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In this paper, we propose a selective sampling procedure to preferentially evaluate a potential
energy surface (PES) in a part of the configuration space governing a physical property of interest.
The proposed sampling procedure is based on a machine learning method called the Gaussian process
(GP), which is used to construct a statistical model of the PES for identifying the region of interest in
the configuration space. We demonstrate the efficacy of the proposed procedure for atomic diffusion
and ionic conduction, specifically the proton conduction in a well-studied proton-conducting oxide,
barium zirconate (BaZrO3). The results of the demonstration study indicate that our procedure can
efficiently identify the low-energy region characterizing the proton conduction in the host crystal
lattice, and that the descriptors used for the statistical PES model have a great influence on the
performance.

I. INTRODUCTION

The concept of a potential energy surface (PES) is
of great importance for a fundamental understanding of
physical phenomena and properties, such as molecular
and lattice vibrations, thermodynamic properties, chem-
ical reactions, atomic diffusion and ionic conduction [1–
6]. A PES is generally described as a function of 3n
degrees of freedom in an n-atom system, but it is often
simplified by focusing only on reduced degrees of free-
dom that govern the physical property of interest [7–9].
In this simplification, the rest of the degrees of freedom
are effectively incorporated into the reduced configura-
tion space as the minimized energy or statistical average.
For example, when tracing the movement of an diffusing
atom in a solid, the host lattice structure is optimized
with respect to the energy, so that the movements of the
other atoms forming the host crystal lattice are implic-
itly treated [8, 9]. This approach is useful for evaluating
physical properties mainly governed by the motions of
a few atoms, such as atomic diffusion, ionic conduction,
and elementary steps of chemical reactions.

In the simplified approach, the entire PES is evaluated
for the reduced degrees of freedom, generally by den-
sity functional theory (DFT) calculations. A fine grid
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is usually introduced in the reduced configuration space
to evaluate the potential energies (PEs) at uniformly-
distributed points in the configuration space. The most
accurate method is for the PEs at all the grid points to
be fully computed with the host lattice structure opti-
mization, which requires that a great amount of com-
putational resources are devoted. However, one should
note that the entire PES is not necessarily required for
understanding physical phenomena and properties. In
the case of atomic diffusion and ionic conduction, a dif-
fusion or a conduction process is fully characterized by a
connected low-energy migration pathway throughout the
host lattice, meaning that we need not to explore grid
points with high PEs irrelevant to the migration path-
way [10, 11]. Therefore, it is sufficient to know only a
region exhibiting low energy, called the low PE region,
for finding the migration pathway.

In this paper, we propose a selective sampling proce-
dure on the basis of a machine learning technique for eval-
uating all points in the low PE region containing the mi-
gration pathway without evaluating the entire PES. Here
we introduce a statistical PES model to sample points in
the low PE region efficiently and to ensure that all points
in the low PE region have already been sampled without
evaluating the entire PES. In particular, the latter is dif-
ficult to achieve without using a statistical model. This
procedure is generally applicable to any case of finding
points in a region of interest, if the region can be math-
ematically defined. For example, local minima and max-
ima, ridge and valley lines, and saddle points in a PES
are defined mathematically using the PE gradients, which
can also be specified as a region of interest to be sampled
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selectively. In addition, beyond such PES evaluation, it
can also be used for exploring materials with an over- or
sub-threshold physical property if an appropriate set of
descriptors is found for the physical property of interest.
For demonstrating the performance of our selective sam-
pling procedure, we apply it to proton conduction in a
well-studied proton-conducting oxide, barium zirconate
(BaZrO3) [12–15]. Specifically, a fine grid is introduced
in the crystal lattice of the host oxide, and several sam-
pling procedures are compared in terms of efficiency for
finding all the grid points with PEs less than a given PE
threshold.

Note that the proposed procedure is based on a differ-
ent concept than those of previously reported machine-
learning-based material science studies [16–33]. Specif-
ically, the goal of our procedure is NOT estimating the
entire PES from a sparse sampling using regression meth-
ods [17, 19, 26]. In the present study, machine-learning
techniques are used to identify all points related to the
partial PES governing a physical property of interest.
Consequently, the present procedure identifies the com-
plete partial PES. Although a hybrid method of the pro-
posed and previous procedures should be more efficient
than the present approach for evaluating a reasonable
partial PES, this paper focuses on the procedure for find-
ing all points related to the partial PES for simplicity.

