BP, and the IR limit in a-SiO2. 

EMD simulations have been used to study the relation between the BP and the IR limit for 

several two-dimensional glass-forming systems and soft-sphere glassy systems [1,5]. The sound 

attenuation coefficients obtained from EMD simulations will be used as a reference for WP 

simulation results. 

 

 II. EMD and WP determination of sound attenuation in a-SiO2 

A. The MD model. 

The bulk a-SiO2 in the MD model is generated by melting a bulk β-Cristobalite SiO2 and 

subsequently quenching the melt to a low temperature. We use Tersoff potential with the 

parameters developed by Munetoh et al. [26] that simultaneously describe interactions in Si, 

SiO2, and at the interface between the two materials. The parameters for Si-Si interactions in 

Munetoh et al.’s parameterization are the same as those proposed by Tersoff [27], and oxygen 

related interactions parameters lead to a good description of a-SiO2 [26]. This potential was used 

to predict the thermal boundary resistance at silicon-silica interfaces [28].  

In our simulation, we first melt the β-Cristobalite SiO2 in a cubic supercell with periodic 

boundary conditions (PBCs) by equilibrating the system at a temperature of 6000 K and a 

pressure of 1 atm for 6 ns. The total number of atoms in the supercell is 5784. A velocity Verlet 

scheme with a time step size of 0.2 fs is used for integration of equations of motions [29]. 

Berendsen et al.’s algorithm [30] is used to equilibrate the system to the desired temperature and 

pressure. The SiO2 melt is quenched from 6000 K to 300 K, in steps of 100 K, for a total 

simulation time of 6 ns. Thus, the cooling speed is around 1 K/ps. With this method, we obtain a 
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bulk a-SiO2 at 300 K and 1 atm. The side length of the final cubic simulation cell is Lc = 4.41 

nm.  

 

B. EMD simulations. 

In this section, we use the EMD method to determine the BP position, the IR crossover 

frequencies and the attenuation coefficients for both LA and TA phonon modes in a-SiO2 near 

νBP. The smallest wave vector for the simulation cell is kmin = 2π/Lc. To ensure that the 

longitudinal and transverse Brillouin resonant frequencies ΩL,T/2π of kmin [5] are both smaller 

than νBP, we tile the a-SiO2 structure obtained in the last section in x, y, and z directions to 

increase the side length of the cubic simulation cell to 4Lc. Accordingly, the total number of 

atoms in the system is increased to 370,176. To remove the artificial periodicity in the larger 

structure, we equilibrate the system at 6000 K and 1 atm for 4 ns and then quench it to 300 K 

with a speed of 1 K/ps. Subsequently, we anneal the system at 4000 K for 2 ns and quench it to 3 

K. Finally, we obtain a larger a-SiO2 sample at 3 K and 1 atm with a density of 2281 kg/m3 

which agrees well with the experimental value 2220 kg/m3 [31]. 

 

B.1. The IR limit and the BP. 

The EMD method extracts the vibrational properties of the model a-SiO2 by calculating the 

VDOS and the longitudinal (L) and transverse (T) dynamical structure factor, CL,T(k,ω) [1,5] at a 

temperature of 3 K. The EMD simulations are performed at such a low temperature because we 

will compare the EMD simulation results with subsequent results from WP simulations which 

are carried out at essentially 0 K. The dynamical structure factor CL(k,ω) and CT(k,ω) are given 

by [1,5] 
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In Eq. (3), vn and rn are atomic velocity and position, respectively. 

In EMD simulations, we turn off the thermostat and barostat and carry out simulations in the 

microcanonical ensemble for 2.4 ns to determine the functions ( ) ( )*
, ,, , 0L T L Tj k t j k

v vv v
 for Si-Si 

correlations in a-SiO2. The dynamical structure factors CL,T(k,ω) at low ω’s are shown in Fig. 1. 

The CL,T(k,ω) data can be fitted by a damped harmonic oscillator model [1] 
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where Ω(k) corresponds to the resonant excitation frequency and Γ(k) corresponds to the full-

width at half-maximum (FWHM) of the excitations.  

