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Topological crystalline insulators define a new class of topological insulator phases with gapless
surface states protected by crystalline symmetries. In this work, we present a general theory to
classify topological crystalline insulator phases based on the representation theory of space groups.
Our approach is to directly identify possible non-trivial surface states in a semi-infinite system with
a specific surface, of which the symmetry property can be described by 17 two dimensional space
groups. We reproduce the existing results of topological crystalline insulators, such as mirror Chern
insulators in the pm or pmm groups, Cnv topological insulators in the p4m, p31m and p6m groups
and topological non-symmorphic crystalline insulators in the pg and pmg groups. Besides these
existing results, we also obtain the following new results: (1) there are two integer mirror Chern
numbers (Z2) in the pm group but only one (Z) in the cm or p3m1 group for both the spinless and
spinful cases; (2) for the pmm (cmm) groups, there is no topological classification in the spinless
case but Z4 (Z2) classifications in the spinful case; (3) we show how topological crystalline insulator
phase in the pg group is related to that in the pm group; (4) we identify topological classification
of the p4m, p31m and p6m for the spinful case; (5) we find topological non-symmorphic crystalline
insulators also existing in pgg and p4g groups, which exhibit new features compared to those in pg
and pmg groups. We emphasize the importance of the irreducible representations for the states at
some specific high symmetry momenta in the classification of topological crystalline phases. Our
theory can serve as a guide for the search of topological crystalline insulator phases in realistic
materials.

PACS numbers: 73.20.At, 73.43.-f, 02.20.-a

I. INTRODUCTION

According to the ability to conduct electric currents,
materials can usually be classified into insulators and
metals. Recently, researchers discover a new class of
materials, of which their interior cannot conduct elec-
tric currents, similar to insulators, but their surfaces
have conducting channels. Although the surface states
can also exist in ordinary insulators, the uniqueness of
this class of materials lies in the fact that the existence
of surface states is related to its bulk property, which
can be described by the mathematical theory, topology.
Thus, these materials are dubbed “topological insulators
(TIs)”[1–4]. The quantum Hall effect[5], discovered in
1980, can be viewed as the first example of topologically
non-trivial states. Under a strong magnetic field, two
dimensional (2D) electron gases form Landau levels and
got localized, while at the edge, there are gapless con-
ducting modes propagating along one direction, known
as the “chiral edge state”. A recent progress in this field
is the discovery of time-reversal (TR) invariant TIs[6–12],
of which the gapless edge/surface states are protected by
TR symmetry. Different from the chiral edge states in the
quantum Hall effect, the edge/surface states of TR invari-
ant TIs contain two counter-propagating modes with op-
posite spins, thus dubbed “helical edge/surface states”.
Two branches of helical edge/surface states are related
to each other by TR symmetry, forming the Kramers’
pairs. According to the Kramers’ theorem, the energy
of one branch at the momentum k must be the same as

that of the other branch at −k. Therefore, at the mo-
menta invariant under TR, such as k = 0, two branches
of surface states are degenerate and form a Dirac-cone-
like energy dispersion. TR invariant TIs have been
confirmed in various materials, such as HgTe quantum
wells[9, 13], BiSb[14], Bi2Se3 family of materials[15–17],
etc.[18, 19], by different experimental methods, including
angular-resolved photon emission spectroscopy (ARPES)
[14, 16, 17, 20], scanning tunnelling microscopy (STM)
[21–23] and transport measurements[13, 24–26]. Since
the topologically non-trivial edge/surface states require
the protection from TR symmetry, these systems are also
regarded as symmetry protected topological states[27] in
free fermions systems.

Based on the above discussion, we can see that degen-
eracy due to symmetry plays an essential role in topo-
logical states of free fermion systems that are protected
by symmetry. It is well known that in crystals, there
are different types of degeneracy, including accidental
degeneracy and essential degeneracy. The essential de-
generacy arises from the presence of certain symmetries
and is related to the representation theory of symmetry
groups. Therefore, one may ask the following questions:
(1) whether or not the concept of TR invariant TIs can be
generalized to other types of symmetries, leading to new
classes of topological states; and (2) if one can use rep-
resentation theory to classify topological states that are
protected by other types of symmetries. It was recently
realized that crystalline symmetry can indeed protect
new types of topological states, which are dubbed “topo-
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logical crystalline insulators (TCIs)”[28–47]. In partic-
ular, SnTe systems are found to be a mirror symme-
try protected topological state, which has recently been
confirmed by the ARPES measurement[48–50]. Vari-
ous physical properties, including mass acquisition[51],
unconventional orbital texture[52], spin-filtered edge
states[53], quasi-particle interference[38, 54] and inter-
face superconductivity[55], have been considered.
In this paper, we will systematically study different

types of TCIs based on the representation theory of crys-
talline symmetry groups. Instead of directly studying
three dimensional (3D) bulk system, we consider a 3D
semi-infinite system with one surface and investigate non-
trivial gapless surface states which cannot be gapped
once the crystalline symmetry is preserved. Since a 3D
semi-infinite crystal is classified by 2D space group, this
approach allows us to classify different types of non-
trivial surface states based on the representation the-
ory of 2D space group. After classifying 2D topologi-
cally non-trivial surface states, we can further investigate
topological property of the 3D bulk system and identify
the corresponding 3D bulk topological invariants. The
details of our approach will be discussed below, but we
would like first to illustrate our main results.

A. Summary of main results

Our main results are summarized in the Table I for 17
2D space groups. The first column of the table is the
group name and the second column gives the shape of
2D surface Brillouin zone (BZ), in which “re” is for rect-
anglar, “h” for hexagonal, “rh” for rhombic and “s” for
square. Different 2D surface BZs are shown in Fig. 1. The
next two columns list high symmetry momentum points
(HSPs) and high symmetry momentum lines (HSLs),
which are essential for determining topologically non-
trivial surface states. Topological classifications of TCIs
for the spinless and spinful cases are shown in the last two
columns. Here the symbols Z and Z2 indicate whether
the space of ground states for the insulating phases are
partitioned into topological sectors labeled by an integer
or a Z2 quantity, respectively. Z

n (n = 2, 3, 4) means
that we can define n different integer topological invari-
ants. We would like to emphasize that for several space
groups, including p4m, p31m, p6m, pgg, pmg and p4g,
the classification depends on which irreducible represen-
tations (Irreps) of the states near the band gap belong to.
Therefore, for these cases, we list the required condition
of Irreps in the bracket after the classification. Below, we
will discuss our results of TCIs for 17 2D space groups in
several categories.
(1) For the groups pm, p3m1 and cm (Sec. III A),

we have integer number of copies of topologically non-
trivial surface states, which are characterized by mirror
Chern numbers (MCNs), belonging to a Z classification,
for both the spinless and spinful cases. Two independent
MCNs (Z2) can be defined for the pm group, but only

one can be defined for the p3m1 and cm groups.

(2) For the groups pmm and cmm (Sec. III B), MCNs
are not allowed for the spinless case. In contrast, four
(two) independent MCNs can be defined for the spinful
case of pmm (cmm) group, leading to a Z

4 (Z2) classifi-
cation.

(3) The pg group (Sec. III C) is classified by one Z2

topological invariant.

(4) For the p4m, p31m and p6m (Sec. III D), the clas-
sification depends on the Irreps of the states near the
Fermi energy, and we need to illustrate the classification
for each group separately. For the spinless case of the
p4m group, when all the states at Γ̄ and M̄ belong to the
doublet (or 2D) Irrep, we can define two integer topolog-
ical invariants (halved mirror chirality (HMC)), giving
rise to Z

2 classification. However, if any state at Γ̄ or M̄
belongs to one dimensional (1D) Irreps, no topological
invariant can be defined. For the spinful case of the p4m
group, three topological invariants of HMC type (Z3) can
be defined, irrespective of any condition. For the p31m
group, there are three HSPs Γ̄, K̄ and K̄′ with the point
group C3v and three HSLs with mirror symmetry. When
the states at n HSPs (n = 2, 3) belong to doublet Irreps,
the topological classification is Zn with n distinct HMCs
for both the spinful and spinless cases. If there is only
one HSP or no HSP with the states in doublet Irreps, one
MCN (Z) can be defined. For the p6m group, we also
have three HSPs, in which Γ̄ belongs to the C6v group,
K̄ to the C3v group, and M̄ to the C2v group, and also
three HSLs with mirror symmetry. For the spinless case,
there are two doublet Irreps at Γ̄ and one doublet Irrep
at K̄. One HMC (Z classification) can be defined when
all the states at Γ̄ and K̄ belong to doublet Irreps. The
C2v group at M̄ has four 1D Irreps Ai and Bi (i = 1, 2).
Please refer to Table. II for the definition of Ai and Bi.
The characters of the mirror symmetry mx and my are
the same in Irreps Ai, while opposite in Irreps Bi. The
topological classification on Γ̄-M̄-K̄ depends on the Ir-
reps of the bands near the Fermi surface at M̄. If all the
states at M̄ belong to Ai (or Bi), another HMC can be
defined on Γ̄-M̄-K̄. A detailed discussion about represen-
tation dependent classification is given in Section. III E.
For the spinful case, all the states at Γ̄ and M̄ belong to
the doublet Irrep, while both doublet and singlet Irreps
are possible for the states at K̄. Thus, three independent
HMCs (Z3) can be defined on Γ̄-K̄, K̄-M̄ and M̄-Γ̄ if the
states at K̄ belong to doublet Irreps. Otherwise, there
are two HMCs can be defined on Γ̄-M̄ and Γ̄-K̄-M̄.

(5) For three non-symmorphic symmetry groups pmg,
pgg and p4g (Sec.III E), the classification also depends on
Irreps at the HSPs Γ̄, X̄, Ȳ and M̄. For the spinless case
of the pgg group, all the states at X̄ and Ȳ are doubly
degenerate (doublet Irreps). The classification depends
on 1D Irreps at Γ̄ and M̄. There are four types of different
1D Irreps at Γ̄ (M̄), denoted as Ai and Bi (i = 1, 2). If
all the states at Γ̄ (M̄) belong to the Ai or Bi Irreps, one
integer topological invariant (Z classification), dubbed
halved glide chirality (HGC), in analogy to HMC, can be
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FIG. 1. Schematic plot of the surface BZ of rectangular,
square, hexagonal and rhombic group in (a), (b), (c) and (d),
respectively.

defined along the HSL X̄-Γ̄-Ȳ (X̄-M̄-Ȳ). If both the Ai
and Bi states exist at Γ̄ and M̄ near the band gap, one
can no longer define HGC along these momentum lines.
However, a Z2 topological invariant can still be defined.
For the spinful case, the classification is similar to that of
the spinless case. The only difference is that now all the
states at Γ̄ and M̄ are doubly degenerate and it depends
on the 1D Irreps at X̄ and Ȳ if a Z2 or Z topological
invariant can be defined along the momentum line Γ̄-X̄-
M̄ (Γ̄-Ȳ-M̄). For the pmg group, all the states at X̄ and
M̄ are doubly degenerate, and thus a HMC can always
be defined along the line X̄-M̄ (Z classification). Another
independent Z topological invariant can be defined along
the line X̄-Γ̄-Ȳ-M̄ if all the states at Γ̄ and Ȳ belong
to either Ai or Bi Irreps. For the spinful case of the
pmg group, the classification is similar and only the role
of X̄, M̄ and Ȳ, Γ̄ is switched. For the p4g group, in
the spinless case, when the states at Γ̄ and M̄ belong to
doublet Irreps, three independent HGCs can be defined
on Γ̄-X̄, X̄-M̄ and M̄-Γ̄. If only the states at M̄ (Γ̄) belong
to doublet Irrep, and all the states at Γ̄ (M̄) belong to
the 1D Irreps Ai or Bi of point group C4v, two HGCs can
be defined on X̄-M̄ (X̄-Γ̄) and X̄-Γ̄-M̄ (X̄-M̄-Γ̄). If both
the Ai and Bi states exist at Γ̄ (M̄), the HGC can only
be defined on X̄-M̄ (X̄-Γ̄). If the states at both Γ̄ and
M̄ belong to singlet Irreps, no topologically non-trivial
phase can be realized. In the spinful case, all the states
are doubly degenerate at Γ̄ and M̄, and thus one HGC
can be defined on Γ̄-M̄. When the states at X̄ belong to
Ai (or Bi) of the group C2v, another one HGC can be
defined on Γ̄-X̄-M̄.

B. Outline

This paper is organized as follows. The Sec. II is de-
voted to the description of our technique approach. We

first describe the relationship between symmetry and de-
generacy and then discuss our strategy to classify topo-
logically non-trivial surface states for a 3D semi-infinite
crystal. In Sec. III, we perform a complete analysis of
17 2D space groups to identify possible crystal structures
that are able to host non-trivial surface states. The topo-
logical invariant is also identified for each topologically
non-trivial case. A conclusion is drawn in Sec. IV.

II. METHODOLOGY

A. Symmetry and degeneracy

In quantum mechanics, if two different eigenstates
share the same eigenenergy, we say these two states are
degenerate. The degeneracy is usually due to the pres-
ence of symmetry, the invariance of the Hamiltonian un-
der a certain operation. The relation between degeneracy
and symmetry has been well established based on the rep-
resentation theory of symmetry groups. Here we focus on
the degeneracies induced by crystalline symmetries. Ac-
cording to different types of crystalline symmetries, we
can further classify the corresponding degeneracies into
three types, which are discussed in details below.
The first type of degeneracy (type-I) is due to the non-

commutation relation between symmetry operations,
which leads to the presence of high dimensional Irreps
of the symmetry group. From the group theory, the
eigenstates of a system can form the basis to construct
Irreps of the symmetry group for this system and the de-
generacy is equal to the dimension of the corresponding
Irreps[56]. In an Abelian group, in which all the sym-
metry operators commute with each other, only one 1D
Irreps exist. Thus, the existence of high-dimensional Ir-
reps requires that at least two of the group elements do
not commute, AB 6= BA (A,B ∈ G, G denotes the sym-
metry group of the system with the Hamiltonian H). We
may consider a special case, of which the system has two
symmetry operators A and B anti-commuting with each
other ([H,A] = 0, [H,B] = 0 and {A,B} = 0). Since
[H,A] = 0, we can take |ψ〉 as a common eigenstate of H
and A, i.e., H |ψ〉 = E|ψ〉 and A|ψ〉 = a|ψ〉. B|ψ〉 is also
an eigenstate of the Hamiltonian with the same eigenen-
ergy E since H(B|ψ〉) = BH |ψ〉 = E(B|ψ〉). At the
same time, we have A(B|ψ〉) = −BA|ψ〉 = −a(B|ψ〉),
which indicates that B|ψ〉 and |ψ〉 are two orthogonal
and degenerate eigenstates of H .
The second type of degeneracy (type-II) occurs for the

eigenstates belonging to different Irreps of a symmetry
group. As mentioned above, all eigenstates of a system
can form the basis for the representations of the corre-
sponding symmetry group. Let us consider two eigen-
states |ψ1(k)〉 and |ψ2(k)〉 belonging to two different Ir-
reps of the symmetry group of the Hamiltonian, where k
is a tuning parameter and can be regarded as the momen-
tum of the BZ for our case. Due to different Irreps, the
coupling between these two states is forbidden by symme-
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TABLE I. Summary of the symmetry and topological properties of 2D space groups. SBZ: surface BZ; HSP: high symmetry
point; HSL: high symmetry line; re: rectangular; h:hexagonal; rh:rhombic; s:square. The surface BZ of rectangular, square,
hexagonal and rhombic group are shown in Fig. 1(a), (b), (c) and (d), respectively. For HSL, m is for mirror symmetry and g
for glide symmetry. Ai and Bi denote 1D Irreps at the corresponding HSP while E denotes 2D Irrep.