II. GAUSSIAN PROCESS MODEL-BASED
SELECTIVE SAMPLING PROCEDURE

In this section, we present the proposed selective sam-
pling procedure in detail. Although the procedure is
fairly general and can be used in a variety of problems, we
describe it here in the context of low PE region detection
problems. Given a fine set of grid points in the configura-
tion space, the goal is to efficiently identify the subset of
the grid points at which the PEs are relatively low. The
procedure has the following three key features. (1) First,
a statistical model of the PES is developed as a Gaussian
process (GP) [34, 35]. The model is iteratively updated
by repeating (i) selectively sampling a point at which the
PE is predicted to be low, and (ii) updating the model
based on the newly calculated PE value at the sampled
point. (2) Second, the statistical PES model is used for
identifying the subset of grid points at which the PEs are
relatively low. We introduce a novel selection criterion
for this purpose, because the single global minimum or
maximum point (not a subset) has been targeted in GP
applications so far. (3) Finally, the procedure allows us
to estimate how many low PE points remain unsampled,
i.e., lets us know when the sampling should be stopped.

These features are made possible by exploiting an ad-
vantage of GP that it provides not only the predicted PE
value but also the uncertainty at each grid point. Using
this property of GP modeling, we develop a new sampling
procedure which enables us to sample grid points pref-
erentially from the low PE region, and tells us when we

should stop sampling. FIG.1 illustrates the sequences of
the selective sampling by taking a one-dimensional syn-
thetic PES as an example, in which 9 grid points in the
low PE region (within the blue bar) should be selectively
sampled from all the points (50 points). Roughly speak-
ing, at each step, a point most likely to be located in the
low PE region is sampled in the light of the predicted PEs
(red solid curve) and the uncertainties (pale red area).
In early steps, the predicted PEs are quite uncertain and
have large discrepancies from the true PES (black solid
curve), resulting in selecting grid points whose uncertain-
ties are large. As the sampling proceeds, the predicted
PE curve gradually approaches the true one with decreas-
ing uncertainty, so that grid points in the low PE region
are selectively sampled in later steps. The uncertainty in
the GP model is useful also in the judgment to stop the
sampling. The stopping criterion should be determined
on the basis of the existence probability of unsampled low
PE points, for which the information on the uncertainty
is indispensable in addition to the predicted PEs.

In the remaining part of this section, we first present
the problem setup in §II A, and then describe the details
of the three key features in §II B, §II C, and §II D.

A. Problem setup

Suppose that there are N grid points, i = 1, . . . , N ,
in the configuration space. For each point, we denote by
Ei the potential energy (PE). In order to investigate a
target physical property such as proton conductivity, we
need to identify a region whose PEs are relatively low.
Using a parameter 0 < α < 1, we define such a relatively
low PE region as the set of αN points at which the PEs
are lower than the PEs at the other (1−α)N points. We
refer to such a subset of points as the “low PE region”,
and the remaining set of points as the “high PE region”.
The goal of the problem is to identify all the points in the
low PE region as efficiently as possible. For simplicity, we
assume that α is pre-specified, but it can be adaptively
determined as we demonstrate in § V B.

The problem of identifying the low PE region is for-
mulated as follows. Let θα represent the threshold of the
low PE region, and define

Pα := {i ∈ {1, . . . , N} | Ei < θα},
Nα := {i ∈ {1, . . . , N} | Ei ≥ θα}.

Then, the task is formally stated as the problem of identi-
fying all the points in Pα. Borrowing the terminology in
statistics, we refer to the points in Pα and Nα as positive
and negative points, respectively.

Note that we do not know Pα, Nα and θα unless we
actually compute the PEs at all the grid points. There-
fore, during the sampling process, these quantities are
estimated based on the PEs at the points sampled in
earlier steps. We denote our estimates of positive and
negative sets as P̂α and N̂α, respectively, i.e., the former



3

 Uncertainties of GP model 
 Predicted Values of GP model  Ground truth Threshold 

 Estimated Threshold 
 PEs at not-yet selected points 

 PEs at selected points 
 Potential Energy Surface (PES) 

