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We demonstrate a robust experimental method for determining the depth of individual shallow
Nitrogen-Vacancy (NV) centers in diamond with ∼ 1 nm uncertainty. We use a confocal micro-
scope to observe single NV centers and detect the proton nuclear magnetic resonance (NMR) signal
produced by objective immersion oil, which has well understood nuclear spin properties, on the di-
amond surface. We determine the NV center depth by analyzing the NV NMR data using a model
that describes the interaction of a single NV center with the statistically-polarized proton spin bath.
We repeat this procedure for a large number of individual, shallow NV centers and compare the
resulting NV depths to the mean value expected from simulations of the ion implantation process
used to create the NV centers, with reasonable agreement.

I. INTRODUCTION

The Nitrogen-Vacancy (NV) center in diamond is a
leading platform for wide-ranging applications in sensing,
imaging, and quantum information processing1–5. Key
enabling properties of NV centers include exceptionally
long electronic spin coherence times (T2 & 100µs)1,6 and
optical polarization and readout of the spin state (Fig.
1a)6 in an atomic sized defect within the diamond crystal
under ambient conditions.

Shallow NV centers within several nanometers of the
diamond surface are especially useful for applications
that rely on the strong dipolar coupling afforded by
bringing the NV spin into close proximity to an exter-
nal spin of interest. For example, quantum sensing7

and computing8 schemes in which NV centers are em-
ployed to control and read out the states of nuclear
spins in samples tethered to the diamond surface re-
quire minimal separation between the NV and nuclear
spins for strong coupling. In magnetic sensing applica-
tions, shallow NV centers with few nanometer separation
from the magnetic field source have significant advan-
tages over deeper NV centers and other magnetometers
(e.g., SQUIDs) with much larger stand-off distances. Due
to their close proximity to the sample, shallow NV centers
(i) experience a larger magnetic field (i.e., dipolar fields
fall off as 1/r3) and (ii) enable spatial resolution on a
length-scale comparable to the stand-off distance, e.g.,
using scanning9,10, super-resolution optical11, or Fourier
imaging12 techniques. In particular, shallow NV centers
have recently been used for nuclear magnetic resonance
(NMR) spectroscopy and magnetic resonance imaging of

nanoscale samples13–15 including single proton NMR and
MRI16.

Such applications of shallow NV centers depend cru-
cially on accurate determination of the NV center depth,
with uncertainty ∼ 1 nm. Shallow NV centers are most
commonly formed via nitrogen ion implantation, with the
NV center depth estimated using the Stopping and Range
of Ions in Matter (SRIM) Monte-Carlo simulation17.
However, these estimates are statistical and thus do not
provide the depth of any individual NV center. Further-
more, the simulations do not take into account crystal-
lographic effects such as ion channeling, leading to un-
derestimation of the NV depth by as much as a factor
of two18. NV depth has also been estimated using sec-
ondary ion mass spectroscopy (SIMS) of nitrogen ions
after implantation. Unfortunately, SIMS has a minimum
detection threshold (∼ 3× 1014 15N/cm3) and cannot be
used to estimate individual NV center depths18.

Recently, the depth of individual NV centers has been
experimentally determined using two techniques requir-
ing highly-specialized and delicate apparatus. The first
technique takes advantage of Förster Resonance Energy
Transfer (FRET), determining NV depth by observing
the coupling of single NV centers and a sheet of graphene
brought in close proximity with the diamond surface.
Measuring the NV fluorescence intensity as a function
of separation between the graphene and diamond surface
until the two are in contact and fitting the data with
a theoretical model, NV depth can be determined with
sub-nanometer uncertainty19. In the second technique,
a single shallow NV is employed to image, with ∼ 1 nm
vertical resolution, dark electron spins assumed to be lo-
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FIG. 1: NV NMR Experiment. (a) NV electronic en-
ergy level structure. (b) A confocal microscope addresses a
single shallow NV center, which detects NMR signals from
a few-nanometer region of sample on the diamond surface.
Due to dipolar coupling, a shallow NV center (left) experi-
ences a significantly stronger magnetic field from a smaller
nuclear spin sample volume than a deep NV center experi-
ences (right). The strength of the magnetic field at the NV
center is indicated by the opacity of the nuclear spin sample,
and the dashed lines qualitatively illustrate the volume of nu-
clear spin sample that contributes most of the NMR signal.
(c) Larmor precessing statistically-polarized nuclear spins in
the sample produce an effective AC magnetic field (green)
that is detected by the NV sensor in a frequency-selective
manner using an XY8k pulse sequence.