Group SBZ HSP HSL
Topological Classification

spinless spinful

pm re Γ̄-X̄,Ȳ-M̄:my Z
2
≡ Z× Z Z

2

p3m1 h Γ̄: C3v Γ̄-M̄:m Z Z

cm rh Γ̄-X̄:my Z Z

pmm re Γ̄,X̄,M̄,Ȳ:C2v
Γ̄-X̄,Ȳ-M̄:my None Z

4

Γ̄-Ȳ,X̄-M̄:mx

cmm rh Γ̄,X̄,Ȳ:C2v
Γ̄-X̄:my;

None Z
2

Γ̄-Ȳ:mx

pg re Γ̄-X̄,Ȳ-M̄:gy Z2 Z2

p4m s
Γ̄,M̄:C4v Γ̄-X̄:my; Z

2(Γ̄, M̄ ∈ E) Z
3

X̄:C2v X̄-M̄:mx; None (Γ̄ or M̄ /∈ E)

Γ̄-M̄:md

p31m h Γ̄,K̄,K̄′:C3v

Γ̄-K̄:m1 Z
3(3 HSPs ∈ E) Z

3(3 HSPs ∈ E)

K̄-K̄′:m2 Z
2(2 HSPs ∈ E) Z

2(2 HSPs ∈ E)

K̄′-Γ̄:m3 Z(general case) Z(general case)

p6m h
Γ̄:C6v Γ̄-K̄:m1 Z

2(Γ̄ ∈ Ei(i = 1, 2),K̄ ∈ E,M̄ ∈ Ai(Bi)) Z
3(K̄ ∈ E)

K̄:C3v Γ̄-M̄:m2 Z(Γ̄ ∈ Ei(i = 1, 2),K̄ ∈ E,M̄ general) Z
2(K̄ /∈ E)

M̄:C2v K̄-M̄:m3 None (Γ̄ /∈ Ei(i = 1, 2) or K̄ /∈ E)

pgg re Γ̄,X̄,Ȳ,M̄:C2v

Γ̄-X̄,Ȳ-M̄:gy; Z
2(Γ̄, M̄ ∈ Ai(Bi); Z

2(X̄, Ȳ ∈ Ai(Bi);

Γ̄-Ȳ, X̄-M̄:gx Γ̄ ∈ Ai(Bi), M̄ ∈ Bi(Ai)) X̄ ∈ Ai(Bi), Ȳ ∈ Bi(Ai))

Z(Γ̄ or M̄ ∈ Ai; Γ̄ or M̄ ∈ Bi) Z(X̄ or Ȳ ∈ Ai; X̄ or Ȳ ∈ Bi)

Z2(general case) Z2(general case)

pmg re Γ̄,X̄,Ȳ,M̄:C2v
Γ̄-X̄,Ȳ-M̄:gy; Z

2(Ȳ, Γ̄ ∈ Ai; Ȳ, Γ̄ ∈ Bi; Z
2(X̄, M̄ ∈ Ai; X̄, M̄ ∈ Bi;

Γ̄-Ȳ,X̄-M̄:mx Ȳ ∈ Ai(Bi), Γ̄ ∈ Bi(Ai)) X̄ ∈ Ai(Bi), M̄ ∈ Bi(Ai))

Z(general case) Z(general case)

p4g s

Γ̄,M̄:C4v Γ̄-X̄:gy ; Z
3(Γ̄, M̄ ∈ E) Z

2(X̄ ∈ Ai(Bi))

X̄:C2v X̄-M̄:gx; Z
2(M̄ ∈ E, Γ̄ ∈ Ai(Bi); Γ̄ ↔ M̄) Z(general case)

Γ̄-M̄:gd Z(M̄ ∈ E, Γ̄ general; Γ̄ ↔ M̄)

None(Γ̄, M̄ /∈ E)

try, indicating that the corresponding Hamiltonian must
be block diagonal under these basis. The eigenenergies of
these two states vary with k and at a certain k, these two
states may cross each other. Since the coupling between
these two states must vanish due to symmetry, this ac-
cidental degeneracy at the crossing point cannot open a
gap.

The third type of degeneracy (type-III) originates from
the anti-unitary symmetry operators. For a unitary sym-
metry operation A, 〈Aφ|Aψ〉 = 〈φ|ψ〉, where |ψ〉 and |φ〉
are two arbitrary wavefunctions. In contrast, TR op-
erator Θ is anti-unitary, which means that 〈Θφ|Θψ〉 =
(〈φ|ψ〉)∗. For spinful fermions, the TR symmetry oper-
ator satisfies the relation Θ2 = −1, which can lead to
a double degeneracy in a TR invariant system accord-
ing to the so-called Kramers’ theorem[56]. As discussed
above, this degeneracy plays an essential role in protect-

ing the gapless nature of surface states of TR invari-
ant TIs. Moreover, magnetic systems can also possess
some types of anti-unitary operations, which has been
discussed in details in Ref. [57]. This paper mainly fo-
cuses on the type-I and type-II degeneracies, which only
concern unitary operators.

B. Overview of Classification principles

After understanding the above three types of degen-
eracies induced by symmetry, we will next describe our
approach for classification and show how these differ-
ent types of degeneracies can lead to non-trivial surface
states.

Let us start from the discussion about how TR sym-
metry protects the gapless nature of surface states in
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FIG. 2. (Color online) (a) Schematic plot of a semi-infinite
system. (b) Schematic plot of the surface states of TR in-
variant TIs. Γ̄ = (0, 0) and X̄ = (π, 0) are two TI invariant
momenta in the surface BZ. (c) Schematic plot of the surface
states of trivial insulators.

TR invariant TIs and why topological surface states are
essentially different from normal surface states, such as
dangling bonds, when TR symmetry is preserved. Our
discussion follows Ref. [58]. We consider a semi-infinite
system with one surface along the z direction, as shown
in Fig. 2(a). The difference for the surface states be-
tween TR invariant TIs and trivial insulators are shown
in Fig. 2(b) and (c). One can see that the surface states
for TIs connect the conduction bands to valence bands
while those for trivial insulators are isolated from either
conduction or valence bands. This difference relies on the
fact that all the states at Γ̄(0, 0) and X̄(π, 0) in Fig. 2(b)
and (c) are doubly degenerate due to TR symmetry. For
non-trivial surface states in Fig. 2(b), the degeneracies at
Γ̄ and X̄ point come from different surface bands (switch-
ing partners) while for trivial surface states in Fig. 2(c),
degenerate states at Γ̄ and X̄ are from the same surface
bands. Thus, the surface states in Fig. 2(b) and (c) are
essentially different. If these degeneracies are removed by
the breaking of TR symmetry, there will be no difference
between the surface bands in Fig. 2(b) and (c).

From this discussion, one can clearly see that the de-
generacies at Γ̄ and X̄ play an essential role in protecting
topological surface states. This physical picture can be
naturally generalized. If one can find a similar surface
dispersion as that in Fig. 2(b) and the degeneracies at the
Γ̄ and X̄ points are protected by other types of symmetry,
surface states will be robust against any perturbation at
the surface once the symmetry exists. In a crystal, degen-
eracy is usually induced by crystalline symmetry. Thus,
we will next study how different types of degeneracy due
to crystalline symmetry can help to protect non-trivial
surface states.

We again consider a semi-infinite system in 3D with
one surface as shown in Fig. 2(a), which can be described
by 2D space group instead of 3D space group since there
is no translational symmetry along the direction normal
to the surface. The 2D BZ is defined for this semi-infinite
system, as shown in Fig. 3(a), and can be viewed as the
projection of 3D bulk BZ into the 2D surface. Before
discussing surface states of this semi-infinite system, it
is necessary to first review some basic concepts of space
group[56][59]. The space group G of a crystal consists of
the symmetry operators with the form g = {r|R+τ} that

transform the crystal into itself, where r is a point group
operation, R is a primitive translation of the correspond-
ing Bravais lattice, and τ is a non-primitive translation
vector. Non-zero τ appears in the compound crystals
with more than one atoms in each primitive cell. The
translation symmetry operators form an Abelian sub-
group T . The factor group F = G/T of G with respect
to T is isomorphic to a point group. If one can find a set
of generators for the whole space group G, for which one
can always choose τ = 0, the group G is called a sym-
morphic group; otherwise, it is a non-symmorphic group.
For the subgroup T of translational operators, we can
define the BZ in the momentum space. In the BZ, a mo-
mentum k can either be preserved under an operator or
be transformed to another one. All the symmetry opera-
tions that preserve k form a subgroup of the space group
G, usually known as a wave vector group or a little group
at the momentum k, denoted as Gk. The little group Gk

also consists of translational group T and the correspond-
ing factor group is denoted as Fk. The dimension of the
Irreps of the wave vector group Gk or the correspond-
ing factor group Fk determines the degeneracy of energy
bands at the momentum k. In the Appendix A, we give
a systematic review of the representation theory of space
groups.

By identifying the wave vector group for each momen-
tum in the BZ, we can figure out how different types of
degeneracy occur in the whole BZ. The detailed anal-
ysis for 17 2D space groups will be presented in the
next section. Here, we will first illustrate how the oc-
currence of degeneracy can lead to non-trivial surface
states. We first look at the type-I degeneracy in a crys-
tal. This type of degeneracy only occurs at some HSPs,
where the corresponding wave vector group consists of
at least two symmetry operations that do not commute
with each other. To have a non-trivial surface state as
that in Fig. 2(b), we require two separate HSPs with
degenerate states, denoted as K1 and K2. This degen-
eracy should be split in the line K1-K2 except K1 and
K2. The TCI due to type-I degeneracy, dubbed type-I
TCI, can exist when the above conditions are satisfied.
This can occur in both symmorphic and non-symmorphic
crystals for the spinless case. For symmorphic crystals,
since the wave vector group is identical to a certain point
group, the corresponding Irreps can be directly read out
from the character tables of the point group. By search-
ing for point groups with high dimensional Irreps, we
can easily identify which types of crystal structures can
host type-I TCIs. It turns out that among 17 2D space
groups, the symmorphic groups p4m, p31m and p6m are
allowed for type-I TCIs. Here, we emphasize that for
a symmorphic crystal, besides high dimensional Irreps,
1D Irreps also exist. Thus, if some states belonging to
these 1D Irreps coexist with non-trivial surface states
near the Fermi energy, the system becomes trivial. For
non-symmorphic crystals, the situation is different and
the eigenstates are no longer related to the representa-
tions of the point group. Instead, the so-called projective
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representations[59] of point groups are required to de-
scribe eigenstates in a non-symmorphic system. It turns
out that at certain HSPs, the projective representations
only possess high dimensional Irreps. Correspondingly,
all states at these momenta are at least doubly degener-
ate, in contrast to the symmorphic case. Therefore, the
type-I TCI is more robust for non-symmorphic crystals.
The non-symmorphic groups pmg, pgg and p4g belong to
this case. When spin is taken into account, we need to
consider the spinor representations (or double represen-
tations) of point groups. The spinor representation can
also be included into the theory of projective represen-
tations, which is discussed in details in the Appendix A.
For the spinful case, the type-I TCI can exist in pmm,
pmg, pgg, cmm, p4m, p4g, p31m and p6m groups.

In constrast to the type-I TCIs, the type-II degeneracy
occurs because of multiple different Irreps. As discussed
above, the type-II degeneracy requires a tuning parame-
ter, which can be taken as the momentum k in the BZ.
Thus, it is required that multiple Irreps should exist at
least on a momentum line in the BZ. In the 2D space
group, only mirror and glide symmetry can exist on a
momentum line and allow for multiple Irreps. Thus, the
type-II degeneracy is possible for the pm, pg, cm, pmm,
pmg, pgg, cmm, p4m, p4g, p3m1, p31m and p6m groups.
The TCI due to the type-II degeneracy is dubbed the
type-II TCI. One example of the type-II TCI is the mir-
ror Chern insulator[29], for which gapless surface states
are protected by mirror symmetry. It should be empha-
sized that for the groups with type-II degeneracy listed
above, gapless surface states are not always allowed. One
example is that mirror Chern insulators do not exist in
the pmm for spinless fermions. We will analyze these
different situations separately below.

Before considering concrete 2D space groups, we sum-
marize our major steps of identifying crystal space groups
with the required symmetry for TCIs. For a given crystal,
the wave vector group for each momentum in the surface
BZ of a semi-infinite system should be first identified.
Then, based on the representation theory of wave vector
groups, degeneracy can be extracted for each momentum.
If we can find two or more than two momenta with high
dimensional Irreps, the type-I TCI is possible. If we can
find a line of momenta in the BZ with more than one
Irreps, the type-II TCI can exist. It should be empha-
sized that type-I and II TCIs can co-exist in one space
group. Our analysis of the relation between non-trivial
surface states and degeneracy can be applied to each 2D
space group, which will be discussed in details below.
Although the discussion on non-trivial surface states can
indicates topologically non-trival phase in the bulk sys-
tem based on the surface-bulk correspondence[60], this
approach does not directly give us topological nature of
bulk systems, as well as bulk topological invariants. It
also does not tell us which kinds of models can be topo-
logically nontrivial. Thus, it is necessary to construct toy
models for TCIs and compute topologically non-trivial
surface states explicitly. We will also identify topological

(a)

 !

 "

 #

$

%

&

'

(

)' *(

 !

 "

(b)

+,-

+,.

*&*&/

(c)

0

*$

+ -
01

*&*&/ 23

24(d)

*$
*(

*5

*5/

6

6 7

78
9

: *$

*&

*$
*(

*'

FIG. 3. (Color online) (a) Schematic plot of the z-projection
relation between the 3D bulk BZ and the surface BZ. The
points in the surface BZ are marked with bar over them. (b)
Schematic plot of the surface BZ of pm group with two my

invariant lines high-lighted and denoted by κy1 and κy2. (c)
Schematic plot of surface states of TCI in pm group on X̄′-
Γ̄-X̄ with Co1 = −Ce1 = 1. The red and blue lines denote
the bands in even and odd mirror subspace, respectively. (d)
Schematic plot of the BZ of p3m1 group. The MILs are de-
noted by the red, blue and green lines. The three-fold invari-
ant points are marked by the yellow triangles.

invariants for each class of TCIs.