-0.2
 0

 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4

 0  0.2  0.4  0.6  0.8  1

 P
ot

en
tia

l E
ne

rg
y 

 Configuration Space 

Low PE Region

-0.2
 0

 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4

 0  0.2  0.4  0.6  0.8  1

 P
o
te

n
ti
a
l 
E

n
e
rg

y
 

 Configuration Space 

-0.2
 0

 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4

 0  0.2  0.4  0.6  0.8  1

 P
o
te

n
ti
a
l 
E

n
e
rg

y
 

 Configuration Space 

(a) low PE region (b) step0 (initialization) (c) step1

-0.2
 0

 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4

 0  0.2  0.4  0.6  0.8  1

 P
o
te

n
ti
a
l 
E

n
e
rg

y
 

 Configuration Space 

-0.2
 0

 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4

 0  0.2  0.4  0.6  0.8  1
 P

o
te

n
ti
a
l 
E

n
e
rg

y
 

 Configuration Space 

-0.2
 0

 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4

 0  0.2  0.4  0.6  0.8  1

 P
o
te

n
ti
a
l 
E

n
e
rg

y
 

 Configuration Space 

(d) step2 (e) step3 (f) step4

-0.2
 0

 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4

 0  0.2  0.4  0.6  0.8  1

 P
o
te

n
ti
a
l 
E

n
e
rg

y
 

 Configuration Space 

-0.2
 0

 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4

 0  0.2  0.4  0.6  0.8  1

 P
o
te

n
ti
a
l 
E

n
e
rg

y
 

 Configuration Space 

-0.2
 0

 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4

 0  0.2  0.4  0.6  0.8  1

 P
o
te

n
ti
a
l 
E

n
e
rg

y
 

 Configuration Space 

(g) step5 (h) step6 (i) step7

-0.2
 0

 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4

 0  0.2  0.4  0.6  0.8  1

 P
o
te

n
ti
a
l 
E

n
e
rg

y
 

 Configuration Space 

-0.2
 0

 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4

 0  0.2  0.4  0.6  0.8  1

 P
o
te

n
ti
a
l 
E

n
e
rg

y
 

 Configuration Space 

-0.2
 0

 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4

 0  0.2  0.4  0.6  0.8  1

 P
o
te

n
ti
a
l 
E

n
e
rg

y
 

 Configuration Space 

(j) step8 (k) step9 (l) step10

-0.2
 0

 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4

 0  0.2  0.4  0.6  0.8  1

 P
o
te

n
ti
a
l 
E

n
e
rg

y
 

 Configuration Space 

-0.2
 0

 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4

 0  0.2  0.4  0.6  0.8  1

 P
o
te

n
ti
a
l 
E

n
e
rg

y
 

 Configuration Space 

-0.2
 0

 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4

 0  0.2  0.4  0.6  0.8  1

 P
o
te

n
ti
a
l 
E

n
e
rg

y
 

 Configuration Space 

(m) step11 (n) step12 (o) step13

-0.2
 0

 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4

 0  0.2  0.4  0.6  0.8  1

 P
o
te

n
ti
a
l 
E

n
e
rg

y
 

 Configuration Space 

-0.2
 0

 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4

 0  0.2  0.4  0.6  0.8  1

 P
o
te

n
ti
a
l 
E

n
e
rg

y
 

 Configuration Space 

-0.2
 0

 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4

 0  0.2  0.4  0.6  0.8  1

 P
o
te

n
ti
a
l 
E

n
e
rg

y
 

 Configuration Space 

(p) step14 (q) step15 (r) step16

FIG. 1. Schematic illustration of the proposed selective sampling procedure in one-dimensional configuration space with
synthetic data. In each plot, the X and Y-axes represent the configuration space and the PEs, respectively. The PES and its
N = 50 points are shown as a black solid curve and squares, respectively. In plot (a), the low PE region with α = 0.20 is
represented by a blue bar. The goal in this example is to efficiently identify and evaluate the PEs at the 9 points within this
blue bar region. Plot (b) indicates the initialization step, where two points (filled squares) are randomly selected and their PEs
are evaluated. The remaining 16 plots (plots (c) to plot (r)) indicate steps 1 to 16 of the procedure. At each step, a point is
selected and the PE is evaluated by using the GP-based statistical model, where the points selected so far are shown as filled
squares. In each plot, the predicted PEs and their uncertainties given by the GP-based statistical model are depicted by a red
solid curve and shaded region, respectively. In addition, the true and the estimated threshold values θα and θ̂α are shown as
black and red broken lines, respectively. In this example, the 9 points in the low PE region are successfully identified and the
threshold is also correctly estimated at step 16 (plot (r)).
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indicates the set of points at which the PEs have already
been sampled and evaluated in earlier steps, while the
latter indicates the set of points at which the PEs have
not yet been evaluated. The proposed selective sampling
procedure can be interpreted as the process of sequen-
tially updating these two sets of points. Specifically, we
start from P̂α = ∅ and N̂α = {1, . . . , N}, and then up-

date the two sets as P̂α ← P̂α ∪{i′} and N̂α ← N̂α \ {i′}
where i′ is the sampled point in the step. When the stop-
ping criterion is satisfied, P̂α is expected to contain all
the points in Pα with high probability. We also denote

the estimate of θα as θ̂α (see §II C for how to estimate
θα).

B. Gaussian process (GP) models

We adopt GP [34, 35] as a choice of the statistical
model of the PES. Using a GP model, the potential en-
ergy Ei is represented in the following form:

Ei ∼ N(µi, σ
2
i ), i = 1, . . . , N, (1)

where N(µi, σ
2
i ) denotes the Normal distribution with

mean µi and variance σ2
i .

A GP model is a sort of regression model. Let us con-
sider a d-dimensional vector of descriptors for each point
and denote the vector as χi ∈ Rd for i = 1, . . . , N . Then,
the mean and variance of the PE at the ith point are rep-
resented as functions of χi as in (4) and (5) below. In a
GP model, a so-called kernel function k : Rd × Rd → R
is employed. For two different points indexed by i and j,
k(χi,χj) is roughly interpreted as a similarity between
these two points. One of the most commonly used kernel
functions is the RBF kernel

k(χ,χ′) = γ21 exp(−‖χ− χ′‖2/2γ22), (2)

where γ1, γ2 > 0 are tuning parameters, and ‖ · ‖ rep-
resents the L2 norm. Furthermore, for n points indexed
by 1, . . . , n, let K ∈ Rn×n be the so-called kernel matrix
defined as

K :=

 k(χ1,χ1) · · · k(χ1,χn)
...