cated at the surface of the diamond sample. The dark
spin imaging resolution and consequently the uncertainty
in NV depth determination is ultimately limited by the
applied magnetic field gradient, the mechanical stability
of the apparatus, and the T ∗2 of the dark spin10.

In this paper, we present a robust method for ex-
tracting individual NV center depth with ∼ 1 nm un-
certainty that can be easily performed with a scanning
confocal microscope. We derive and analyze a model that
describes the interaction of a single shallow NV center
with a statistically-polarized nuclear spin bath, such as
a proton-containing sample on the diamond surface, and
discuss the conditions of validity of this model. Fitting
the single-NV-measured proton NMR signal produced by
microscope objective immersion oil, which has well un-
derstood nuclear spin properties, to the model expres-
sion, we determine depths for a large number of individ-
ual shallow NV centers and compare the measured depths
with those expected from SRIM simulations. Finally, we
discuss further application of this model to perform char-
acterization of both NV centers as well as unknown nu-
clear spin samples on the diamond surface. Note that
the experiments, model, and analysis presented here are
a more detailed treatment of this approach to determin-
ing NV depth outlined in Refs. 13–15,20–24.

II. METHODS

In our experiments we study negatively-charged NV
centers formed via low-energy, low-dosage nitrogen ion
implantation and subsequent annealing (see details in

Sec. III and Table I), such that individual NV centers
can be interrogated with a confocal microscope. To de-
termine the depth of an individual NV center, we apply
immersion oil to the diamond surface and measure the
variance of the fluctuating NMR magnetic field at the
NV center using a dynamical decoupling pulse sequence.
The NMR magnetic field is created by a statistically-
polarized subset of the proximal protons in the immersion
oil, as shown in Fig. 1b. The protons undergo Larmor
precession with a frequency determined by the applied
static magnetic field (150-1600 G), but with a phase and
amplitude that varies with every repetition of the pulse
sequence. Although the net magnetization of the proton
spin ensemble over the timescale of the entire experiment
is negligible at the temperature and static fields applied
in this work, the variance is nonzero and is proportional
to the density of the proton bath.

We use an XY8k pulse sequence, shown in Fig. 1c,
to measure individual Fourier components of the NMR
magnetic signal. We first optically pump the NV center
electronic spin into thems = 0 magnetic sublevel and cre-
ate a coherent superposition of the ms = 0 and ms = 1
sublevels using a microwave (MW) π/2-pulse. The NV
spin then undergoes periodic intervals of free evolution
and 180◦ phase flips driven by resonant MW pulses, af-
ter which a final MW π/2-pulse converts the accumulated
phase into an NV spin state population difference. The
NV spin free evolution is governed by the time-dependent
component of the total external magnetic field, which in-
cludes contributions from the proton NMR signal pro-
duced by the immersion oil on the diamond. The net
accumulated NV spin phase is only appreciable when the
evolution time τ is close to half the proton Larmor pe-
riod.

The accumulated NV spin phase is measured by two
consecutive near-identical experiments that project the
final NV spin state first onto the ms = 0 state (re-
sulting in a measurement of NV fluorescence F0) and
then onto the ms = 1 state (resulting in a measure-
ment of NV fluorescence F1), with appropriate choice of
the final π/2-pulse phase. In order to remove common-
mode noise from laser fluctuations, the two fluorescence
signals are normalized to give the signal contrast S =
[(F0 − F1)/(F0 + F1)].