III. CLASSIFICATION OF TCIS BASED ON 2D

SPACE GROUPS

Next we will reveal our results for the classification of
17 2D space groups for TCI phases based on the approach
described above. It turns out that there are no TCIs in
the p1, p2, p3, p4 and p6 groups. The type-II TCI can
exist in the pm, pg, cm and p3m1 groups for both single
(spinless fermions) and double groups (spinful fermions).
For the pmm and cmm group, there is no TCI for the
single group case but for the double group case, both
type-I and type-II degeneracies are possible, leading to a
mixed type-I-II TCI phase. For the pmg, pgg, p4m, p4g,
p31m and p6m groups, both type-I and type-II TCIs can
exist for both single and double groups. It is interesting
to notice that type-I degeneracy is always accompanied
with type-II degeneracy for a 2D space group. This is
because all the HSPs can be connected by momentum
lines that are invariant under mirror or glide operations.
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A. pm, p3m1 and cm groups

We start our discussion from the systems with pm,
p3m1 and cm groups, for which only type-II degeneracy
exists in both the spinless and spinful cases. As stated
above, a symmetry invariant line is needed to realize the
type-II TCI. In a 2D space group, only the mirror reflec-
tion and glide symmetry operations can exist along a line.
The most simple case is the pm group, which is a sym-
morphic group with parallel mirror reflection axes. Let us
assume the mirror operation is along the y-direction, de-
scribed by the notation my : (x, y) → (x,−y). As shown
in Fig. 3(b), there are two mirror symmetry invariant
momentum lines (MILs), denoted as κy1 = (kx, 0) and
κy2 = (kx, π), in the surface BZ. Along these momen-
tum lines, the wave vector group is given by C1h and has
two 1D Irreps, which can be distinguished by the parity
m± = ±if of the mirror operator my, where f = 0 for
the spinless case and f = 1 for the spinful case. Conse-
quently, on each line, the Hamiltonian can be diagonal-
ized into two blocks, which are distinguished by mirror
parities. Thus, each block belongs to the subspace of the
states with a definite mirror parity m+ or m−, which is
dubbed the mirror even or odd subspace. If two bands
belonging to two different mirror subspaces cross each
other along these momentum lines, the crossing point is
protected by the mirror symmetry.

After understanding the wave vector group of the pm
group, we next ask what types of Fermi surfaces and en-
ergy dispersions are possible for non-trivial surface states.
Since the Fermi surface must be a closed contour on the
surface BZ (a torus) of a bulk insulator, the Fermi surface
always crosses the HSLs κy1 and κy2 with even number
of times. There are two possibilities: (I) the Fermi sur-
face intersects with each of the HSLs an even number
of times; or (II) it crosses both κy1 and κy2 with an odd
number of times. For the case (I), we may consider an ex-
ample with the Fermi surface crossing the line κy1 twice,
as depicted by the points A and B in Fig. 3(b), in which
the solid green circle is the contour of the Fermi surface
for surface states. The energy dispersion around these
two points have opposite velocities for non-chiral surface
states. We further require that the states at these two
crossings points have opposite mirror parities so that the
surface states can be gapless. An example of this type
of surface energy dispersion is shown along the X̄′-Γ̄-X̄
(κy1) line with mirror symmetry my in Fig. 3(c), where
the red and blue lines denote surface bands with even
and odd mirror parities, respectively. Because of oppo-
site velocities, these two surface bands must cross at a
certain momentum along the X̄′-Γ̄-X̄ line. Due to op-
posite mirror parities, the crossing point is protected by
mirror symmetry and cannot open a gap. Thus, type-II
TCI exists in the pm group. For case (II), we may con-
sider an example of the Fermi surface crossing both κy1
and κy2 once, forming an open Fermi surface, as shown
by the dashed green line in Fig. 3(b). In this case, the
surface energy dispersion must be chiral along the lines

κy1 and κy2. This corresponds to either a layered quan-
tum Hall system[61, 62] or a Weyl semi-metal[63, 64]. In
this paper, we only focus on the insulating systems with
non-chiral surface states in the case (I).
Next we discuss bulk topological invariants for the TCI

of the pm group. As shown in Fig. 3(a), we can always
find a mirror invariant plane (MIP), denoted as M1 and
M2 in the 3D BZ, which are projected into the MILs κy1
and κy2 in the surface BZ. We can treat a MIP as a 2D
BZ and define the Chern number for the occupied states
in the even (odd) subspace for a MIP as

Ce(o) =
1

2π

∫

MIP

dΩ · Fe(o)(k) (1)

where Fe(o)(k) is the Berry curvature of the occupied
energy bands in the even (odd) subspace

Fe(o)(k) = i
∑

n∈occ,e(o)
∇k × 〈ue(o)n,k |∇k|ue(o)n,k 〉. (2)

Here, |ue(o)n,k 〉 is eigenfunction of the HamiltonianH(k) for
the n-th occupied energy band, and dΩ is an infinitesi-
mal, directed area of the MIP. Since there is no coupling
between two mirror subspaces, the Chern numbers Ce
and Co are independent. Alternatively, one can also de-
fine the mirror Chern number[65]

CM =
1

2
(Ce − Co) (3)

besides the total Chern number C = 1
2 (Ce + Co).

The surface states for the pm group can be directly re-
lated to two Chern numbers Ci and CMi (or Coi and Cei)
defined above, where i = 1, 2 denotes the MIPs M1 and
M2, respectively. In the case (I), surface energy disper-
sion in Fig. 3(c), since there is a chiral edge mode along
the 1D line κy1 in each mirror subspace (even or odd),
this suggests that Chern number in each mirror subspace
is non-zero for the MIPM1 and we have Co1 = −Ce1 = 1
according to the bulk-edge correspondence[60]. This cor-
responds to the non-chiral case with the total Chern num-
ber C1 = C2 = 0, but the MCN CM1 = −1 and CM2 = 0.
This type of TCI is also called “mirror Chern insulator”
due to its non-zero MCN[29, 65]. The case (I) of the pm
group can be characterized by two independent MCNs
CM1 and CM2 [66], leading to the Z

2 ≡ Z × Z classifi-
cation. For the case (II), not only MCNs, but also the
total Chern numbers in the MIPs M1 and M2 are non-
zero, leading to either the layered quantum Hall effect or
Weyl semi-metals, as discussed above.
Similar discussion of type-II TCIs can also be applied

to the p3m1 and cm groups. For the p3m1 group, the

surface BZ is shown in Fig. 3(d), where ~b1 and ~b2 are
the reciprocal lattice vectors. The blue, red and green
lines are three equivalent MILs, and the yellow triangles
mark the positions of three-fold rotation invariant points.
Since these MILs are related to each other by three-fold
rotations, only one independent MCN can be defined on
the MIPs that are projected to these MILs, giving rise
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to the Z classification of the p3m1 group[67]. The point
group of Γ̄ is C3v and allows for both 1D and 2D Irreps.
If all the bands at Γ̄ belong to the 2D Irreps, the cross-
ing points between the two surface bands with opposite
mirror parities will be pinned at Γ̄ point. Otherwise, the
crossing points can locate at any place of the MILs.
For the cm group, we consider the rhombic BZ shown

in Fig. 1(d), instead of the standard Wigner-Seitz cell.
In this case, the mirror symmetric line is X̄′-Γ̄-X̄ for mir-
ror reflection my. Different from the pm group, there is
only one MIL in the first BZ, leading to one MCN (Z
classification) for the cm group.
For the pm, p3m1 and cm groups, the spinful case is

similar to spinless case and the corresponding topological
classifications are equivalent.

B. pmm and cmm group

For the pmm group, the factor group F is given by the
point group C2v, which is generated by two mirror sym-
metries with perpendicular mirror reflection axes (let’s
take them as mx and my). For the spinless case, the
pmm group does not have any non-trivial surface states,
while a mixed type-I-II TCI can exist for the spinful case.
The essential difference between these two cases is the
commutation relation between two mirror operators mx

and my. Direct calculation gives mxmy = C2(z) and
mymx = Q(y)C2(z), where C2(z) denotes the π rotation
around the z axis and Q(y) is for the 2π rotation around
the y axis. For the spinless case, two mirror operators
commute with each other, [mx,my] = 0, since Q(y) = 1.
In contrast, for the spinful case, the 2π rotation Q(y)
gives −1, leading to {mx,my} = 0.
Next let us check how the commutation relation be-

tween mx and my makes the surface states trivial for
the spinless case. Compared to the pm group, the pmm
group has an additional mirror reflection symmetry. We
consider surface bands in the line κy1 = (kx, 0) that is in-
variant undermy, and assume that there is a surface state
with the momentum (k1, 0) at the Fermi energy along the
momentum line κy1. The mirror operation mx requires
that at the Fermi energy, another surface state must ex-
ist with the momentum (−k1, 0), as shown in Fig. 4. For
spinless fermions, since mx and my commute with each
other, these two branches of surface states at (±k1, 0)
possess the same mirror parity under my but opposite
velocities, as depicted in Fig. 4(a). Thus, the crossing
between these two branches at the Γ̄ point (marked by
the green circles) will open a gap, resulting the trivial
surface states.
In contrast, the spinful case of the pmm group is dra-

matically different from the spinless case since mx and
my anti-commute with each other. There are two conse-
quences due to the anti-commutation relation. Firstly, at
HSPs, such as Γ̄, X̄, Ȳ and M̄, of which the wave vector
group includes both mx and my, the anti-commutation
relation yields type-I degeneracy. Secondly, the surface
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FIG. 4. (Color online) Schematic plot of surface states of
TCIs in the pmm group. The red and blue lines denote the
bands with even and odd mirror parities, respectively. (a)
The trivial phase in spinless case. The crossing marked by
the green circle is not protected and can be gapped. (b) The
non-trivial phase in the spinful case.
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FIG. 5. (Color online) (a) Schematic plot of non-trivial sur-
face states of TR invariant TIs. (b) Schematic plot of the
trivial surface states which are two copies of that in (a). The
crossings marked by the green circles are not protected and
gap can be opened. (c) Schematic plot of the non-trivial sur-
face states of the pmm group in the spinful case with CM = 1.
(d) Schematic plot of non-trivial surface states of the pmm
group in the spinful case with CM = 2. The red and blue
lines in (c) and (d) denote the bands with even and odd mir-
ror parities, respectively.

state at (k1, 0) in the line κy1 has opposite mirror parities
of my compared to that at (−k1, 0) for the spinful case,
as shown in Fig. 4(b), which is in sharp contrast to the
same mirror parity for the spinless case. Since these two
branches of surface bands in Fig. 4(b) belong to different
mirror parity subspaces, no coupling is allowed between
these two branches. Thus, type-II degeneracy can also
exist in this group.
The coexistence of type-I and II degeneracy suggests a

Z classification of the mixed type-I-II TCI phase in the
pmm group for the spinful case, which is different from
the Z2 classification of TR invariant TIs. This differ-
ence can be illustrated in Fig. 5, in which we compare
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surface states for TR invariant TIs and those of TCIs
in the pmm group. In Fig. 5(a) and (b), we consider
one and two copies of surface states for the TR invari-
ant TIs, respectively. One surface state is stable while
for two copies of surface states, the crossings (marked by
the green circles) between them on the line connecting
two TR invariant points (Γ̄-X̄ in Fig.5(a) and (b)) are
not protected, and thus a gap can be opened, leading to
a trivial phase. In contrast, for the mixed type-I-II TCI
phase of the pmm group, the momentum line Γ̄-X̄ is a
MIL with my symmetry in Fig. 5(c). The doubly degen-
erate states at the HSPs Γ̄ and X̄ always have opposite
mirror parities of my, shown by red and blue lines in
Fig. 5(c), respectively. For the case of two copies of sur-
fce states of the mixed type-I-II TCI phase, the crossing
points along the line Γ̄-X̄ are between two states with op-
posite mirror parities (Fig. 5(d)) and thus protected by
the type-II degeneracy. Therefore, in the mixed type-I-
II TCI phase, any integer number of branches of surface
bands are stable.
All the above conclusions based on the analysis of sur-

face states are consistent with the Chern number in the
bulk systems. Detailed analysis of the total Chern num-
ber and MCN in this system can be found in the Ap-
pendix B. It turns out that the MCN for a MIP must
be zero for the spinless case while it can be any integer
for the spinful case. In the surface BZ, there are four in-
dependent MILs, and thus the topological classification
of the system is Z

4 ≡ Z × Z × Z × Z for insulating sys-
tems. Futher analysis shows that the system possesses
gapless Weyl points in the 3D bulk if

∑4
i=1 CMi is an

odd number[67].
Just like the similarity between the pm and cm groups,

the discussion of the cmm group is almost identical to
that of the pmm group. The only difference is the number
of MILs in the BZ. For the cmm group, there are only two
MILs X̄′-Γ̄-X̄ and Ȳ′-Γ̄-Ȳ in the rhombic BZ, as shown in
Fig. 1(d). Correspondingly, the classification of the cmm
group is Z2 in the spinful case, and no topologically non-
trivial phase in the spinless case.

C. pg group

The pg group is generated by a glide symmetry gy =
{my|τx} with τx = (1/2, 0), which is a combination of
mirror operation and non-primitive translation. The BZ
of the pg group is similar to that of the pm group, and
the glide symmetry exists along the lines κy1 and κy2
in Fig. 3(b). The difference between the pm and pg
group lies in the fact that the non-primitive translation
introduces an additional phase factor for the eigenval-
ues of glide operation, compared to that of mirror op-
eration. We may take the line κy1 (X̄′-Γ̄-X̄) as an ex-
ample. Along this line, all the eigenstates can be char-
acterized by the eigenvalues of glide operation (mirror
operation) for the pg (pm) group and the Hamiltonian
can be block diagonal with two blocks. For the pm
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FIG. 6. (Color online)(a)Schematic plot of a lattice of the pm
group with mirror symmetry my. The lattice constants in x,
y and z directions are a/2, b and c, respectively. (b)Schematic
plot of a lattice of the pg group, which is obtained by a small
distortion of the lattice in (a), with glide plane symmetry gy.
The atoms in layer A move in y direction by r0, while the
atoms in layer B move by −r0. The yellow regions in (a)
and (b) denote a primitive cell of the corresponding lattice.
(c)Schematic plot of the surface BZ of the lattice in (a), where
X̄m = (2π/a, 0) and X̄′

m = (−2π/a, 0). (d)Schematic plot of
the surface BZ of the lattice in (b), where X̄g = (π/a, 0) and
X̄′

g = (−π/a, 0).

group, these two blocks of the Hamiltonian can be la-
beled by the mirror eigenvalue m± = ±if (even or odd
subspace). In each subspace, the block Hamiltonian is
periodic in the BZ, so H+(−)(X̄

′) = H+(−)(X̄), where
H+(−) denotes the block Hamiltonian with the mirror

parity +if (−if ). Thus, Chern number can be defined in
each subspace. In contrast, for the pg group, the eigen-
values of the glide operation g±(kx) = ±ifeikx/2, which
is dubbed “glide parity”, depends on the momentum kx,
where f = 0 in the spinless case and f = 1 in the spinful
case. When kx changes by 2π, there is an additional mi-
nus sign from the phase factor eikx/2. As a consequence,
g±(X̄

′) = g∓(X̄) and the corresponding block Hamilto-
nian in each subspace is no longer periodic. Instead, we
have H+(−)(X̄

′) = H−(+)(X̄). Therefore, for each sub-
space, the 2D BZ can not form a closed manifold to de-
fine a Chern number. However, the above property of
the glide symmetry suggests that all the bands along the
glide symmetry invariant lines must come in pairs with
one band of g+(kx) parity and the other of g−(kx) par-
ity. This properties have been shown to lead to a Z2

classification of TCIs in the pg group[68][69].