. . .
...

k(χn,χ1) · · · k(χn,χn)

 . (3)

Then, for any points in the configuration space whose
descriptor vector is represented as χ ∈ Rd, the GP model
provides the predictive distribution of its PE in the form
of a Normal distribution N(µ(χ), σ2(χ)). Here, the mean
function µ : Rd → R is given as

µ(χ) := κ(χ)>K−1E, (4)

where κ(χ) := [k(χ,χ1), . . . , k(χ,χn)]> and E :=
[E1, . . . , En]>, while the variance function σ2 : Rd → R
is given as

σ2(χ) := k(χ,χ)− κ(χ)>K−1κ(χ). (5)

At each step of the procedure, we fit a GP model of
PES based on {(χi, Ei)}i∈P̂α

, which is the set of points
that have been selected and whose PEs have been already
evaluated by DFT calculations in earlier steps.

C. Selection criterion for low PE region
identification

Given a GP model in the form of (1) for each point,
the subsequent task is to select the point at which the PE
is most likely to be lower than the estimated threshold

θ̂α (we will discuss how to estimate the threshold later).
In this task, we can borrow some techniques developed
in the context of Bayesian optimization [36, 37], which
has been used for minimization or maximization of an
unknown function. In the Bayesian optimization litera-
ture, there are two main options that can be adapted to
our task. The first option is to select the point at which

the probability that the PE is lower than θ̂α is maxi-
mized, which is called probability of improvement, and
formulated as

i′ := arg max
i∈N̂α

Φ(θ̂α;µ(χi), σ
2(χi)), (6)

where Φ(·;µ, σ2) is the cumulative distribution function
of N(µ, σ2). The second option is expected improvement,
which is similarly formulated as

i′ := arg min
i∈N̂α

∫ θ̂α

−∞
E φ(E;µ(χi), σ

2(χi))dE, (7)

where φ(·;µ, σ2) is the probability density function of
N(µ, σ2). In the simulation studies conducted in §IV, we
used (7). In our experience, there is little difference in
the performances between the choices of (6) and (7).

In order to obtain an estimate θ̂α of the threshold θα,
let us consider the following contingency table

Pα Nα
P̂α #TP(θ̂α) #FP(θ̂α)

N̂α #FN(θ̂α) #TN(θ̂α)

(8)

where TP, FP, FN, and TN stand for true positive, false
positive, false negative, and true negative, respectively,
and the notation # indicates the number of the event.
These numbers for four events can be rephrased as

• #TP: The number of sampled points in the low PE
region.

• #FP: The number of sampled points in the high
PE region.

• #FN: The number of not-yet sampled points in the
low PE region.

• #TN: The number of not-yet sampled points in the
high PE region.



5

Note that, in (8), these numbers depend on θ̂α. Remem-
bering that Pα/(Pα+Nα) = α, the following relationship
should be maintained

#TP(θ̂α) + #FN(θ̂α)

N
= α. (9)

Since we have already evaluated Ei for i ∈ P̂α, we can
simply obtain

#TP(θ̂α) =
∑
i∈P̂α

I(Ei < θ̂α), (10)

where I(·) is the indicator function, defined by I(z) = 1 if
z is true and I(z) = 0 if z is false. On the other hand, we

need to estimate #FN(θ̂α) based on the statistical model

(1) because we do not know Ei for i ∈ N̂α:

#FN(θ̂α) ' #F̂N(θ̂α) :=
∑
i∈Nα

Φ(θ̂α;µ(χi), σ
2(χi)). (11)

The estimate of the threshold θ̂α is determined in each
step so that it satisfies the requirement (9) where the
quantities in the left-hand side are given by (10) and
(11).

D. How to assess the sampled points

When the sampling is stopped, P̂α should ideally con-
tain all the points in Pα, i.e., P̂α ⊇ Pα. As we can easily
notice from the contingency table in (8), this requirement

can be rewritten as #FN(θ̂α) = 0. This indicates that
the estimated false negative rate (FNR) defined as

ˆFNR :=
#F̂N(θ̂α)

#TP(θ̂α) + #F̂N(θ̂α)
(12)

can be used for assessing the badness of the sampled
points. ˆFNR in (12) can be interpreted as the proportion
of points for which the PEs have yet to be evaluated. At

each step, we compute #TP(θ̂α) by (10) and estimate

#FN(θ̂α) by (11). Then, the sampling is terminated if
ˆFNR is close to zero (e.g., 10−6).