Figure 2(a) shows the dispersion relation for the longitudinal and transverse phonons. The 

sound speeds of the model a-SiO2 obtained from the slope of dispersion curves in the k → 0 limit 

are 6154 m/s (longitudinal) and 3323 m/s (transverse).  Experimental measurements of the sound 

speeds using BLS and IXS give 5900 m/s (longitudinal) and 3750 m/s (transverse) [32,33]. 

Differences between our simulation results and experimental data may be related to limitations 



 7

of the Tersoff potential. From the slopes of dispersion curves in Fig. 2(a), we see the sound 

speed decreases with increasing phonon frequency for both longitudinal and transverse modes. A 

similar negative dispersion of the sound velocity in a-SiO2 at frequencies lower than 2.5 THz has 

been recently reported in IXS experiments [8] and lattice dynamics calculations [34]. 

The IR limit condition is given by ΩL,T (k) = πΓL,T (k) [1,5]. From Fig. 2(a), we find the IR 

limit is reached at roughly the same frequency (νIR,L ≈ νIR,T ≈ 1.4 THz) for longitudinal and 

transverse modes. As a comparison, Taraskin and Elliott [35,36] investigated the IR crossover of 

a-SiO2 using the BKS potential [37] and found νIR,L ≈ νIR,T ≈ 1 THz by means of normal-mode 

analysis. Hence, the simulations using the Tersoff potential and BKS potential both predict that 

νIR,L ≈ νIR,T in a-SiO2. The discrepancy in the value of the IR crossover frequency may come 

from the difference between the Tersoff and BKS potentials. 

To investigate the connection between the BP and the IR crossover frequency in a-SiO2, we 

calculate the VDOS, D(ν) by the Fourier transform of the velocity autocorrelation function. 

Figure 2(b) show the VDOS and the reduced VDOS, D(ν)/ν2, in the model a-SiO2 at a 

temperature of 3 K. As indicated by the grey bars in Fig. 2(a) and 2(b), the peak position of the 

reduced VDOS, i.e. the BP, coincides with the IR crossover frequency. The equality of the BP 

frequency to the IR limit for transverse phonons was also observed in previous MD simulations 

of two-dimensional glass-forming systems and soft-sphere glassy systems [1,5]. Our simulation 

results in the model a-SiO2 suggest that the IR crossover for both TA and LA modes occurs at 

the position of the excess of vibrational modes, i.e. the BP. 

It is seen in Fig. 2(b) that there is a gap at ~ 0.25 THz in the reduced VDOS. This gap is 

caused by the finite size of the sample in the simulation. The minimum resonant excitation 

frequencies in the sample are 0.177 THz (transverse) and 0.354 THz (longitudinal). Due to the 

finite sample size, there is no resonant excitation frequency between these two, which leads to a 



 8

gap between them. The small peak in the reduced VDOS below the gap is located at about 0.18 

THz which corresponds to the minimum resonant excitation frequency for the transverse mode. 

 

B.2. The sound attenuation coefficient. 

The sound attenuation coefficient (a), which is the inverse of the phonon mean free path, can 

be evaluated by [5] 
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where vL,T is the speed of sound. The approximation in Eq. (5) is valid for ΓL,T /ΩL,T <<1. Using 

the data obtained in the last section, we calculate the sound attenuation coefficients for the 

longitudinal and transverse phonons. The sound attenuation coefficients for both modes at 

frequencies from 0.6 THz to 1.5 THz were fitted by a power function. It is shown in Fig. 3 that 

near and below the IR crossover frequency (~ 1.4 THz) the sound attenuation coefficients for 

both TA and LA modes are proportional to ν3.6, which is close to the Rayleigh scattering law (ν4 

frequency dependence). When the phonon frequency reduces to a value much smaller than the IR 

crossover frequency, the phonon scattering behavior transits from a harmonic Rayleigh-like 

scattering regime to an anharmonic phonon-phonon scattering regime and the sound attenuation 

coefficients turns to follow ν2 frequency dependence [14-16]. As a result, the sound attenuation 

coefficients for TA mode at frequencies lower than 0.6 THz do not fall on the power fit of data 

points at higher ν’s as shown in Fig. 3. The attenuation coefficients for both modes at the lowest 

frequencies in the EMD simulation are not included in Fig. 3 as the wavelength of these phonons 

is comparable to the system size and the simulation results could be strongly affected by both the 

finite system size and finite simulation time. 
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The IXS experimental results indicate that the sound attenuation gradually turns into ν2 

frequency dependence again if the phonon frequency is higher than the IR crossover frequency 