Since the pg group is closely related to the pm group,
we will discuss how TCI phases in these two groups are
related to each other below. Here we consider a lattice
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of the pm group, as shown in Fig. 6(a). It is a layered
structure stacked along x direction, of which each layer
in y-z plane is a rectangular lattice. we consider the
pm group symmetry of this lattice with mirror symme-
try my : (y → −y). The sites in the layers A and B are
equivalent to each other and thus there is only one atom
in each primitive cell for the pm group. The correspond-
ing lattice constants along the x, y, z directions are a/2,
b and c, respectively. Now let us shift the layers A and B
in the opposite directions along the y axis with the same
displacement r0, as shown in Fig. 6(b). The mirror sym-
metry is broken and changed to a glide plane symmetry
gy = {my|(a2 , 0, 0)}. As a consequence, the primitive cell
is doubled in the real space and the corresponding BZ is
halved along the x direction, as illustrated in Fig. 6(c)
and (d).

Next we consider a tight-binding model with non-
trivial surface states on this lattice and show how surface
states evolve when the lattice is distorted from the pm
group to the pg group. Let us consider the pm group case
and assume there are four orbitals on each site, and the
basis are denoted as {|A, 1〉, |A, 2〉, |A, 3〉, |A, 4〉}, given
by

|A, i〉 = 1√
N

∑

R

eik·RϕA,i(r−R− rA,i). (4)

where i = 1, 2, 3, 4, R is the lattice vector, rA,i is the
relative position of the atoms in one primitive cell and
ϕA,i(r − R − rA,i) is the corresponding atomic orbital
wave function. Furthermore, we assume the mirror parity
of the first two orbitals |A, 1〉 and |A, 2〉 is +1, while
that of the other two orbitals |A, 3〉 and |A, 4〉 is −1,
in the spinless case. Thus, the matrix representation of
the mirror operator in the above basis is Ũ(my) = Γ30,
where Γij = σi ⊗ σj(i, j = 0, 1, 2, 3), σi(i = 1, 2, 3) are
Pauli matrices, and σ0 is a two by two identity matrix.
The Hamiltonian in the momentum space is given by

Hpm(k) = [m0 + t0 cos(kxa/2) + t′0 cos(kyb)

+t′′0 cos(kzc))]Γ03 + t sin(
a

2
(kx − φ))Γ31

+t1 sin(kzc)Γ02 + t2 sin(kyb)Γ11, (5)

which satisfies Ũ(my)H(k)Ũ(my)
† = H(myk). By

choosing the parameters in certain regime, the Hamilto-
nian can possess non-zero MCN. For example, one surface
Dirac cone in the line X̄′

m-Γ̄-X̄m is shown for the surface
energy dispersion of this model in a slab configuration in
Fig. 7(b) and two surface Dirac cones, one in X̄′

m-Γ̄-X̄m
and the other in M̄′

m-Ȳ-M̄m, are shown in Fig. 7(d).

After distorting the lattice from the pm group symme-
try to the pg group symmetry, the basis become {|A, 1〉,
|A, 2〉, |A, 3〉, |A, 4〉, |B, 1〉, |B, 2〉, |B, 3〉, |B, 4〉}, and or-
bital corresponding to |B, i〉 has the same mirror parity as
that of |A, i〉. According to the matrix of mirror operator

Ũ(my), one can show that the glide operation exchanges

FIG. 7. (Color online)(a)Illustration of the BZ folding pro-
cess from the lattice of pm group to pg group. The range
of the first BZ of the lattice of pm group in the kx direction
is [−2π/a, 2π/a], and that of pg group is [−π/a, π/a]. The
solid lines are the bands of pm group in the bulk gap, and the
dashed lines are the bands that appear after the BZ folding.
The band with glide even (odd) parity are drawn in red (blue)
color. (b)The band dispersion of the model of the pm group
in a slab configuration with one Dirac cone on X̄′

m-Γ̄-X̄m. We
only show the surface bands in the bulk gap on one surface
of the slab. The parameters are a = b = c = 1, m0 = −2,
t′0 = 1.5, t0 = t′′0 = t = t′ = t′′ = 1, φ = 0.4. The number
of layers in z direction is N = 60. (c)The band dispersion
of the model of the pg group in a slab configuration. The
parameters are the same with that in (b). The perturbation
term t3 = 0.2. (d)The band dispersion of the model of the pm
group with one Dirac cone on X̄′

m-Γ̄-X̄m, and one Dirac cone
on M̄m-Ȳ-M̄′

m. The parameters, which are different with that
in (b), are m0 = −0.9, t′0 = 0.5. (e)The band dispersion of
the model of the pg group with the same parameters in (d)
and t3 = 0.2. (f)The band dispersion of the model of the pg
group got by adding a surface potential V = 0.5eV on the
first layer of the slab. The other parameters are the same
with that in (e).
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the basis |A, i〉 and |B, i〉 as
gy|A, i〉 = ±|B, i〉
gy|B, i〉 = ±e−ikxa|A, i〉 (6)

where the coefficient takes + if i = 1, 2 and − if i = 3, 4.
Thus, the matrix of the glide operation is

Ũ ′(gy) = e−i
kxa

2 (cos(
kxa

2
)σ1 + sin(

kxa

2
)σ2)⊗ Γ30. (7)

Next we need to re-write the Hamiltonian (5) into the
new basis of the distorted lattice. We notice that the
nearest neighbor hopping along the x direction in the
original lattice corresponds to the hopping between the
adjacent A and B sublattices in the distorted lattice. Fol-
lowing this rule, one can show that the Hamiltonian in
the pg group is given by

Hpg(k) = σ0 ⊗
{

[m0 + t′0 cos(kyb) + t′′0 cos(kzc)]Γ03

+t1 sin(kzc)Γ02 + t2 sin(kyb)Γ11

}

+
t0
2
[(1 + cos(kxa))σ1 + sin(kxa)σ2]⊗ Γ03

+t

[

sin
(a

2
(kx − φ)

)

cos

(

akx
2

)

σ1

+sin
(a

2
(kx − φ)

)

sin

(

akx
2

)

σ2

]

⊗ Γ31 (8)

in the r0 → 0 limit, where σ denotes the Pauli matrices in
the A-B sublattice space. In this limit, the Hamiltonian
has both the glide and mirror symmetry, so the energy
dispersion of the Hamiltonian (8) can be obtained from
that of the Hamiltonian (5) by BZ folding. For a non-
zero r0, additional terms, such as t3σ3⊗Γ11, can exist in
the Hamiltonian (8), and break mirror symmetry while
preserve glide symmetry.
Next we will consider how surface states of TCIs in

the pm group in Fig. 7(b) evolve due to the BZ fold-
ing for the pg group. This is illustrated schematically in
Fig. 7(a). The surface bands between X̄′

m-X̄′
g (X̄g-X̄m)

will be shifted to the Γ̄-X̄g (X̄′
g-Γ̄). Since this shift corre-

sponds to a change of momentum kx by ±2π/a, the glide
parity of the corresponding bands will be changed after
this shift (g±(kx + 2π

a ) = g±(kx − 2π
a ) = g∓(kx)). For

example, in Fig. 7(a), the red solid line between X̄′
m-X̄′

g

is shifted to the blue dashed line between Γ̄-X̄g, where
we have used the red and blue to represent glide parities
g+(kx) and g−(kx), respectively. After the BZ folding,
the surface bands have some more crossing points, as
marked by green circles in Fig. 7(a). Since two states at
the crossing points have the same glide parity, a gap can
be opened after we introduce additional terms to break
the mirror symmetry down to the glide symmetry. For
the case of one Dirac cone in Fig. 7(b), we still have a sin-
gle Dirac cone after BZ folding, which cannot be gapped,
as discussed in Ref. [68]. However, if the original model
(5) of the pm group has two Dirac cones (Fig. 7(d)), two
Dirac cones appear for the model of pg group after the
BZ folding in Fig. 7(e). But this is a trivial phase since

if we add an energy potential on the surface, the surface
bands can be pushed up, and a gap can be opened for
the whole system, as shown in Fig. 7(f). Therefore, the
topological classification of the pg group is Z2, which is
consistent with results in Ref. [68].

D. p4m, p31m and p6m group

The type-I and type-II degeneracies coexist in the pmg,
pgg, p4m, p4g, p31m, p6m group in both the single and
double groups. The essential feature of these groups
is that the HSPs with high dimensional Irreps are al-
ways connected by the mirror or glide symmetry invari-
ant lines. Here we discuss three symmorphic symmetry
groups p4m, p31m and p6m and in the next section, we
will focus on three non-symmorphic groups pmg, pgg and
p4g.
For the spinless case of the groups p31m, p4m and

p6m, Alexandradinata et al.[67] have pointed out that
a new type of topological invariant, the halved mirror
chirality, plays an essential role. The halved mirror chi-
rality is an integer topological invariant that character-
izes the surface states on the half-mirror-lines (HMLs)
of the surface BZ. The HMLs are defined as the MILs
that connect two HSPs, at which the point groups have
high dimensional Irreps. Correspondingly, we can also
define half-mirror-planes (HMPs), which correspond to
the planes in the bulk BZ that are projected onto the
HMLs in the surface BZ. Here we take the line Γ̄-M̄ of
the p4m group as an example (see the Fig. 1(b) for the
BZ of the p4m group). The point group at the HSPs Γ̄
and M̄ is C4v, which possesses one 2D Irrep. Any state
belonging to this 2D Irrep is doubly degenerate at these
two momenta. Mirror symmetry exists along the momen-
tum line Γ̄-M̄, and thus this is a HML. The Hamiltonian
on this line can be diagonalized into two blocks with each
block labeled by mirror parity. Two degenerate states at
Γ̄ and M̄ have opposite mirror parities. Because of dou-
ble degeneracy of two states with opposite mirror parities
at two ends of a HML, it can be proved[67] that an in-
teger topological invariant, the HMC, can be defined as
the difference between the integral of the Berry curvature
on the corresponding HMP in the even and odd mirror
parity subspaces,

χ = Be −Bo (9)

where

Be(o) =
1

2π

∫

HMP

dtdkzFe(o)(t, kz) (10)

where e (o) denote the mirror even (odd) subspace and
t denotes the momenta along the HML. This topological
invariant determines the form of non-trivial surface states
on the HML, e.g. Γ̄-M̄ line. Besides Γ̄-M̄, there is another
independent HML Γ̄-X̄-M̄. Thus, for the spinless case,
the classification of TCI in p4m group is Z

2 if the low
energy bands at Γ̄ and M̄ belong to the 2D Irrep of C4v
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group. We emphasize the importance of 2D Irreps at
the Γ̄ and M̄ here. If the states near the band gap at
these two momenta belong to other 1D Irreps, there is
no topological non-trivial phase.

For the spinful case of the p4m group, all of the spinor
representations of C4v group (for Γ̄ and M̄ point) and
C2v group (for X̄ point) are 2D. Thus, all the bands at Γ̄,
X̄ and M̄ are at least doubly degenerate. Thus, we can
identify three independent HMCs on three HMLs Γ̄-X̄,
X̄-M̄ and M̄-Γ̄. The topological classification will change
from Z

2 in the spinless case to Z
3 in the spinful case. We

build a model of spinful p4m group in Appendix C1.

The topological classification of TCIs in the p31m and
p6m groups has also been discussed in Ref. [67] for the
single group case. One find that the classification of TCI
in p31m group is Z

3 and in p6m group is Z, assuming
that the low energy bands at all the HSPs belong to the
doublet Irreps of the corresponding point group. When
the singlet Irreps are taken into consideration, the classi-
fications will be different. For p31m group, of which the
BZ are shown in Fig. 1(c), the HSPs Γ̄, K̄ and K̄′ (be-
longing to group C3v) are connected by MILs. If only two
of them belong to the 2D Irrep of C3v group, such as Γ̄
and K̄, there are two MILs, Γ̄-K̄ and Γ̄-K̄′-K̄, connecting
them. Here we notice that since C3m(Γ̄-K̄′)=m(K̄′-K̄),
where m(Γ̄-K̄′) means Γ̄-K̄′ is invariant under the mirror
reflection operation, and the eigenvalue of C3 rotation for
all the 1D Irreps of C3v group are 1, all the states along
the line Γ̄-K̄′ and the line K̄′-K̄ share the same mirror
parity. Thus, the topological classification is Z2, charac-
terized by two HMCs, in this case. If there are less than
two momenta belong to 2D Irrep, only one MCN can be
defined in this system, leading to a Z classification. For
p6m group, the BZ is the same with that of p31m, and
there are only two independent points Γ̄ (belong to C6v)
and K̄ (belong to C3v) may have 2D Irreps. Thus, one
HMC can be defined and give a Z classification. The
momenta Γ̄ and K̄ can be connected by another two in-
dependent MILs Γ̄-M̄ and M̄-K̄. Whether a topological
invariant with Z classification can be defined on the line
Γ̄-M̄-K̄ depends on the Irreps of the states at M̄. The
point group of M̄ is C2v, which has four 1D Irreps Ai and
Bi (i = 1, 2). When all the states at M̄ belong to Ai (or
Bi), an independent HMC can be defined and the topo-
logical classification of the TCI will be Z2. We emphasize
the importance of the 1D Irreps here and the details of
this argument will be discussed in the Sec. III E. If the
low energy bands belong to 1D Irreps at either Γ̄ or K̄,
there will be no topological non-trivial phase.