III. PROTON PES IN BARIUM ZIRCONATE

A. Grid points

To show the performance of the selective sampling pro-
cedure in the present study, we evaluated the PEs for all
the grid points, i.e., the entire PES using DFT calcula-
tions with structure optimization. Firstly, grid points
are introduced in the host crystal lattice of BaZrO3.
FIG.2 shows the crystal structure of BaZrO3 (space
group: Pm3m (221)) and its asymmetric unit satisfy-
ing 0 ≤ x, y, z ≤ 0.5, y ≤ x and z ≤ y where x, y and z

denote the three-dimensional fractional coordinates of a
proton introduced into the host lattice. The lattice con-
stant a was experimentally reported to be 4.19-4.20 Å
[38, 39], which is reasonably consistent with our calcu-
lated value (4.23 Å) using the computational condition
as will be described later. Ba, Zr and O ions occupy 1a,
1b, and 3c sites, respectively, in the case of the origin
setting shown in FIG.2.

O
Ba

ZrO
O

O

O

O

Ba

Ba

Ba

Ba

Ba

Ba

Ba

Asymmetric unit

(a) (b)

FIG. 2. (a) Crystal structure of BaZrO3. (b) Asymmetric
unit in the unit cell of BaZrO3.

Considering a 40 × 40 × 40 grid in the unit cell (grid
interval is nearly equal to 0.1 Å), there are 64,000 grid
points in total. Reflecting the high crystallographic sym-
metry of BaZrO3, the number of grid points in the asym-
metric unit shown in the right plot of FIG.2 is reduced to
1771 points. In other words, these PEs enable us to con-
struct the entire three-dimensional PES using symmetry
operations. Among them, three points exactly coincide
with a Ba ion, a Zr ion, and an O ion. Further removing
those three points, the remaining grid points are reduced
to N = 1768 points.

B. Procedure of DFT calculation

DFT calculations for the PES evaluation in BaZrO3

were based on the projector augmented wave (PAW)
method as implemented in the VASP code [40–43] The
generalized gradient approximation (GGA) parameter-
ized by Perdew, Burke, and Ernzerhof was used for the
exchange-correlation term [44]. The 5s, 5p and 6s or-
bitals for barium, 4s, 4p, 5s and 4d for zirconium, 2s
and 2p for oxygen, and 1s for hydrogen were treated as
valence states. The plane-wave cutoff energy was set to
be 400 eV. A supercell consisting of 3 × 3 × 3 unit cells
(135 atoms) was used, with a 2 × 2 × 2 mesh for the
k-point sampling, in which the atomic positions only in
the limited region corresponding to 2 × 2 × 2 unit cells
around the introduced proton were optimized with the
other atoms and the proton fixed. The atomic positions
were optimized until the residual forces converged to less
than 0.02 eV/Å.
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C. Evaluated PES

FIG.3 shows the evaluated PES of a proton in a low
PE region for BaZrO3. All points in the low PE region
with α = 0.2 show a PE of less than 0.30 eV. The blue
spheres bonding to single O ions in the figure denote the
most stable proton sites, which are located ∼ 1 Å from
the O ions. The OH distance is equivalent to that in wa-
ter, indicating that protons in BaZrO3 are stabilized by
forming an OH bond. There are four equivalent proton
sites per O ion, which are connected by low PE points
around the O ion. This is the rotational path around
the O ion consisting of four equivalent quarter rotational
paths, whose potential barrier is 0.18 eV. The strong OH
bonding is always maintained during the proton rotation,
leading to the low potential barrier. On the other hand,
the hopping path connecting adjacent rotational orbits
is located at the periphery of the edges of the ZrO6 oc-
tahedra. The bonding with adjacent O ions is the key
also in the proton hopping, where not the OH bond but
the O-H-O bond (like the hydrogen bond) is formed at
the transition state. The two O ions involving the pro-
ton transfer gradually approach each other to give and
take the migrating proton, and the O-O distance is fi-
nally reduced to 2.4 Å at the transition state from 2.9
Å at the initial state. The proton is just located on
the middle plane between the two O ions at the tran-
sition state, and the two OH bond lengths are as short
as 1.24 Å. As a result, the calculated potential barrier of
the hopping path is not so high (0.25 eV), although it
is slightly higher than that of the rotational path. The
large host lattice relaxation to reduce the O-O distance
is a possible origin of the relatively higher potential bar-
rier. The calculated potential barrier of the hopping path

Ba

ZrO6

O

H

0 eV

0.3 eV

FIG. 3. PES of a proton in the low PE region (α = 0.2)
obtained by DFT calculations with structural optimization
for BaZrO3. The low PE region (α = 0.2) at which the PEs
are lower than 0.30 eV is surrounded by yellow surfaces.

is 0.25 eV, which is higher than that of the rotational
path. The two kinds of paths form a three-dimensional
proton-conducting network throughout the crystal lat-
tice, meaning that protons migrate over a long range by
repeated rotation and hopping. The conduction mech-
anism of the rotation and hopping has been previously
studied based on DFT analysis with the nudged elastic
band (NEB) method [12, 45, 46]. The reported potential
barriers of the rotation and the hopping are in the range
of 0.10-0.18 eV and 0.23-0.27 eV, respectively, which are
in good agreement with our results. kThe scattering of
the reported potential barriers are probably due to the
difference in the computational condition. Particularly,
these three reports employed different manners for charge
compensation of the computational cell with a positively-
charged proton, i.e., a negatively-charged In3+ dopant
on a Zr4+ site [45], a homogeneous background charge
[12], and an electron [46]. The homogeneous background
charge was here employed, leading to the comparable po-
tential barriers to those in Ref. [12].