[8,21]. Such a transition of frequency dependence was not evidently seen in our simulations 

probably because the maximum phonon frequencies are 1.77 THz for TA modes and 2.45 THz 

for LA modes, which are not significantly higher than νIR. In Fig. 3(b), we can see the sound 

attenuation coefficients for the LA mode start to deviates from the Rayleigh scattering law at 

frequencies higher than 2 THz. To see a clear transition from ν4 dependence to ν2 dependence, 

the attenuation coefficients at higher frequencies are needed. However, the statistic errors 

associated with the simulation results at high frequencies are too large to be used for a reliable 

analysis in this work. It is also shown in Fig. 3(b) that attenuation coefficients of LA modes from 

MD simulations have reasonable agreement with the IXS experimental data measured at a 

temperature of 298 K [38] allowing for the large uncertainties in experimental measurements. 

 

C. WP simulations. 

In this section, we mimic the narrow-band sound attenuation experiments by launching 

acoustic wave packets in a Si substrate and monitoring the sound propagation and attenuation in 

the model Si|a-SiO2 structure. The phonon wave packet dynamics method has been successfully 

used to characterize the Kapitza resistance of a Si|a-SiO2 interface [39]. The sound attenuation 

coefficients obtained from the WP simulation in this section will be compared with those from 

the EMD simulation. 

 

C.1. The model Si|a-SiO2 structure. 

As shown in Fig. 4, the model structure for WP simulations is comprised of an a-SiO2 thin 

film on a crystalline Si substrate. The [001] direction of the Si crystal is aligned in the z-
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direction. The Si substrate has a length of 250 unit cells in the z-direction and a cross section of 

8 unit cells in each of the x- and y-directions. The a-SiO2 thin film is created by tiling the bulk a-

SiO2 structure obtained in Sec. II A in the z-direction. The cross section of initial a-SiO2 

structure is slightly strained to fit that of Si substrate. The sizes of simulation box in the x and y 

directions are both fixed at 4.35 nm during the simulation. The lengths of the Si crystal and a-

SiO2 thin film are around 136 nm and 50 nm, respectively. PBCs are imposed in the x and y 

directions. Along the z direction, the simulation box is bordered by free boundaries. 

In order to form a well-equilibrated Si|a-SiO2 interface and eliminate the artificial periodicity 

along the a-SiO2 thin film, we fix the temperature in the Si crystal to a temperature of 300 K and 

equilibrate the a-SiO2 to a temperature of 4000 K for 4 ns. Subsequently, the a-SiO2 thin film is 

quenched to 300 K with a speed of 1 K/ps. Finally, we conduct an energy minimization of the 

whole structure at a temperature of 0 K. The final equilibrated structure near the Si|a-SiO2 

interface is shown on the top of Fig. 4. 

 

C.2. The WP simulation details. 

Using the equilibrated structure, we first calculate phonon dispersion relation including 

eigenvalues and eigenvectors by diagonalizing the dynamical matrix of the Si crystal. To 

determine the harmonic force constants in the dynamical matrix, we displace the atoms in the 

center of the Si substrate by ±10-5 Å from the equilibrium position in three directions and the 

force constants are obtained from the second order derivatives of potential energy. 