For the spinful case, the classification of TCIs in the
p31m group is the same as that of the spinless case, be-
cause the dimensions of the Irreps of the spinor repre-
sentations of C3v group are the same with that of the
Irreps of the single group (spinless case). For the p6m
group, the spinor representations at M̄ (belong to C2v)
and Γ̄ (belong to C6v) only contain 2D Irreps while those
at K̄ (belong to C3v) contain both the 1D and 2D Irreps.
Therefore, if the low energy bands at K̄ belong to the 2D

Irreps, three independent HMCs can be defined along the
HMLs Γ̄-M̄, Γ̄-K̄ and K̄-M̄ (Z3 classification). When the
low energy bands at K̄ belong to 1D Irreps, two HMCs
can be defined along the HMLs Γ̄-M̄ and Γ̄-K̄-M̄ (Z2 clas-
sification). TCI models of p31m and p6m in the spinful
case are given in Appendix C 2 and C3, respectively.

E. pmg, pgg and p4g group

In this section, we will consider three non-symmorphic
groups, the pmg, pgg and p4g groups. The main differ-
ence between non-symmorphic groups and symmorphic
groups lies in the fact that the degeneracy at certain
HSPs in the BZ can not be described by the Irreps of
the corresponding point groups. Instead, one needs to
introduce the so-called projective representations, which
will be illustrated in details below. One of the authors
have studied the pmg group in Ref. [70] and in this sec-
tion, we will mainly focus on the example of the pgg
group below. After the discussion of the pgg group, we
will illustrate the results of pmg group and p4g group for
both the spinless and spinful cases.
The generators of the pgg group include the transla-

tion operators, as well as two glide symmetry operators
gx = {mx|τy} and gy = {my|τx}, with τy = (0, 1/2) and

τx = (1/2, 0). The eigenvalues of gx are gx± = ±ifeiky/2
and of gy are gy± = ±ifeikx/2, where f = 0 for the
spinless case and f = 1 for the spinful case. A typi-
cal lattice for the pgg group is shown in Fig. 8(a). In
the BZ of the pgg group, gx symmetry exists on the mo-
mentum lines Γ̄-Ȳ and X̄-M̄, while gy symmetry appears
on the lines Γ̄-X̄ and Ȳ-M̄. Therefore, all the states in
these momentum lines can be labeled by the eigenvalue
of gx or gy operator and the type-I degeneracy is possible
along these momentum lines. For four HSPs Γ̄ = (0, 0),
X̄ = (π, 0), Ȳ = (0, π) and M̄ = (π, π), both gx and
gy exist, and thus the corresponding factor group Fk of
the wavevector group is isomorphic to C2v, for which the
character table is listed in the Table II. However, the
states at these momenta cannot be directly described by
the Irreps of the C2v in the Table II. For the momen-
tum k = Γ̄, X̄, Ȳ, M̄, the representation matrix for gx(y)
can be denoted as Dk(gx(y)) = e−ik·τy(x)D(mx(y)), where

eik·τy(x) comes from the translational part whileD(mx(y))
only depends on the point symmetry operation and sat-
isfies the commutation relation

D(mx)D(my) = α(gx, gy)D(my)D(mx) (11)

with α(gx, gy) = ei(k−m
−1
x k)·τxe−i(k−m

−1
y k)·τy depending

on gx, gy and momentum k. Since [mx,my] = 0, one can
immediately see that D(mx(y)) is not a representation
of the point group C2v if α 6= 1. Instead, the so-called
projective representations, which is discussed in details
in the Appendix A, are required to describe the degen-
eracy of the states. Depending on different values of α,
the projective representation belongs to different classes.
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FIG. 8. (Color online)(a)Schematic plot of a lattice of the pgg
group. The yellow region denotes a primitive cell. (b)The
energy bands of a 2D lattice of the pgg group. Ai and Bi

(i = 1, 2) denote the Irreps of the bands at Γ̄. (c)One gapless
surface states with all the bands belonging to Irreps Ai at Γ̄.
(d)Two copies of gapless surface states in (c). (e)One gapless
surface states with all the bands belonging to Irreps Bi at
Γ̄. (f)Two copies of gapless surface states in (e). (g)One
gapless surface states with some bands belonging to Irreps
Ai and some bands belonging to Bi at Γ̄. (h)Two copies of
gapless surface states in (g). The crossings marked by the
green circles can be gaped with perturbations that do not
break the symmetry.

Direct calculation shows αΓ̄,M̄ = 1 and αX̄,Ȳ = −1. This

suggests that the states at Γ̄ and M̄ are described by the
conventional representations of C2v group, denoted asK0

class, while those at X̄ and Ȳ are described by projective
representations belonging to a non-trivial class, usually
denoted as K1 class. For the C2v group, all the Irreps
in the K0 class (conventional representations) are all 1D

TABLE II. The character table of C2v single group.

C2v E C2 mx my

A1 1 1 1 1

A2 1 1 −1 −1

B1 1 −1 1 −1

B2 1 −1 −1 1

(see Table II), and thus no degeneracy occurs at Γ̄ and
M̄. In contrast, all the Irreps in the K1 class are 2D,
leading to the type-II degeneracy at X̄ and Ȳ. The de-
generacy at these two momenta can also be understood
from the anti-commutation relation between the repre-
sentation matrix D(gx) and D(gy), {D(gx), D(gy)} = 0,
at X̄ and Ȳ[70].
The type-II degeneracy at X̄ and Ȳ suggests the possi-

bility of type-II TCIs, which can be characterized by the
Z2 topological invariant[70]. Furthermore, we also notice
that type-I degeneracy exists along the momentum lines
Γ̄-Ȳ, X̄-M̄, Γ̄-X̄ and Ȳ-M̄, which connect four HSPs Γ̄, X̄,
Ȳ and M̄. Therefore, one may ask if the mixed type-I-II
TCIs with Z classification can exist in this system. Since
X̄ and Ȳ are connected by the momenta Γ̄ or M̄ with glide
invariant lines, we need to analyze how the glide parity
of a state evolves along the momentum lines X̄-Γ̄-Ȳ and
X̄-M̄-Ȳ. Let’s start from the momentum X̄, at which all
the states are doubly degenerate. The double degenerate
states will be split along X̄-Γ̄. The two split states are
the eigenstates of gy operators and always possess op-
posite glide parities gy+ and gy−, represented by red (gy+)

and blue (gy−) in Fig. 8(b), respectively. Along Γ̄-Ȳ, all
the states are the eigenstates of gx with the eigenvalue
gx±, which are still labeled by the red (gx+) and blue (gx−)
in Fig. 8(b). It should be emphasized that the glide op-
eration is gy along X̄-Γ̄ and gx along Γ̄-Ȳ although we
use the same colors (red and blue) to label glide pari-
ties. X̄-Γ̄ and Γ̄-Ȳ are connected at Γ̄ and it turns out
that depending on different Irreps at Γ̄, the red (or blue)
states along X̄-Γ̄ can be connected to either red or blue
states along Γ̄-Ȳ. To see this, we need to analyze the
representations at Γ̄. At the Γ̄ point, the glide symmetry
gx or gy is equivalent to the mirror symmetry mx or my,
respectively. Thus, all the states are classified by the Ir-
reps for the C2v group, as listed in the Table II. There
are four 1D Irreps for the C2v group, denoted as Ai and
Bi (i = 1, 2). The eigenstates share the same parity for
mx and my if they belongs to the Irreps Ai, but oppo-
site parities for the Irreps Bi. Therefore, for the Irreps
Ai at Γ̄, the red (blue) states will be connected to the
red (blue) states, while for the Irreps Bi, the red (blue)
states will be connected to the blue (red) states. If all
the states at the Γ̄ point near the Fermi energy belong to
the Irreps Ai, any integer copies of surface states are pos-
sible to exist. For example, we show one gapless surface
states in Fig. 8(c), of which the gapless nature is guaran-
teed by type-II degeneracy at X̄ and Ȳ. In Fig. 8(d), we
consider two copies of gapless surface states and in this
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case, type-II degeneracy is not enough to guarantee the
gapless nature since they may cross at a generic momen-
tum in the line X̄-Γ̄-Ȳ. However, in this case, we find
that all the crossings are always between surface bands
with opposite glide parities and thus cannot lead to a gap
opening. Therefore, the topological classification in this
case is Z. If all the states near the Fermi energy at Γ̄
belong to the Irreps Bi, as shown in Fig. 8(e) and (f) for
one and two copies of non-trivial surface states, respec-
tively, we also find any integer copies of gapless surface
states are stable, indicating the Z classification in this
case. When the Ai states coexist with the Bi states at Γ̄
near the Fermi energy, multiple copies of surface states
are no longer stable. We show an example of one and two
copies of surface states in Fig. 8(g) and (h), respectively.
One can see that for two copies of surface states, some
crossings are between bands with the same glide parity,
as marked by the green circles in Fig. 8(h). A gap can
be opened at these points and drives the system into a
topologically trivial phase. Thus, in this case, the classi-
fication is Z2. Besides the X̄-Γ̄-Ȳ line, a similar analysis
can be applied to the X̄-M̄-Ȳ line and lead to a simi-
lar topological classification at this momentum line. The
above discussion suggests that the classification of gap-
less surface states in the pgg group sensitively depends
on the Irreps of the states at Γ̄ and M̄. When the states
at the Γ̄ and M̄ all belong to the Irreps Ai (or Bi), any
integer copies of surface states are possible and the clas-
sification is Z×Z, in which the first Z is for the number
of surface states along X̄-Γ̄-Ȳ while the second is for the
states along X̄-M̄-Ȳ since these two momentum lines are
independent.

After identifying the classification of surface states in
the surface BZ, we next discuss topological invariants
in the 3D bulk systems with the pgg group. There are
two types of topological invariants can be defined here.
Firstly, due to the type-II degeneracy at X̄ and Ȳ, a Z2

topological invariant can be defined, which has been dis-
cussed in details for the pmg group in Ref. [70]. The dou-
bly degenerate bands at X̄ and Ȳ can be classified into
two groups I and II based on the eigenvalue under gx (or
gy). Let us consider a state |φI

k
〉 on the line X-U (Y -T )

in the 3D BZ which projects onto X̄ (or Ȳ) (Fig. 3(a))
satisfies H(k)|φI

k
〉 = Ek|φIk〉 and gx|φIk〉 = gx+|φIk〉. The

state defined as |φII
k
〉 = eiχkgy|φIk〉, where χk is a phase

factor, is degenerate with |φI
k
〉 at X̄ (or Ȳ) and has the

eigenvalue gx− = −gx+ under gx. The topological invariant
can be defined as the difference between the “doublet po-
larization” Pd at X̄ and Ȳ, i.e., ∆ = Pd(X̄)−Pd(Ȳ) mod
2, where Pd = PI − PII , and Pα = 1

2π

∮

dkz〈φαk |i∂kz |φαk〉
(α = I, II). This is a Z2 topological invariant, similar to
that of TR invariant TIs. Secondly, when all the states at
Γ̄ or M̄ belong to the 1D Irreps Ai (Bi), an integer topo-
logical invariant, in analogy to HMC, can be defined. Let
us consider the line X̄-Γ̄-Ȳ as an example. For a continu-
ous band, if it belongs to Ai (Bi) at Γ̄, the gx glide parity
of the band along Γ̄-Ȳ is the same as (opposite to) the
gy glide parity along Γ̄-X̄. Therefore, the bands on the

line X̄-Γ̄-Ȳ can be labeled by a single operator gy in this
case. The bands on X̄-M̄-Ȳ have the similar properties,
and can be labeled by the glide parity of gy on Ȳ-M̄. The
topological invariant can be defined as

χi =
1

2π

∫ 1

0

dti

∮

dkz(F+ −F−) (12)

where i = 1 labels the line X̄-Γ̄-Ȳ, and i = 2 labels X̄-M̄-
Ȳ, ti denotes the momentum along the line i with t1 = 0
at X̄ and t1 = 1 at Ȳ, while t2 = 0 at Ȳ and t2 = 1 at
X̄. F+(−) is the Berry curvature of the occupied bands in
the glide parity gy+(−)(kx) subspace of gy. This definition

is similar to the HMC, and thus, we dub it “halved glide
chirality” (HGC). Similarly, it can also be proved that
when χ1 +χ2 is an odd number, the bulk is gapless with
Weyl points.
To confirm our classification, we construct a tight-

binding model for a lattice with the pgg group sym-
metry, as shown in Fig. 8(a). There are four atoms in
one primitive cell with the positions rA = (rx, ry), rB =
(− 1

2 − rx, ry − 1
2 ), rC = (12 + rx,

1
2 − ry), rD = (−rx, ry).

The symmetry analysis below does not depend on the
values of rx and ry . We assume that there are two s or-
bitals on each atom for simplicity and choose the basis
in the momentum space as

|α, i〉(r) = 1√
N

∑

R

eik·RϕR,α,i(r −R− rα). (13)

where R denotes the vector of the Bravais lattice, α =
A,B,C,D label the atoms, of which the relative position
in a primitive cell is rα, i = a, b label the two s orbitals
and ϕ denotes the Löwdin orbitals. In the above ba-
sis, the Hamiltonian is periodic in the momentum space
with the reciprocal lattice vector, i.e., H(k) = H(k+G),
where G is a reciprocal lattice vector.
Under the basis {|A, a〉, |B, a〉, |C, a〉, |D, a〉, |A, b〉,

|B, b〉, |C, b〉, |D, b〉} given by (13), the explicit form of

the matrix Ũ for two glide plane operations are

Ũ(k, gx) = σ0

⊗











0 ei(kx+ky)/2 0 0

ei(kx−ky)/2 0 0 0

0 0 0 ei(−kx+ky)/2

0 0 ei(−kx−ky)/2 0











(14)

and

Ũ(k, gy) = σ0

⊗











0 0 ei(−kx−ky)/2 0

0 0 0 ei(−kx+ky)/2

ei(kx−ky)/2 0 0 0

0 ei(kx+ky)/2 0 0











(15)

where σ0 is a two by two identity matrix.