IV. RESULTS OF SELECTIVE SAMPLINGS

In this section, we illustrate the advantage of the pro-
posed selective sampling procedure through a simulation
study in which we apply it to a low PE region identifica-
tion problem for a proton in BaZrO3.

A. Setup of the simulation study

We compared the performances of several sampling
methods for α = 0.05, 0.1 and 0.2. Specifically, we com-
pared the following seven methods:

• GP1(xyz)

• GP2(xyz + 1st NNs)

• GP3(xyz + decaying NNs)

• GP4(xyz + prePES)

• random

• prePES

• ideal

The first four methods are the proposed GP-based se-
lective sampling procedure with different descriptors. In
GP1, we used the three-dimensional coordinates xi, yi, zi
in the host crystal lattice as the descriptors of the ith

point (denoted as “xyz”). In GP2, we also used the first-
nearest-neighbor (NN) distances to Ba, Zr and O atoms
from each point as additional descriptors (denoted as
“1st NN”). In GP3, a weighted sum of the distances to
the 1st NN atoms, 2nd NN atoms, and so on, are also in-
corporated as additional descriptors, where the weights
are decaying to zero as the atom goes away from the



7

TABLE I. Numbers of sampling steps required to identify all
the grid points in the low PE region. The averages and the
standard deviations over 10 runs with different random seeds
are shown. Note that the results of prePES are obtained by a
single run because there is no random component in prePES.

α = 0.05 α = 0.10 α = 0.20

GP1 1488.5± 239.4 1576.1± 36.9 1539.6± 31.2

GP2 1294.1± 180.9 1266.9± 167.9 1269.4± 100.3

GP3 511.7± 30.4 617.6± 49.7 875.2± 60.1

GP4 114.3± 1.3 235.5± 1.0 394.1± 5.2

random 1749.6± 15.0 1757.1± 11.3 1762.2± 3.9

prePES 592 1222 1479

ideal 89 177 354

point (denoted as “decaying NNs”). In GP4, we used
preliminary PES (denoted as “prePES”) as an additional
descriptor. Here, we mean by preliminary PES a rough
but quick approximation of the PES obtained by using
less accurate but more efficient computational methods.
Specifically, we used PE values at all the N points ob-
tained by single-point DFT calculations using a smaller
supercell consisting of 2×2×2 unit cells with a 2×2×2
k-point sampling. In GP4, GP model is used for modeling
the difference between the actual PES and the prelimi-
narily PES [33].

The method random indicates a naive random sam-
pling, where a point is selected at each step uniformly at
random. The method prePES indicates a selective sam-
pling method based only on a preliminary PES. Specif-
ically, points are sequentially selected in the ascending
order of the preliminary PEs obtained by single-point
DFT calculations. Finally, ideal indicates the best pos-
sible ideal sampling method which is only possible when
the actual PEs at all the points are known in advance.

In GP1 to GP4, we must select two points at random for
initializing the GP model. Thus, we report the average
and the standard deviation over 10 runs with different
random seeds. The tuning parameters of the GP models
were set as γ1 = γ2 = 0.5. According to our preliminary
experiments (not shown), the performances were not very
sensitive to the choices of those tuning parameters.

B. Performance comparison

FIG.4 and Table I compare the efficiencies of the seven
sampling methods. In each of the three plots (corre-
sponding to the α = 0.05, 0.1, and 0.2 cases), the number
of points successfully sampled from the low PE region
(#(TP)) is plotted as a function of the number of PE
evaluations by DFT calculations (#(TP) + #(FP)).

The results for the four different GP-based methods
(GP1 to GP4) indicate the importance of the choice of
descriptors. When only the three-dimensional coordi-

nate information (xyz) is used, the performances were
only slightly better than random. For example, when
α = 0.20, GP1 required 1539.6 DFT calculations in aver-
age until all the points in the low PE region were success-
fully identified. The results on GP2 and GP3 were better
than GP1, suggesting that adding appropriate descriptors
are generally advantageous. The results on GP4 indicate
that a preliminary PES is highly helpful as a descriptor.
However, the results on prePES suggest that the prelimi-
nary PES alone is not sufficient for efficiently identifying
the low PE region. In §IV C, we discuss the importance
of the preliminary PES in more detail.