With the calculated eigenvalues and eigenvectors, we can launch a TA/LA phonon wave 

packet in the center of Si substrate at any frequency near νBP of a-SiO2. To generate a phonon 

wave packet centered at a wavevector k0 in λ branch, and localized in space around z0 with a 

spatial extent of ~ 1/η, we displace the atoms according to [40,41]  
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where ul
α(s) represents α component of displacement of atom s in primitive cell l of Si crystal, 

Ms is the mass of atom s, Qλk0 is the amplitude of the wave, ελk0
α(s) is the α component of 

eigenvector of atom s for λ branch at k0, and zl is the z coordinate of the primitive cell l. In the 

simulation, we set Qλk0 = 10-4 Å and 1/η = 40 unit cells. To form a wave packet that is localized 

in both real space and wavevector space as described in Eq. (6), the initial atomic displacements 

are expressed in terms of linear combination of vibrational eigenstates [41,42] 
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where N is the number of primitive cells in the Si crystal. In Eq. (7), the amplitude of each 

vibrational normal mode, Qλk, is determined by the inverse Fourier transform of the function in 

Eq. (6). To determine initial atomic velocities, we add time dependence to the displacements in 

Eq. (7) and differentiate with respect to time. Hence, the initial velocities are given by [41] 
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where ωλk is the eigenvalue for λ branch at k. 

 

C.3. The phonon transmission. 

Figure 5 shows snapshots of spatial distribution of vx in the Si|a-SiO2 structure for a TA 

wave packet centered at 1.00 THz. It is seen that the wave packet travels in the z-direction and 

the phonon transmission and reflection at the Si|a-SiO2 interface is complete within 20 ps. Due 

to the strong scattering in the a-SiO2 thin film, however, we can still see a small amount of 

transmitted phonon energy continuously return to the Si substrate after the interfacial phonon 
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transmission completes (see the snapshot at 25 ps). Similar phonon propagation and scattering 

phenomenon is observed in WP simulations of TA and LA phonons at other frequencies near the 

BP position. 

From the WP simulation, we first calculate the phonon transmission coefficient, τ, by 

computing the total energy in the Si substrate, Et,Si before and after phonon transmission. The 

reflected phonon energy is computed as an average of Et,Si between 20 ps and 25 ps. In Fig. 5 we 

show the frequency-dependent phonon transmission coefficient for both TA and LA modes. At 

the lowest simulated frequency (νmin = 0.5 THz), the WP simulation predicts τLA = 0.98 and τTA = 

0.95. These results can be compared with predictions from the acoustic mismatch model (AMM) 

[43]. For phonons arriving normal to the interface, the AMM predicts 

( )2 2

2
4 Si a SiO Si a SiOZ Z Z Zτ − −= +   (9) 

where Z = ρv is the acoustic impedance of material, ρ is the density, and v is phonon group 

velocity. The phonon group velocity is obtained from the slope of dispersion curves. With the 

density and sound velocity of Si and a-SiO2 calculated in Sec. B and Sec. C, we find the AMM 

predicts τLA = 0.98 and τTA = 0.94 which agree very well with the WP simulation results for low-

frequency phonons. This indicates that the scattering of low-frequency and long-wavelength 

phonons at the Si|a-SiO2 structure is essentially non-diffuse. With the increase of the phonon 

frequency, Fig. 5 shows the transmission coefficient decreases as the interfacial scattering 

becomes more diffuse for high-frequency and short-wavelength phonons. 

 

C.4. The sound attenuation from the WP simulation. 

Now, we determine the sound attenuation in a-SiO2 from WP simulations. To calculate the 

attenuation coefficient, a, we divide the a-SiO2 thin film into 10 bins with the bin width of ΔL = 
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5 nm. After a phonon wave packet travels through the nth bin, the phonon energy attenuated by 

the a-SiO2 in the bin can be expressed as 

( )( )1
, 0

a n L an L
tot nE E e e− − Δ − ΔΔ = −  (10) 

where E0 is the energy of phonons transmitted from Si to a-SiO2. If the attenuated energy in each 

bin is known, the sound attenuation coefficient can be calculated by 

( )
ln lnn mE Ea

m n L
Δ − Δ=

− Δ
 (11) 

where ΔEm is the attenuated energy in the mth bin. With the sound speed calculated in Sec. B, we 

estimate the time needed for a TA phonon to travel through the 50-nm a-SiO2 to be 15 ps. 