15

The Hamiltonian in momentum space, which satis-
fies the constrains enforced by symmetries H(gx(y)k) =

Ũ(k, gx(y))H(k)Ũ (k, gx(y))
†, is

H =

(

Ha Hab

H†
ab Hb

)

(16)

where

Ha(k) =











0 f1a(e
iθ1a + e−iθ1aeiky ) f2a(e

iθ2a + e−iθ2ae−ikx) f3ae
−i(kx−ky) + f ′

3ae
iky

f1ae
−iθ1a + eiθ1ae−iky ) 0 f3a + f ′

3ae
−ikx f2a(e

−iθ2a + eiθ2ae−ikx)

f2a(e
−iθ2a + eiθ2aeikx) f3a + f ′

3ae
ikx 0 f1a(e

−iθ1a + eiθ1aeiky )

f3ae
i(kx−ky) + f ′

3ae
−iky f2a(e

iθ2a + e−iθ2aeikx) f1a(e
iθ1a + e−iθ1ae−iky ) 0











+[−1 + 8(3 + cos(kx)− cos(ky)− cos(nkz))]Γ00 (17)

Hb(k) =











0 f1b(e
iθ1b + e−iθ1beiky ) f2b(e

iθ2b + e−iθ2be−ikx) f3be
−i(kx−ky) + f ′

3be
iky

f1be
−iθ1b + eiθ1be−iky ) 0 f3b + f ′

3be
−ikx f2b(e

−iθ2b + eiθ2be−ikx)

f2b(e
−iθ2b + eiθ2beikx) f3b + f ′

3be
ikx 0 f1b(e

−iθ1b + eiθ1beiky )

f3be
i(kx−ky) + f ′

3be
−iky f2b(e

iθ2b + e−iθ2beikx) f1b(e
iθ1b + e−iθ1be−iky ) 0











−[−1 + 8(3 + cos(kx)− cos(ky)− cos(nkz))]Γ00 (18)

and

Hab(k) =











0 f1(e
iθ1 + e−iθ1eiky ) f2(e

iθ2 + e−iθ2e−ikx) f3e
−i(kx−ky) + f ′

3e
iky

f1(e
−iθ1 + eiθ1e−iky ) 0 f3 + f ′

3e
−ikx f2(e

−iθ2 + eiθ2e−ikx)

f2(e
−iθ2 + eiθ2eikx) f3 + f ′

3e
ikx 0 f1(e

−iθ1 + eiθ1eiky )

f3e
i(kx−ky) + f ′

3e
−iky f2(e

iθ2 + e−iθ2eikx) f1(e
iθ1 + e−iθ1e−iky ) 0











+(1 + i sin(nkz) + f4 cos(kz))Γ00 (19)

where Γ00 = I4×4 is a 4 by 4 identity matrix, f1a, f2a,
f3a, f

′
3a, f1b, f2b, f3b, f

′
3b, f1, f2, f3, f

′
3 and f4 are real co-

efficients, θ1a, θ2a, θ1b, θ2b, θ1 and θ2 are real parameters
which break the TR symmetry and n is an positive inte-
ger. We further define A = f3+ f

′
3 and B = f3− f ′

3. Dif-
ferent topological phases can be obtained by tuning the
values of A and B in the above model. Surface energy dis-
persion can be calculated for a slab configuration and is
shown along the momentum lines X̄-Γ̄ and X̄-M̄ in Fig. 9
with a fixed A = 1.7 and different values of B. When
B = 0.2, the system is a trivial insulator (Fig. 9(a)).
With increasing B, the band gap closes on Γ̄-X̄ between
two bands with glide parity gy−(kx) (when B ≈ 0.27) and
drive the system into a phase with χ1 = −1 and χ2 = 0.
Energy dispersion for a slab configuration is shown along
X̄-Γ̄ and X̄-M̄ in Fig. 9(b) with B = 0.4. This is a semi-
metal phase with a pair of Weyl nodes, emerging on Γ̄-X̄
and moving in opposite direction perpendicular to Γ̄-X̄,
as schematically shown by red points in Fig. 9(f). The
band structure along the line connecting these two Weyl
nodes are shown in Fig. 9(g) (with B = 0.4), calculated
by iterative Green function method. Fig. 9(h) shows the
density of states in the momentum space with the energy
determined by the nodal points, and a Fermi arc connects
these two Weyl nodes. By further increasing B, the band

gap closes (when B ≈ 0.45) and reopens on X̄-M̄. One
Dirac cone appears at X̄ on the surface (see Fig. 9(c)
with B = 0.5). This is exactly the TCI phase with HGC
χ1 = −1 and χ2 = 1. Thus, the Weyl semi-metal phase
separates the TCI phase and the trival insulating phase
in our model. Another topological phase transition oc-
curs for an even larger B and the system first evolves to
another Weyl semi-metal phase with χ1 = −2 and χ2 = 1
(when 0.55 < B < 0.64) and then to a TCI phase with
χ1 = −2 and χ2 = 2 (when 0.64 < B < 1.4). The cor-
responding surface bands from the calculations of a slab
configuration is shown in Fig. 9(d) and (e) for the Weyl
semi-metal phase (B = 0.59) and TCI phase (B = 0.8),
respectively.

To check if these gapless Dirac surface states are stable
or not, we add an additional 2D layer, which preserves
the symmetry group pgg, on the top surface of the slab,
and introduce the coupling between this 2D layer and the
top layer of the slab. By tuning the parameters for the
model of this additional 2D layer, we can move energy
bands with the required Irreps in this 2D layer to the bulk
band gap and couple them to topological surface bands.
We explore the case with two Dirac cones (B = 0.9), cor-
responding to the TCI phase with χ1 = −2 on X̄-Γ̄-Ȳ.
When the bands of the 2D layer belong to Irreps Ai (or
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Bi) at Γ̄, the gapless surface states remains stable, as
shown in Fig. 10(a) (or (b)). However, if the bands in
Irreps Ai and Bi coexist at Γ̄, we find a local stability
for gapless surface bands, as shown in Fig. 10(c). The
crossing on Γ̄-X̄ between the bands in Irreps A1 and B2

at Γ̄ are protected locally by glide plane symmetry. By
tuning the parameters adiabatically, this crossing point
can move from Γ̄-X̄ to Ȳ-Γ̄, leading to an anti-crossing
between these two bands due to the same glide parity, as
shown in Fig. 10(d). This leads to a trivial phase. Thus,
in this case, only one surface Dirac cone is stable and
the topological classification is Z2. Therefore, our calcu-
lations based on an explicit tight-binding model indeed
support our classification of TCIs in the pgg group.
In the spinful case, the representation of gx(y)

is Dk(gx(y)) ⊗ D1/2(gx(y)) = e−ik·τy(x)D(mx(y)) ⊗
D1/2(mx(y)) = e−ik·τy(x)D(mx(y))

′, where D1/2 is the

transformation matrix of a spin 1
2 spinor and the non-

primitive translation has no effect on spin. As discussed
in details in the Appendix A, spin degree of freedom in-
troduces an additional coefficient for the factor system of
the projective representations. The representations sat-
isfy

D(mx)
′D(my)

′ = αsD(my)
′D(mx)

′ (20)

where αs = αα1/2. Since mxmy = C2(z) and mymx =
Q(y)C2(z), where C2(z) denotes the π rotation around
the z axis and Q(y) is for the 2π rotation around the y
axis, α1/2 = −1. Then αs = αα1/2 = 1 at X̄ and Ȳ,

and αs = −1 at Γ̄ and M̄. Thus, all the states at Γ̄
and M̄, instead of X̄ and Ȳ, are doubly degenerate. The
topological classification is similar, but now depends on
the Irreps at X̄ and Ȳ.
Now let’s discuss the possible TCIs in the pmg group.

There is one mirror operation and one glide operation
in the pmg group, for which we can take mx and gy =
{my|τx} with τx = (1/2, 0) as an example. The factor
group of the pmg group is the point group C2v, which
is generated by two mirror reflection symmetries with
perpendicular mirror axes. The high symmetry points
X̄ = (π, 0) and M̄ = (π, π) in the surface BZ possess 2D
Irreps in the spinless case, due to the anti-commutation
relation between mx and gy at these two points, as illus-
trated in Ref. [70]. These two points are connected by
a MIL. The coexistence of two double degenerate points
and the MIL which connects these two points leads to
a mixed type-I-II TCI phase. The topological property
of pmg group can be characterized by the HMC defined
on the HMP which projects onto the X̄-M̄ line and the
topological classification is Z, more than the Z2 classifi-
cation discussed in Ref. [70]. The points X̄ and M̄ can
also be connected by the HSL X̄-Γ̄-Ȳ-M̄, where Γ̄-Ȳ is
invariant under mx, X̄-Γ̄ and Ȳ-M̄ are invariant under
gy. The states at Γ̄ and Ȳ belong to 1D Irreps of the
group C2v. Similar to the case of the pgg group, if all
the states at Γ̄ and Ȳ belong to Ai (or Bi), the states
in the line X̄-Γ̄-Ȳ-M̄ can be labeled by the parity on one

segment, such as X̄-Γ̄. This allows us to define an inte-
ger topological invariant with the same form as Eq. (12),
which is a mixture of HMC and HGC and leads to a Z

classification. Therefore, depending on the Irreps at Γ̄
and Ȳ, we can have either Z

2 or Z classification for the
spinless case of the pmg group.
In the spinful case, similar to the analysis of pgg group,

the spin degree of freedom gives α1/2 = −1 on the four

high symmetry points. Thus, αs = αα1/2 = 1 at X̄ and

M̄, and αs = −1 at Γ̄ and Ȳ. In this case, the double
degeneracy occurs at Γ̄ and Ȳ. Nevertheless, topological
classification is still similar as that in the spinless case.
In the p4g group, there are a C4 rotation symmetry

and four glide symmetries gx = {mx|τ}, gy = {my|τ},
gd = {md|τ} and g′d = {m′

d|τ}, where τ = (1/2, 1/2),
md transforms (x, y) to (y, x) and m′

d transforms (x, y)
to (−y,−x). In the surface BZ (see Fig. 1(b)), the point
group is C4v at Γ̄ = (0, 0) and M̄ = (π, π), and is C2v at
X̄ = (π, 0) (Ȳ = (0, π) is equivalent to X̄ in this group).
There are three independent glide invariant lines Γ̄-X̄, X̄-
M̄, and M̄-Γ̄. The projective representations of mx and
my satisfy

D(mx)D(my) = α(k)D(my)D(mx) (21)

where α(k) = ei(k−mxk)·τ e−i(k−myk)·τ . At X̄ point,
α = −1, while at Γ̄ and M̄, α = 1. The glide plane
symmetries guarantee the double degeneracy at X̄ point.
It can also be checked that for any two symmetry oper-
ations in C4v group, denoted as a and b, if [a, b] = 0, we

have α = D(a)D(b)
D(b)D(a) = 1 at Γ̄ and M̄ for the p4g group.

Thus, the representations at these two points are con-
ventional representations of C4v group. A more rigorous
proof is shown in Appendix A. The C4v group has both
the 1D and 2D Irreps. If the surface bands belong to the
1D Irreps at both Γ̄ and M̄, no TCIs can exist. If the
surface bands belong to the 1D Irrep at Γ̄, but belong to
the 2D Irreps at M̄, the HGC can be defined along the
line X̄-M̄, yielding the mixed type-I-II TCI phase. An-
other independent HGC is possible to exist along the line
X̄-Γ̄-M̄, depending on the 1D Irreps of the states at the
momentum Γ̄. Here X̄-Γ̄ is invariant under gy and Γ̄-M̄
invariant under gd. At Γ̄, the glide symmetries gy and gd
behave the same as my and md, which satisfy the rela-
tion md = C4my, where C4 is the 4-fold rotation in the
anticlockwise direction and transforms (x, y) to (−y, x).
The group C4v has four 1D Irreps Ai and Bi (i = 1, 2).
In the Irreps Ai, the character of C4 is 1, and the mirror
parities of my and md are the same, while in the Irreps
Bi, the character of C4 is −1, and the mirror parities of
my and md are opposite. This is similar to the case of
the pgg group. If all the bands at Γ̄ belong to the Irreps
Ai (or Bi), the HGC can be defined on X̄-Γ̄-M̄, leading to
the Z × Z classification. Similar analysis can be applied
to the case with 2D Irrep at M̄ and 1D Irreps at Γ̄. If the
surface bands belong to the 2D Irreps at both Γ̄ and M̄,
three independent HGCs can be defined on the lines Γ̄-X̄,
Γ̄-M̄ and X̄-M̄, giving rise to a Z

3 classification. A model
of p4g group in the spinless case is given in Appendix D.



17

In the spinful case, spin gives an additional coefficient
α1/2 = −1 at Γ̄, X̄ and M̄. For Γ̄ and M̄, αs = αα1/2 =
−1, the spinor representations belong to class K1 and all
the Irreps are 2D. Thus, all the bands are doubly degen-
erate at Γ̄ and M̄. For X̄, we have αs = 1, so the spinor
representations at X̄ belong to the class K0 (conventional
representations of group C2v). All the conventional Irreps
of C2v are 1D, and thus no degeneracy occurs at X̄. One
HGC can be defined on the glide invariant line Γ̄-M̄. An-
other possible HGC on the line Γ̄-X̄-M̄ depends on which
Irreps the bands belong to at X̄, which is similar to the
case of the pgg group. If all the states at X̄ belong to
the Irreps Ai (or Bi) (i = 1, 2) of group C2v, the HGC
can be defined on the line Γ̄-X̄-M̄, and leads to a Z × Z

classification.

IV. CONCLUSION

In this paper, we have developed a theory to system-
atically classify TCI phases based on the representation
theory of 2D space groups. We have shown that the clas-
sification sensitively depends on the Irreps of the states
at certain HSPs and HSLs. Our theory provides a basis
for the search of realistic materials for TCI phases. Since
our theory is based on a semi-infinite system with a spe-
cific surface, one can first identify which type of 3D crys-
tals can allow for the surface with the required 2D space
group symmetry. This can be achieved with the help of
the discussion of the layer groups and the scanning ta-
bles in the International Tables for Crystallography[71],
as discussed in details in the Appendix B of Ref. [70].
For example, the diamond and spinel structures are de-
scribed by the 3D space group Fd3̄m (227), for which the
(110) surface possesses the symmetry of the pmg group.
Therefore, one can look at the specific surfaces of the
corresponding materials with the help of some crystal
databases[72, 73]. In addition, topological phases have
also been discussed recently in cold atom systems with
optical lattices[74–78] and photonic crystal systems[79–
84]. Our classification, as well as the toy model, can
also help to design crystal structures with the required
symmetry in these systems. Disorder effect can break
the crystalline symmetry of the system[39, 85]. How-
ever, as discussed in Ref. [29, 85–87], crystalline topo-
logical phases will remain stable as long as the corre-
sponding symmetry protection is preserved on average.
Besides the crystalline symmetry, one may also ask if
time reversal symmetry is compatible to the TCI phases
discussed above and if the combination of time rever-
sal symmetry and crystalline symmetry can lead to new
TCI phases. For the first question, the existence of TR
symmetry may or may not change topological classifica-
tion of TCIs. Take the pm group as an example. In
the spinless case, for any state |ψ〉 on the MIPs, the
state Θ|ψ〉 has the same mirror parity with |ψ〉, and thus
the MCNs will always be zero, and no topologically non-
trivial phase can exist. While, in the spinful case, Θ|ψ〉

has the opposite mirror parity with |ψ〉, and as a con-
sequence, MCNs can be non-zero and TR symmetry is
compatible to TCI phases. The combination of time re-
versal symmetry and crystalline symmetry can also lead
to the so-called magnetic crystalline symmetry group, in
which new topological phases indeed exist, as discussed
in Ref. [57]. The classification of TCIs with time rever-
sal symmetry is beyond the scope of this paper and will
be the future work. It should be noted that the classi-
fication approach in this paper is only suitable for TCI
phases with non-trivial surface states. The classification
based on the 2D space group is a subgroup of the 3D
bulk topology. For a given 3D bulk, the surfaces along
different directions will possess different 2D space groups
with different topological class according to our results
and the classification of 3D bulk topology in principle
should include all possible topological invariants for dif-
ferent surfaces (of course many of them give the same
bulk topological invariant). Our classification may miss
some topological invariants since some symmetry cannot
be preserved by any surface (e.g. inversion symmetric
topological insulators [88]). From the practical view, our
classification is useful because non-trivial surface states
are the main physical consequence of bulk topology.
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Appendix A: A review of representation theory of

symmetry groups

In this section, we will give a short review of the rep-
resentation theory of symmetry groups in the description
of electronic band structures.
Due to the periodic lattice structure, electronic states

in a crystal form energy bands and are labeled by the
crystal momentum k, which form the BZ. From the view
of group theory, the crystal momentum k also labels the
Irrep of the translation subgroup of the space group. At
each k, we can define the wave vector group or little group
Gk, which contains all the elements of the space group
that leave k unchanged or map it onto an equivalent vec-
tor k +G, where G is a reciprocal lattice vector. Elec-
tronic states at each k can be described the Irreps of the
corresponding wave vector group. In particular, the di-
mension of the Irreps of the wave vector group determines
the degeneracy of electronic states at the corresponding
momentum. The representations of a wave vector group
can be constructed from the representations of the cor-
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responding point group that contains all the point group
operations of the wave vector group. For a space group
operation g = {r|R+ τ}, the representation of the wave
vector group ar k isDk(g) = e−ik·(R+τ)D(r), whereD(r)
is the representation of the corresponding point group.
Let gi = {ri|Ri + τi}, we have