FIG.5 demonstrates the differences between the sam-
pling sequences of the GP1, GP4, prePES, random and
ideal methods (we omit those of GP2 and GP3 due to
space limitations). In GP1, many points in the high PE
region (non-low PE region) were mistakenly selected. In
GP4, the points in the low PE region were preferentially
selected, and only a small number of points were mistak-
enly selected from the high PE region. In prePES, the
method preferentially selected the points in the low PE
region, but it failed to find all of them. Note that the
sampling sequence of GP4 looks almost identical to that
in the ideal sampling, despite the low PE region being
unknown beforehand. This indicates that the GP model
in GP4 could successfully estimate the PES in the low PE
region.

C. Importance of preliminary PES

The results in FIG.4 and Table I indicate that the pre-
liminary PES obtained by single-point DFT calculations
is highly valuable as a descriptor when it is used along
with the three-dimensional coordinates (xyz) in GP mod-
eling. However, using the preliminary PES alone is not
sufficient for identifying the low PE region in the method
prePES, which was only slightly better than random. Al-
though the sampling curves of prePES almost overlap
with the ideal sampling curves in earlier steps, they grad-
ually deviate as the sampling proceeds. Eventually, the
total numbers of sampling steps required for finding all
the points in the low PE region were as large as 592,
1222, and 1479 points for the α = 0.05, 0.10, and 0.20
cases respectively, which are 6.7-fold, 6.9-fold, and 4.2-
fold worse than the ideal sampling cases. This ineffi-
ciency of prePES is ascribed to the relationship between
the DFT calculation with structural optimization and the
single-point DFT calculation. This can be clearly seen in
the rank correlation between the actual and preliminary
PEs shown in FIG.6. FIG.6 shows the rank correlation
for the α = 0.20 case, where points with low PEs are lo-
cated below the horizontal broken line. Since the prePES
sampling method selects the points in the increasing or-
der of the preliminary PEs, meaning that the points are
selected from left to right in FIG.6, most of the N grid
points (all points located in the shaded region) must be
sampled for selecting all the points in the low PE region.
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(a) α = 0.05
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(b) α = 0.10
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(c) α = 0.20

FIG. 4. Efficiencies of the seven sampling methods for (a) α = 0.05, (b) α = 0.10 and (c) α = 0.20. The numbers of grid
points successfully sampled from the low PE region (#(TP)) are plotted as functions of the number of PE evaluations by DFT
computations (#(TP) + #(FP)).
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100 steps 200 steps 300 steps 400 steps

GP1 sampling

GP4 sampling

prePES sampling

random sampling

ideal sampling

FIG. 5. Selected grid points (gray dots) at 100, 200, 300, and 400 steps by different sampling methods in the model crystal
lattice of BaZrO3 for α = 0.20 case. The yellow surface in each plot is the isosurface corresponding to the energy threshold at
α = 0.2.
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FIG. 6. Rank correlation between the actual and the preliminary PEs. The grid points in Pα are shown as open circles, while
those in Nα are shown as crosses. Sampled points at 400 steps are also shown as blue and red symbols in (a) prePES and (b)
GP4, respectively, for the α = 0.20 case. The method GP4 samples all the positive points at 400 steps with a small number of
false positives, i.e., sampled points that are not included in the low PE region. Therefore, in (b), there are no false negative
points.

FIG.7 shows the points that could not be found by the
prePES sampling method. This reflects the displacement
of the first-nearest-neighbor O ion (O1NN) for keeping a
suitable distance from the proton (∼ 1 Å) in the case of
ordinary DFT calculation with structural relaxation. In
addition, the structural relaxation around a proton crit-
ically affects the potential barrier heights for the proton
migration. The potential barrier of the rotational and
hopping paths obtained by the single-point DFT calcula-
tions are 0.37 and 1.29 eV, respectively, which are much
higher than the ground truth values obtained by the or-
dinary fully relaxed DFT calculations.

On the other hand, by using GP with xyz and prePES
as descriptors, the points close to O atom were also suc-
cessfully identified. This is due to the advantage of the
GP-based procedure where we could successfully predict
by using the GP model that the actual PE values and the
preliminary PE values are highly different in the neigh-
borhoods of O atoms. In GP4, the average number of
sampling steps required for identifying all the points in
the low PE region was only 394.1 which is only 1.1-fold
of the ideal sampling method.

V. PRACTICAL ISSUES

In this section, we present results regarding two prac-
tical issues. In §V A, we show results on when the sam-

pling should be stopped. In §V B, we discuss and present
results on how an appropriate α can be selected.

A. Stopping criterion

One of the important practical issues in selective sam-
pling methods is when the sampling should be stopped.
As we discussed in §II D, one of the practical advantages
of statistical models such as the GP model is that we
can estimate how many points still remain to be sam-
pled by estimating the false negative rate (FNR). FIG.8
shows the profiles of the estimated FNR and the esti-
mated threshold as functions of the number of DFT cal-
culations in the case of α = 0.20. These plots indicate
that the estimated FNR almost coincides with the ground
truth line, and that the estimated threshold also con-
verges to the true value as the sampling proceeds. These
results suggest that the estimated FNR would be actually
useful as a stopping criterion.