Allowing for the initial 20 ps for phonon transmission from Si to a-SiO2, we therefore compute 

ΔE in each bin as an average of the total energy in the period of 30 ps to 35 ps. Since the 

diffusivity of most vibrational modes in a-SiO2 is around 10-6 m2/s [34], which means the 

diffusion length is only about 2 nm in a 5-ps time period, we assume the attenuated energy 

essentially stays in the 5-nm-long bin in the period of 30 ps to 35 ps.  

Figure 6(a) shows the linear relation between the calculated ln(ΔE) and the length L for a 1-

THz TA wave packet attenuation in the a-SiO2 thin film. In linear fit to ln(ΔE) vs. L, we discard 

the data points in the first two bins which are close to the Si substrate because the thermal 

diffusivity in the Si crystal is about 100 times greater than that of a-SiO2 [44] and the thermal 

resistance at the Si|a-SiO2 interface is very small [28]. The data point in the last bin is also 

discarded in the fitting because it is strongly affected by surface scattering. The linear fitting to 

ln(ΔE) vs. L gives a = 0.129 ± 0.010 nm-1 for 1-THz TA wave packet which agrees well with a = 

0.143 ± 0.024 nm-1 for 1.01-THz TA wave packet from the EMD simulation in Sec. B. The 

uncertainty (standard deviation) in the WP simulation result is determined from the analysis of 
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three attenuation coefficients obtained from fitting to the data averaged in the periods of 30 ps to 

31.7 ps, 31.7 ps to 33.4 ps and 33.4 ps to 35.1 ps, respectively.  

The attenuation coefficient increases very quickly near the BP position. The EMD simulation 

result predicts the attenuation coefficient of a 2-THz TA mode could reach ~ 1.0 nm-1, which 

indicates that almost all transmitted energy will be attenuated in a-SiO2 within a few nanometers. 

Therefore, we will only use the data points in bins less than 10 nm away from the interface for 

determination of the attenuation coefficient. As shown in Fig. 6(b), we reduce the bin width to 1 

nm so that more data points can be obtained in the region near the interface. It takes a TA wave 

packet about 3 ps to travel 10 nm in a-SiO2. Hence, the energy attenuated in each bin shown in 

Fig. 6(b) is computed as an average of the total energy in the period of 22 ps to 23 ps. The data 

points in the first four bins are discarded in the fitting process due to their strong energy 

diffusion to the Si substrate. Nevertheless, the data points in the rest of the bins are still not far 

from the interface, thus the energy in these bins is also strongly affected by the energy diffusion 

among bins near the interface region. This leads to an underestimate of energy difference 

between neighboring bins. As a result, the WP simulation predicts a = 0.36 ± 0.05 nm-1 for 2-

THz TA mode which is only about one third of that predicted by the EMD simulation.  

As shown in Fig. 3(a), the TA mode attenuation coefficients predicted by the WP simulation 

have a good agreement with those from the EMD simulation at relatively low frequencies. For 

high frequency TA modes, however, the attenuation coefficient is too large to be accurately 

determined by the WP simulation due to the strong energy diffusion in the region near the 

interface. Similar results are also seen for LA modes as shown in Fig. 3(b).  

The WP simulation results could be a good reference for future experimental investigation of 

sound attenuation in a-SiO2 thin film by narrow-band coherent phonons. 
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III. SUMMARY 

We carry out EMD and WP simulations to study sound attenuation in a-SiO2 at frequencies 

near the BP position. The EMD simulation results indicate the IR crossover for both LA and TA 

modes in a-SiO2 occurs at the BP position and the sound attenuation coefficients at frequencies 

near the BP position are proportional to ν3.6, which is close to the Rayleigh-like ν4 frequency 

dependence. The transition from the harmonic Rayleigh-like scattering to the anharmonic 

phonon-phonon scattering regime is observed in TA modes as the frequency is reduced to ~ 0.5 

THz, which is far smaller than the IR crossover frequency. The WP simulation mimics the 

narrow-band sound attenuation experiments by launching an acoustic wave packet in a Si 

substrate and monitoring its propagation and attenuation in the Si|a-SiO2 structure. The sound 

attenuation coefficients predicted by the WP simulations generally have good agreement with 

those from the EMD simulations. When the attenuation coefficient is close or higher than 1 nm-1, 

however, the WP simulation fails to accurately predict the large attenuation coefficient due to the 

influence of energy diffusion in the interface region. This suggests accurate measurement of high 

attenuation coefficients using the narrow-band sound attenuation experiments could be 

challenging. 
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FIGURE CAPTIONS 

FIG. 1. (Color online) (a) The transverse (T) and (b) longitudinal (L) structure factor at a 

temperature of 3 K for wave vector k = n·(2π/L), where L = 17.5 nm is the side length of the 

cubic simulation box and n = 2, 4, 6, 8, and 10. 