Measuring the signal contrast over a range of free evo-
lution times τ results in slowly decreasing signal contrast
for larger τ , due to NV spin decoherence, and a narrower
dip in contrast for specific values of τ , caused by the nu-
clear spin Larmor precession. The background decoher-
ence can be fit to an exponential function and normalized
out, leaving the normalized contrast C(τ) with only the
narrower NMR-induced dip (shown in detail in the ap-
pendix). The shape of this dip, described by Equation 1,
is determined by the magnetic field fluctuations produced
by the dense ensemble of nuclear spins in the immersion
oil on the diamond surface, as well as by the filter func-
tion corresponding to the XY8k dynamical decoupling
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pulse sequence:

C(τ) ≈ exp
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(An in-depth derivation is presented in the appendix.)
Here γe ≈ 1.76 × 1011 rad/s/T is the electron gyro-
magnetic ratio, BRMS is the RMS magnetic field signal
produced at the Larmor frequency by the nuclear spins,
K(Nτ) is a functional which depends on the pulse se-
quence and the nuclear spin coherence time, and N is
the number of π-pulses, which are separated by the NV
spin free precession time τ . As shown in the appendix,
for the simplest case of a semi-infinite layer of a homoge-
neous nuclear-spin-containing sample on the most com-
monly used {100}-oriented diamond surface, BRMS is re-
lated to the NV depth dNV below the diamond surface
by
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)
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where ρ is the nuclear spin number density and γn is
the nuclear spin gyromagnetic ratio (for protons γn ≈
2.68 × 108 rad/s/T)21. More general cases of arbitrary
nuclear spin quantum number and other diamond sur-
face orientations can be calculated as described in the
appendix. If the nuclear spin dephasing time (T ∗2n) is as-
sumed to be infinite, then the functional K(Nτ) is given
by

K(Nτ) ≈ (Nτ)2sinc2
[
Nτ

2
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)]
, (3)

where ωL is the nuclear Larmor frequency14. However,
spectral broadening of the NMR signal due to diffusion
or a finite dephasing time can also be included as shown
in the appendix, in which case, the functional K(Nτ) is
given by
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For a sample with well-known nuclear spin number den-
sity ρ (e.g., ρ = 68 ± 5 nm−3 for the Nikon Type NF
immersion oil employed in this work, measured using a
Varian Unity Inova500C NMR system), the only free pa-
rameters in the fit expression are the NV depth dNV, the
Larmor frequency ωL, and the nuclear spin dephasing
time T ∗2n. The confidence with which each of these pa-
rameters can be extracted from a fit of Equation 1 to NV
NMR data is strongly dependent on both the probed NV
center properties and the applied pulse sequence.

In the limit of infinite T ∗2n, the strength of the NMR
signal dip is entirely determined by the NV depth and
the measurement pulse sequence duration T = Nτ , vary-
ing inversely with the former and directly with the latter.
That is, for a fixed pulse sequence duration, shallower NV
centers produce stronger NMR signal dips while deeper
NV centers produce weaker NMR signal dips. As a re-
sult, pulse sequences with longer durations are necessary
to acquire a strong enough NMR signal dip to confidently
extract a depth estimate from a deeper NV center. On
a related note, the infinite T ∗2n limit is only valid when
the pulse sequence duration is significantly shorter than
T ∗2n; for sufficiently long pulse sequence duration, the NV
detection bandwidth becomes narrow enough that the
broadening of the NMR signal dip due to nuclear diffu-

sion and spin dephasing can be observed and T ∗2n can be
extracted using the form of the functional K(Nτ) given
by Eq. (4). The pulse sequence duration is eventually
limited by the coherence time T2 of the NV spin, however,
which places upper bounds on the depth of NV centers
and T ∗2n of nuclear spin samples that can be extracted
with this analysis. Recent work indicates a strong de-
pendence of the NV T2 coherence time on the NV depth
for shallow NV centers.25 Assuming a typical value of
T2 ∼ 1 ms found in deep NV centers and standard opti-
cal collection efficiencies (< 10%) we estimate that NV
depths up to 300 nm below the diamond surface can be
measured using the present method.