D(r1)D(r2) = eik·(R1+τ1)eik·(R2+τ2)Dk(g1)D
k(g2)

= eik·(R1+τ1)eik·(R2+τ2)Dk(g1g2)

= eik·(R2−r1R2)eik·(τ2−r1τ2)D(r1r2)

= ei(k−r
−1
1 k)·R2ei(k−r

−1
1 k)·τ2D(r1r2) (A1)

Since k− r−1
1 k = G, ei(k−r

−1
1 k)·R2 = 1. However, if G 6=

0 and τ2 6= 0, the coefficient ω(r1, r2) ≡ ei(k−r
−1
1 k)·τ2 6= 1,

andD(r1)D(r2) = ω(r1, r2)D(r1r2). The existence of the
factor ω(r1, r2) shows that D(r) is may not be the con-
ventional representations of the point group which always
satisfy D(r1)D(r2) = D(r1r2). Thus, D(r) is usually
dubbed a projective representation of the point group
belonging to the factor system ω(r1, r2)[59]. It should
be noted that ω(r1, r2) depends on the momentum k.
The factor system is specified by h2 coefficients ω(r1, r2),
where h is the order of the point group. The factor sys-
tems can be classified into different classes. If D(r) is a
projective representation of the factor system ω(r1, r2),
the representation D′(r) = D(r)/u(r), where u(r) is
an arbitrary single-valued function and |u(r)| = 1, is a
projective representation belonging to the factor system

ω′(r1, r2) = ω(r1,r2)u(r1r2)
u(r1)u(r2)

. The factor system ω′(r1, r2)

is said to be projectively equivalent with ω(r1, r2). The
set of all projectively equivalent factor system is called a
class of factor systems.
For every pair of commuting element a and b in the

point group, if ω
′(a,b)

ω′(b,a) =
ω(a,b)
ω(b,a) , the two factor systems ω′

and ω belong to the same class; otherwise, they belong
to different classes. There is a class called K0 for every
group, which contains a factor system with all the coef-
ficients ω(r1, r2) = 1. The representations belonging to
the class K0 are the conventional representations of the
point group. Any factor system with ω(a, b) = ω(b, a)
for commuting a and b also belongs to class K0. It can
be proved that for a point group that has more than one
classes of factor systems, the 1D Irreps can only exist
in class K0, that is, there are no 1D Irreps in any other
classes Kp 6= K0.
When spin of the electrons are taken into account, the

wave functions have the form ψi =
(

ψi1

ψi2

)

, where 1 and

2 denote the two spin states of the electrons with the
z-projection ± 1

2 . The spinors with spin 1
2 transform ac-

cording to D1/2(rθ) = eiσ·n̂θ/2, where σ = (σx, σy, σz)
are the Pauli matrices, n̂ is the primitive vector along
the rotation axis, and θ is the angle of rotation around
n̂. It has the property that D1/2(rθ+2π) = −D1/2(rθ).
For two point group operations r1 and r2, the produc-
tion r1r2 can be expressed as an rotation around an axis
with angle θ (maybe with an inversion). Then the spinor

representations satisfies

D1/2(r1)D1/2(r2) = ω1/2(r1r2)D1/2(r1r2) (A2)

where the factor ω1/2(r1, r2) = 1 if 0 < θ < 2π, or −1 if
2π < θ < 4π. Thus, the spinor representations of point
groups can be viewed as projective representations.
Under the space group symmetry operation, both the

spatial and spin parts of the wave functions transform as

gψim =
∑

j

(D(g))ji
∑

n(=1,2)

(D1/2(g))nmψjn

=
∑

j,n

(D(g)′)jn,imψjn, (A3)

whereD(g)′ = D(g)⊗D1/2(g) is the direct product of the
representations of the spatial and spin parts. The direct
product is usually reducible and can be decomposed into
several Irreps.
Combining the spatial and spin parts, we have

D(r1)
′D(r2)

′ = (D(r1)⊗D1/2(r1))(D(r2)⊗D1/2(r2))

= (D(r1)D(r2))⊗ (D1/2(r1)D1/2(r2))

= (ω(r1, r2)D(r1r2))⊗ (ω1/2(r1, r2)D1/2(r1r2))

= ω(r1, r2)ω1/2(r1, r2)D(r1r2)
′

= ωs(r1, r2)D(r1r2)
′ (A4)

where ωs(r1, r2) = ω(r1, r2)ω1/2(r1, r2). Thus, the spinor
representation D′(r) is a projective representation of the
point group with the factor system determined by ωs.
Here we focus on the point groups C2v, C3v, C4v

and C6v, which are relevant to the 2D space group.
There are two classes K0 and K1 for C2v, C4v and C6v,
while only one class K0 for C3v. For the groups C2v,
C4v and C6v, all the Irreps in the class K1 are 2D. If
α = ω(a, b)/ω(b, a) = 1 for every commuting pair of a
and b ([a, b] = 0), the representations belong to the class
K0. There is a systematic way to determine which class
the representations belong to. It depends on the specific
properties of the group. The complete discussions are
presented in Ref. [59].
We take the pgg group as an example. The factor

group of the pgg group is C2v at four momenta Γ̄, M̄,
X̄ and Ȳ. At these momenta, we need to use the pro-
jective representations to describe the states. The gen-
erator of C2v group can chosen as mx and my with
the relations: m2

x = e, m2
y = e, and mxmy = mymx,

where e is the identity operation. In this case, the rela-
tions between the representations of the little group Gk

and the projective representations of the point group are
Dk(gx) = e−ik·τyD(mx) and Dk(gy) = e−ik·τxD(my).
Thus,

D(mx)
2 = (eik·τyDk(gx))

2 = eik·2τyDk(g2x)

= eik·2τye−ik·2τyI = I (A5)

where I is an identity matrix, and similarly D(my)
2 = I.

The class of the representations are determined by α =
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D(mx)D(my)
D(my)D(mx)

. If α = 1(−1), the representations belong to

class K0 (K1).
Another interesting group is the non-symmorphic

group is p4g, of which the factor group is C4v at Γ̄ and
M̄. The generator of C4v can be chosen as the four fold
rotation c4 and the mirror symmetry mx with the rela-
tions: c44 = e, m2

x = e and mxc4 = c34mx. The mir-
ror symmetry mx corresponds to the glide symmetry
gx = {mx|τ}. Since g2x = {e|mxτ + τ}, gxc4 = {md|τ}
and c34gx = {md|c34τ}, the relations between the projec-
tive representation and the representations of the space
group are

D(c4)
4 = I

D(mx)
2 = (eik·τDk(gx))

2 = eik·2τDk(g2x)

= eik·2τ e−ik·(mxτ+τ) = eikx

D(mx)D(c4) = eik·τDk(gx)D
k(c4)

= eik·τ e−ik·τD(md) = D(md)

D(c4)
3D(mx) = Dk(c34)D

k(gx)e
ik·τ

= D(md)e
−ik·(c34τ)eik·τ

= eikyD(md) = eikyD(mx)D(c4)(A6)

Assuming u(c4) = eiky/2 and u(mx) = eikx/2, the
representations D(c4)

′ = D(c4)/u(c4) and D(mx)
′ =

D(mx)/u(mx) are projectively equivalent to D(c4) and
D(mx) and satisfy

[D(c4)
′]
4
= αI

[D(mx)
′]
2
= I

D(mx)
′D(c4)

′ = [D(c4)
′]
3
D(mx)

′ (A7)

where α = e−i2ky . At the point Γ̄ and M̄, α = 1. Thus,
we have proved that in p4g group, the representations at
Γ̄ and M̄ belong to class K0.
In the spinful case, we need to further consider the spin

part, and thus αs = αα1/2, where α is for the spatial part,
and α1/2 = ω1/2(a, b)/ω1/2(b, a) is for the spin part.

Appendix B: Mirror Chern number in the pmm
group

In this section, we will consider the direct calculation
of the mirror Chern number in the pmm group and show
why mirror Chern number must be zero for the spinless
case but it can be non-zero for the spinful case.
As shown in the main text, the Chern number of the

mirror plane in the mirror even (odd) subspace is defined
as the integral of the Berry curvature of the even (odd)
subspace in the MIP. Let’s take MIP of ky = 0, which is
invariant under my, as an example. On this plane, the
mirror Chern number in eash subspace is given by

Ce(o) =
1

2π

∫

MIP

dkxdkzFe(o)(kx, kz), (B1)

where Fe(o)(kx, kz) is y component of the Berry curvature
of the occupied energy bands in the even (odd) subspace

Fe(o)(kx, kz) = ∂kzAx,e(o)(kx, kz)− ∂kxAz,e(o)(kx, kz),

(B2)

with Ax(z),e(o) is the x(z) component of Abelian Berry
connection of of the occupied bands in even (odd) sub-
space.
Next let’s show how the mirror operator mx acts on

Fe(o)(kx, kz). For the spinless case, since mx commu-
tates with my and does not change the mirror parity
of the eigenfunctions under my, two subspaces are sepa-
rate under the mx operation. Thus, we can discuss two
subspaces independently. For one subspace, we can in-
troduce the sewing matrix, which is defined as

Bi,αβ(kx, kz) = 〈ψi(−kx, kz , α)|mx|ψi(kx, kz, β)〉(B3)

where i = e, o for the even or odd subspace of
my, ψ(kx, kz, α) is the α-th eigenfunction of H(kx, kz).
Equivalently, we have

|ψi(−kx, kz , α)〉 =
∑

β

B∗
i,αβ(kx, kz)mx|ψi(kx, kz, β)〉

(B4)

The Abelian Berry connection can be obtained
by taking the trace of the non-Abelian Berry

connection, which is defined as aαβi (kx, kz) =
−i〈ψ(kx, kz, α)|∂ki |ψ(kx, kz, β)〉. The x component of the
non-Abelian Berry connection has the relation

aαβx (−kx, kz) = −i〈ψ(−kx, kz, α)|∂−kx |ψ(−kx, kz , β)〉
= −Bαθ(kx, kz)aθγx (kx, kz)B

∗
βγ(kx, kz)

−iBαθ(kx, kz)∂kxB∗
βθ (B5)

Then the x component of the Abelian Berry connection
has the relation

Ax(−kx, kz) = Tr(ax(−kx, kz))
= −Ax(kx, kz)− iT r[B(kx, kz)∂kxB

†(kx, kz)] (B6)

where the trace is taken for all the occupied bands in the
considered subspace. Similarly, the z component of the
Abelian Berry connection is

Az(−kx, kz) = Tr(az(−kx, kz))
= Az(kx, kz) + iT r[B(kx, kz)∂kzB

†(kx, kz)] (B7)

Thus the Berry curvature in the considered subspace has
the property that

F (−kx, kz)
= ∂kzAx(−kx, kz)− ∂−kxAz(−kx, kz)
= −[∂kzAx(kx, kz)− ∂kxAz(kx, kz)]

= −F (kx, kz). (B8)

The Berry curvature in each subspace is an odd function
of kx. Therefore, the Chern number, as an integral of
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the Berry curvature over the whole momentum space, in
each subspace is zero.
In the spinful case, the mirror symmetrymx change the

mirror parity of the eigenfunctions under my. Therefore,
two subspaces of my are related to each other by mx in
this case. As a consequence, one can follow the derivation
above and obtain the result

Fe(−kx, kz) = −Fo(kx, kz). (B9)

Therefore, the Chern number in each subspace can be
nonzero with the relation Ce = −Co and the MCN is
CM = 1

2 (Ce − Co) = Ce. We conclude that the MCN
for a system with the pmm group must be zero for the
spinless case but can be non-zero for the spinful case.
For the non-zero MCN in the spinful case of the pmm

group, we can further relate it to the HMC defined in
the main text. This is because the Berry connection in
the region kx ∈ (−π, 0) can be determined by that in the
region kx ∈ (0, π). Direct calculation gives

CM = Ce =
1

2π

∫

MIP

dkxdkyFe(kx, kz)

=
1

2π

∫ π

−π
dkz(

∫ π

0

dkxFe(kx, kz) +

∫ 0

−π
dkxFe(kx, kz))

=
1

2π

∫ π

−π
dkz(

∫ π

0

dkxFe(kx, kz) +

∫ π

0

dkxFe(−kx, kz))

=
1

2π

∫ π

−π
dkz(

∫ π

0

dkxFe(kx, kz)−
∫ π

0

dkxFo(kx, kz))

=
1

2π

∫ π

−π
dkz

∫ π

0

dkx(Fe(kx, kz)− Fo(kx, kz))

= χe(kx, kz)− χo(kx, kz) (B10)

where χe(o) =
1
2π

∫ π

−π dkz
∫ π

0
dkxFe(o)(kx, kz) is the inte-

gration of the Berry curvature on half of the mirror plane
between two lines which project onto the high symme-
try points in the surface BZ in even (odd) mirror parity
subspace. The definition of χe(o) is actually the spinful
version of the halved mirror chirality defined by Alexan-
dradinata et al.[67] in the spinless case.