B. How to determine an appropriate α value

Another practical issue is how to choose an appropriate
α depending on what physical property is being investi-
gated. In the case of proton conduction in an oxides, we
should identify the low PE region in such a way that a
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(a) Grid points in the low PE region with α = 0.2 (b) Grid points that could not be found by prePES

FIG. 7. (a) Grid points in the low PE region with α = 0.2 of BaZrO3, and (b) grid points that could not be found via the prePES
sampling method in 394 steps by which the GP4 sampling method could successfully identify all the grid points in the low PE
region. Plot (b) indicates that grid points around the O atom (red) could not be correctly identified by using preliminary PES
alone, i.e., the preliminary PEs at these points are NOT relatively low, although their actual PEs are found to be relatively
low after structural optimization.
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FIG. 8. The profiles of the estimated FNRs and thresholds for α = 0.20 case.
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FIG. 9. Results when α is gradually increased as 0.05 → 0.10 → 0.15 → 0.20 in a stepwise manner. (a) THe true positive
points, (b) the estimated FNR, and (c) the estimated threshold are plotted as functions of the numbers of DFT computations.

Here, α is updated when the estimated false negative rate ˆFNR becomes less than ε = 10−6 at the current α. Note that the
FNR in (b) and the threshold in (c) change with α.

proton-conducting network exists throughout the crystal
lattice within the region. According to the actual PEs in
FIG.3, the low PE regions are isolated when α < 0.15,
while they are abruptly connected when α ' 0.20. This
means that a proper α value would be around 0.20 in the
present study.

If such an appropriate α value is unknown beforehand,
we can set the α value in a stepwise manner. For demon-
strating this approach, we investigated the performance
of GP4 when α was increased as 0.05, 0.10, 0.15 and 0.20
in a stepwise manner, whose results are shown in FIG.9.
In this scenario, we increased α by 0.05 when the es-
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timated FNR became smaller than 10−6. The plot (b)
indicates that, in the first step with α = 0.05, the con-
vergence of the estimated FNR was a bit slower than the
ground truth FNR. This is why we had to sample more
than 250 times before we were sure that all the points
in P0.05 had been successfully sampled. On the other
hand, when α = 0.10, 0.15, and 0.20, the convergences
of the FNRs were almost as fast as the ground truth
FNRs. Note that the true positive points abruptly in-
crease when the α value is switched, indicating that the
positive points for higher α have already been sampled in
earlier steps. Although this stepwise strategy was a lit-
tle less efficient than directly specifying α = 0.20, it was
still much more efficient than the prePES and random
sampling methods.

VI. CONCLUSION

We introduced a machine learning-based selective sam-
pling procedure for PES evaluation, and demonstrated
the efficacy of the proposed procedure by applying it
to proton conduction in BaZrO3. The performance of

the selective sampling method based on the GP model
greatly depends on the descriptors, and the use of a pre-
liminary PES (GP4(xyz + prePES)) is significantly ef-
fective, which was here evaluated by single-point DFT
calculations in a smaller supercell. This indicates that
the machine learning approach hybridized with a low-
cost PES evaluation is a solid methodology for preferen-
tial PES evaluation in a region of interest. In addition,
we demonstrated that two practical issues, namely, when
to stop the sampling and how to determine an appro-
priate α value (equivalent to the PE threshold), can be
solved by using the false negative rate (FNR) defined in
Eq. (12).
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Physical review letters 104, 136403 (2010).

[20] W. Setyawan, R. M. Gaume, S. Lam, R. S. Feigelson, and
S. Curtarolo, ACS combinatorial science 13, 382 (2011).

[21] M. Rupp, A. Tkatchenko, K.-R. Müller, and O. A. von
Lilienfeld, Physical review letters 108, 058301 (2012).

[22] Y. Saad, D. Gao, T. Ngo, S. Bobbitt, J. R. Chelikowsky,
and W. Andreoni, Physical Review B 85, 104104 (2012).

[23] K. Fujimura, A. Seko, Y. Koyama, A. Kuwabara,
I. Kishida, K. Shitara, C. A. Fisher, H. Moriwake, and
I. Tanaka, Advanced Energy Materials 3, 980 (2013).

[24] G. Montavon, M. Rupp, V. Gobre, A. Vazquez-
Mayagoitia, K. Hansen, A. Tkatchenko, K.-R. Müller,
and O. A. von Lilienfeld, New Journal of Physics 15,
095003 (2013).

[25] A. Seko, T. Maekawa, K. Tsuda, and I. Tanaka, Physical
Review B 89, 054303 (2014).

[26] A. Seko, A. Takahashi, and I. Tanaka, Physical Review
B 90, 024101 (2014).
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