FIG. 2. (Color online) (a) Dispersion relations for longitudinal (L) and transverse (T) phonons in 

the a-SiO2. ΩL,T vs. k and ΓL,T vs. k are fitted by the fourth order polynomial function. (b) VDOS 

and reduced VDOS in a-SiO2 at 3 K. The velocities of Si atoms are used for calculation of the 

current density correlation functions and the velocity correlation functions. The grey bars in (a) 

and (b) indicate the BP position. 

FIG. 3. (Color online) The sound attenuation coefficient in a-SiO2 from EMD and WP 

simulations for (a) TA phonon mode and (b) LA phonon mode. The straight lines in (a) and (b) 

are power fit to the sound attenuation coefficients from EMD simulations at frequencies from 0.6 

THz to 1.5 THz. The diamond scatters in (b) are obtained from IXS experimental results at 293 

K in Ref. [38]. 

FIG. 4. (Color online) Snapshots of spatial distribution of vx in the Si|a-SiO2 structure for a TA 

mode phonon WP with ν = 1.00 THz. 

FIG. 5. (Color online)  The transmission coefficient, αtran at the Si|a-SiO2 interface for TA and 

LA phonons as a function of phonon frequency. 

FIG. 6. (Color online) The spatial energy distribution in a-SiO2 for (a) 1-THz, and (b) 2-THz TA 

mode phonon WP.  The bin sizes in (a) and (b) are 5 nm and 1 nm, respectively. The energy in 

each bin is averaged over the time range of (a) 30 ~ 35 ps and (b) 22 ~ 23 ps. The straight lines 

in (a) and (b) show the linear relation between log(Etot) and L. 
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FIG. 1. (Color online) (a) The transverse (T) and (b) longitudinal (L) structure factor at a 

temperature of 3 K for wave vector k = n·(2π/L), where L = 17.5 nm is the side length of the 

cubic simulation box and n = 2, 4, 6, 8, and 10. 
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FIG. 2. (Color online) (a) Dispersion relations for longitudinal (L) and transverse (T) phonons in 

the a-SiO2. ΩL,T vs. k and ΓL,T vs. k are fitted by the fourth order polynomial function. (b) VDOS 

and reduced VDOS in a-SiO2 at 3 K. The velocities of Si atoms are used for calculation of the 

current density correlation functions and the velocity correlation functions. The grey bars in (a) 

and (b) indicate the BP position. 
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FIG. 3. (Color online) The sound attenuation coefficient in a-SiO2 from EMD and WP 

simulations for (a) TA phonon mode and (b) LA phonon mode. The straight lines in (a) and (b) 

are power fit to the sound attenuation coefficients from EMD simulations at frequencies from 0.6 

THz to 1.5 THz. The diamond scatters in (b) are obtained from IXS experimental results at 293 

K in Ref. [38]. 
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FIG. 4. (Color online) Snapshots of spatial distribution of vx in the Si|a-SiO2 structure for a TA 

mode phonon WP with ν = 1.00 THz. 
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FIG. 5. (Color online)  The transmission coefficient, αtran at the Si|a-SiO2 interface for TA and 

LA phonons as a function of phonon frequency. 
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FIG. 6. (Color online) The spatial energy distribution in a-SiO2 for (a) 1-THz, and (b) 2-THz TA 

mode phonon WP.  The bin sizes in (a) and (b) are 5 nm and 1 nm, respectively. The energy in 

each bin is averaged over the time range of (a) 30 ~ 35 ps and (b) 22 ~ 23 ps. The straight lines 

in (a) and (b) show the linear relation between log(Etot) and L. 