Appendix C: Models of p4m, p31m and p6m in the

spinful case

1. p4m group in the spinful case

Here, we construct a model of a TCI in p4m group in
the spinful case. We consider a layered structure stacked
along z direction, of which each layer is a square lattice
in xy plane. There is one atom in each primitive cell.
We consider the s orbital (instead of the p orbitals in
the spinless model) of each atom in the simplest case.
Assume there are two s orbitals on each atom, denoted
by si(i = A,B). The basis can be chosen as Ψ0 = (|sA, ↑
〉, |sA, ↓〉, |sB, ↑〉, |sB, ↓〉)T , where

|si, σ〉 =
1√
N

∑

R

eik·Rφi(r−R)|σ〉 (C1)

with i = A,B and σ =↑, ↓.
The Hamiltonian has the form

H(k) =

(

HA(k) HAB(k)

HAB(k)
† HB(k)

)

(C2)

where

HAB = {tj0 + tj1[cos(kx) + cos(ky)] + tj2 cos(kz)

+ tj3 sin(kz)}σ0 + ifj [sin(kx)σy − sin(ky)σx] (C3)

where j = A,B,AB. In the basis Ψ0, the matrix form of
the mirror symmetry operation my is D(my) = σ0 ⊗ iσy
and that of the four-fold rotation symmetry operation c4
is D(c4) = σ0 ⊗ 1√

2
(σ0 + iσz). It can be checked that the

Hamiltonian satisfies

H(k) = D(g)†H(gk)D(g) (C4)

where g = c4,my. Note that in the spinful case, although
we only consider the s orbital, the bands are doubly de-
generate at Γ̄, X̄ and M̄, and the topological classifica-
tion is Z

3. Set tA0 = −tB0 = 23, tA1 = −tB1 = −8,
tA2 = −tB2 = −8, tA3 = tB3 = fA = fB = 0, tAB0 = 0.2,
tAB1 = tAB2 = 0.1, tAB3 = 1i. Tuning fAB from 0 to
1.5i, the system goes from a trivial insulating phase to
a TCI phase with the HMCs χ(Γ̄-X̄) = χ(Γ̄-M̄) = 1 and
χ(X̄-M̄) = 0. The band dispersions in a slab configura-
tion with fAB = 0.8i and 1.5i are shown in Fig. 11(a)
and (b), respectively.

2. p31m group in the spinful case

Reading the character table of C3v double group, we
know that the basis | ↑〉 and | ↓〉 corresponds to the 2D
Irrep in the spinful case. Thus, we consider a triangular
lattice with s orbital on each atom to build the model of
p31m group. The basis are chosen as Ψ0 = (|sA, ↑〉, |sA, ↓
〉, |sB, ↑〉, |sB, ↓〉)T , where A and B denote two different
s orbitals on each atom. The Hamiltonian is

H(k) =

(

HA(k) HAB(k)

HAB(k)
† HB(k)

)

(C5)

where

Hj = {tj0 + tj1[cos(k1) + cos(k2) + cos(k2 − k1)]

+ tj2 cos(kz) + tj3[sin(k1)− sin(k2) + sin(k2 − k1)]

+ tj4 sin(kz)}σ0 + eiπ/6 cos
(π

6

)

{fj1[sin(k2)
+ sin(k2 − k1)] + fj2[− cos(k2) + cos(k2 − k1)]}σx
− eiπ/6{fj1[sin(k1) + (sin(k2)− sin(k2 − k1)) sin

(π

6

)

]

+ fj2[cos(k1)− (cos(k2) + cos(k2 − k1)) sin
(π

6

)

]}σy
(C6)

where j = A,B,AB, and k1, k2 denote the momentum
along the basis of the BZ b1 = (

√
3,−1)π and b2 =
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(0, 1)2π, respectively. In the basis Ψ0, the matrix form
of the mirror symmetry operationmy isD(my) = σ0⊗iσy
and that of the three-fold rotation symmetry operation c3
is D(c3) = σ0⊗ 1

2 (σ0+ i
√
3σz). By direct calculation, we

get [my, c3] 6= 0, which indicates the double degeneracy
at Γ̄, K̄ and K̄′. Set tA0 = −tB0 = 23, tA1 = −tB1 = −8,
tA2 = −tB2 = −8, tA3 = tB3 = 0, fA1 = fA2 = fB1 =
fB2 = 0, tAB0 = 2, tAB1 = tAB2 = tAB3 = 0, tAB4 = i,
and define l1 = (fAB1 + fAB2)e

iπ/6/2, l2 = (fAB1 −
fAB2)e

iπ/6/2. Fix l1 = 0 and increase l2 continuously.
When l2 = 0, it is the trivial insulating phase. When
l2 ∼ 0.96, gap closes on Γ-K, and drive the system into
to a semimetal phase. When l2 ∼ 1.9, the gap closes on
Γ-K′, and after that, the system become insulating again,
with one surface Dirac cone at Γ̄. The band dispersions
in a slab configuration with l2 = 0.7 and 2.5 are shown
in Fig. 11(c) and (d), respectively.

3. p6m group in the spinful case

The Irreps of C6v (for Γ̄) and C2v (for M̄) group are
all 2D in the spinful case, thus we still can consider
only the s orbital of the atoms on an triangular lat-
tice. Meanwhile, from the analysis of C3v group, we
know that with s orbital the bands are doubly degen-
erate at K̄, too. The basis can be chosen as Ψ0 = (|sA, ↑
〉, |sA, ↓〉, |sB, ↑〉, |sB, ↓〉)T , where A and B denote two
different s orbitals on each atom. By setting the co-
efficients tj3, fj2 (j = A,B,AB) to zero in the Hamil-
tonian of p31m group, we get the Hamiltonian of p6m
group. The matrix form of c6 rotation operation is

D(c6) = σ0 ⊗ 1
2 (
√
3σ0 + iσz), and that of my is still

σ0 ⊗ iσy. Set tA0 = −tB0 = 23, tA1 = −tB1 = −8,
tA2 = −tB2 = −8, tA3 = tB3 = 0, fA1 = fB1 = 0,
tAB0 = 1, tAB1 = tAB2 = 0, tAB3 = 1i. Tuning
fAB1e

iπ/6 from 0 to 1, the system transforms from a triv-
ial insulating phase to a TCI phase with one surface Dirac
cone at Γ̄. The band dispersions in a slab configuration
with fAB1 = 0.5e−iπ/6 and e−iπ/6 are shown in Fig. 11(e)
and (f), respectively.

Appendix D: Model of p4g group in the spinless case

In this section, we give a model of p4g group. An anti-
ferromagnetic lattice can be constructed to realize the
p4g group. It is consisted of two interpenetrating square
sublattices, which are connected by a translation (12 ,

1
2 , 0)

to each other (the lattice constant in xy plane is set as 1).
The magnetic moments in each sublattice has a ferromag-
netic order perpendicular to the xy plane, while the mag-
netic directions of the two sublattices are opposite. Con-
sider the px and py orbital on each atom, the basis can be
chosen as Ψ = (|A, 1, px〉, |A, 1, py〉, |A, 2, px〉, |A, 2, py〉,
|B, 1, px〉, |B, 1, py〉, |B, 2, px〉, |B, 2, py〉)T , where 1 and
2 denote two sublattices, and A and B denote two sets of
independent p orbitals. The Hamiltonian has the form

H(k) =

(

HA(k) HAB(k)

HAB(k)
† HB(k)

)

(D1)

where
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Hja = (tj0 + tj3 cos(kz) + tj4 sin(kz))Γ00 + (tj1 cos(kx) + tj2 cos(ky))
(Γ00 + Γ03)

2

+(tj1 cos(ky) + tj2 cos(kx))
(Γ00 − Γ03)

2
+ tj5 sin(kx) sin(ky)Γ33;

Hjb = (fj0 + fj3 cos(kz) + fj4 sin(kz))iΓ32 + (fj1 cos(kx) + fj2 cos(ky))
(Γ31 + iΓ32)

2

+(fj1 cos(ky) + fj2 cos(kx))
(−Γ31 + iΓ32)

2
+ fj5 sin(kx) sin(ky)Γ01;

Hjc = [aj1(1 + cos(kx + ky)) + aj2(cos(kx) + cos(ky))]
(Γ10 + iΓ23)

2

+[aj1 sin(kx + ky) + aj2(sin(kx) + sin(ky))]
(Γ20 − iΓ13)

2

+[aj2(1 + cos(kx + ky)) + aj1(cos(kx) + cos(ky))]
(Γ10 − iΓ23)

2

+[aj1(sin(kx) + sin(ky)) + aj2 sin(kx + ky)]
(Γ20 + iΓ13)

2
;

Hjd = [bj1(1 + cos(kx + ky)) + bj2(cos(kx) + cos(ky))]
(Γ11 − Γ22)

2

+[bj1 sin(kx + ky) + bj2(sin(kx) + sin(ky))]
(Γ12 + Γ21)

2

−[bj2(1 + cos(kx + ky)) + bj1(cos(kx) + cos(ky))]
(Γ11 + Γ22)

2

+[bj2 sin(kx + ky) + bj1(sin(kx) + sin(ky))]
(Γ12 − Γ21)

2
;

Hj = Hja +Hjb +Hjc +Hjd. (j = A,B,AB) (D2)

The generator of p4g group can be chosen as glide
plane symmetry operation gy = {my|τ = (12 ,

1
2 )}

and four-fold rotation c4. In the basis Ψ, the matrix
form of the symmetry operations are D(gy) = σ0 ⊗
[e−ikx/2(cos(kx/2)σx + sin(kx/2)σy) ⊗ σz ], and D(c4) =

σ0⊗ [ie−ikx/2(cos(kx/2)σ0+sin(kx/2)σz)⊗σy]. By direct
calculation, it can be shown that at Γ̄, {gy, c4} = 0 and
at M̄, [gy, c4] = 0. Thus, in the basis Ψ, the bands are
doubly degenerate at Γ̄, while not degenerate at M̄. Since
we have proved that with any basis the bands are doubly
degenerate at X̄, one topological invariant HGC can be
defined on Γ̄-X̄. In our model, the representation of c4
for the bands at M̄ depend on the value of the parame-
ters of the Hamiltonian, thus in general, as discussed in
the main text, the topological classification of our model
is at least Z. Set tA0 = −tB0 = 23, tA1 = −tB1 = 8,
tA2 = −tB2 = −8, tA3 = −tB3 = −8, tA4 = tB4 = 0,
tAB0 = 1, tAB4 = i. Define l1 = (aAB1 + aAB2)/2
and l2 = (aAB1 − aAB2)/(2i) and fix l2 = 2l1. The
other parameters can be chosen to be zero, or some ar-
bitrary numbers with small absolute values, which will
not change the topological properties. When l1 < 0.5,
the system is in a trivial insulating phase. Increase l1 to
0.5, gap closes on X-M, and then drive the system into
the semimetal phase with Weyl nodes. The band struc-
ture along two of the Weyl nodes are shown in Fig. 12(d)
with l1 = 0.8. When l1 ∼ 1, gap closes on Γ-X. In-

creasing l1 further, the system goes into a topological
nontrivial phase with χ(Γ̄-X̄) = 1. The band dispersions
in a slab configuration with l1 = 0.5, 1.2, 0.8 are shown
in Fig. 12(a), (b) and (c).

Appendix E: Useful character tables

TABLE III. The character table of C3v single group.

C3v E 2C3 3mv

A1 1 1 1

A2 1 1 −1

E 2 −1 0

TABLE IV. The character table of C4v single group.

C4v E C2 2C4 2mv 2md

A1 1 1 1 1 1

A2 1 1 1 −1 −1

B1 1 1 −1 1 −1

B2 1 1 −1 −1 1

E 2 −2 0 0 0
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TABLE V. The character table of C6v single group.

C6v E C2 2C3 2C6 2mv 2md

A1 1 1 1 1 1 1

A2 1 1 1 1 −1 −1

B1 1 −1 1 −1 −1 1

B2 1 −1 1 −1 1 −1

E1 2 −2 −1 1 0 0

E2 2 2 −1 −1 0 0

[1] X.-L. Qi and S.-C. Zhang, Rev. Mod. Phys. 83, 1057
(2011).

[2] M. Z. Hasan and C. L. Kane, Rev. Mod. Phys. 82, 3045
(2010).

[3] J. E. Moore, Nature 464, 194 (2010).
[4] X. L. Qi and S. C. Zhang, Phys. Today 63, 33 (2010).
[5] K. v. Klitzing, G. Dorda, and M. Pepper, Phys. Rev.

Lett. 45, 494 (1980).
[6] C. L. Kane and E. J. Mele, Phys. Rev. Lett. 95, 226801

(2005).
[7] C. L. Kane and E. J. Mele, Phys. Rev. Lett. 95, 146802

(2005).
[8] B. A. Bernevig and S. C. Zhang, Phys. Rev. Lett. 96,

106802 (2006).
[9] B. A. Bernevig, T. L. Hughes, and S. C. Zhang, Science

314, 1757 (2006).
[10] L. Fu, C. L. Kane, and E. J. Mele, Phys. Rev. Lett. 98,

106803 (2007).
[11] L. Fu and C. L. Kane, Phys. Rev. B 76, 045302 (2007).
[12] J. E. Moore and L. Balents, Phys. Rev. B 75, 121306

(2007).
[13] M. König, S. Wiedmann, C. Brüne, A. Roth, H. Buh-
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[75] A. G. Grushin, Á. Gómez-León, and T. Neupert, Physical
review letters 112, 156801 (2014).

[76] W. Zheng and H. Zhai, Physical Review A 89, 061603
(2014).

[77] G. Jotzu, M. Messer, R. Desbuquois, M. Lebrat,
T. Uehlinger, D. Greif, and T. Esslinger, Nature 515,
237 (2014).

[78] M. Aidelsburger, M. Lohse, C. Schweizer, M. Atala,
J. T. Barreiro, S. Nascimbene, N. Cooper, I. Bloch, and
N. Goldman, Nature Physics 11, 162 (2015).

[79] L. Lu, L. Fu, J. D. Joannopoulos, and M. Soljačić, Nature
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FIG. 9. (Color online) Band dispersions around X̄ of the
model of TCI in the pgg group in a slab configuration. A = 1.7
is fixed and B is tuned from 0.2 to 0.8 in (a)-(e). We only
show the surface states on one surface of the slab. The red
(blue) lines denote the bands with even (odd) glide parity.
(f)Schematic plot of the positions of Weyl nodes (marked by
the red dots) in the surface BZ when B = 0.4. (g)The density
of states calculated by iterative Green functions on the line
connecting two Weyl nodes with B = 0.4 in a semi-infinite
configuration. (h)The density of states of the Fermi surface
passing through the nodal points with B = 0.4. The other
parameters in all of the figures are f1a = f2a = −f1b = f2b =
0.1, f3a = f ′

3a = f3b = f ′

3b = 0, θ1a = θ2a = θ1b = θ2b = 0,
f1 = f2 = 1, f4 = 0.1, θ1 = π/2, θ2 = 0 and n = 2.
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