III. RESULTS

We performed measurements on 36 NV centers across
3 diamond samples, each synthesized via chemical vapor
deposition (Element Six). Sample A was implanted with
3-keV 15N+ ions at a dose of 1 × 109 cm−2; Sample B
was implanted with 2-keV 15N+ ions at a dose of 1× 109

cm−2; and Sample C was implanted with 2.5-keV 14N+

ions with measurements taken in a region of 2D NV den-
sity ∼ 8× 107 cm−2. We employed a custom-built scan-
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FIG. 2: Example NV NMR proton spectra. For all spectra, diamond sample and NV #, pulse sequence, and applied
static magnetic field are given in the bold inset label or in the symbol key, and the extracted NV depths are given in the symbol
key. (a) NV NMR proton spectra data (black dots) measured with an XY064 pulse sequence at 197 G static field, analyzed
assuming finite T ∗2n (red solid curve) and infinite T ∗2n (blue dashed curve). Both analyses fit the data well, with consistent NV
depth values. (b) Proton NMR spectra measured with another NV center using different pulse sequences. The NV depths
extracted from finite T ∗2n fits (solid curves) are in reasonable agreement for all measurements. (c) Proton NMR spectra and
finite T ∗2n fits (solid curves) for two NV centers determined to have different depths under the same experimental conditions.
The observed signal contrast dips vary strongly with NV depth. (d-f) Proton NMR spectra measured with the same NV center
at different static field strengths and using different pulse sequences. Finite T ∗2n fits (solid curves) yield consistent NV depths
for all experimental conditions.

ning confocal microscope to address single NV centers
in each sample and fit the measured proton NMR signal
from immersion oil on the diamond surface to Equation 1
in order to extract depth values for each NV center. The
three samples employed in this work were isotopically en-
gineered to contain 99.999% 12C to avoid ambiguity be-
tween the proton signal and the fourth harmonic of 13C
in the NMR spectra.21 A compilation of the measured
properties of all the NV centers and diamond samples
is given in Table I. Proton spins in immersion oil have
an expected T ∗2n ∼ 60 µs (corresponding to a linewidth
∼ 5 kHz, see appendix for details) which is a longer nu-
clear T ∗2n than can be extracted with the shallow NV
centers used in the present work. Indeed, analysis of the
measured NMR spectra data assuming infinite T ∗2n (Eq.
3) and finite T ∗2n (Eq. 4) generally give good agreement
both in fits to the data and in NV depth extracted (Fig.
2a). However, since the infinite T ∗2n condition does not
hold strictly true for every measurement, we performed
all analyses using the general case of finite nuclear T ∗2n,
except where explicitly noted.

Figure 2 shows typical measured proton NMR data
from several representative NV centers in Sample A. The
solid curves correspond to the best-fits of the model func-

tion to the data, from which NV depth estimates are
extracted. We find that the contrast dip positions are
in good agreement with those expected for the magnetic
fields measured from the NV resonance frequencies, i.e.,
dips occur at τ = π/ωL. Furthermore, we find that the
fit expression yields consistent NV depth values even un-
der different experimental conditions. For example, in
Figure 2b, several measurements with different numbers
of pulses were performed on the same NV center at the
same static magnetic field. Fitting to each NMR spec-
trum independently, we extracted NV depth values that
were in reasonable agreement with each other. Figures
2(d-f) show measurements and analyses of another NV
center for which both the number of pulses and the static
magnetic field were varied. Again, for all experimental
conditions, the NV depth values extracted from the mea-
surements are comparable to within their error bars. Fig-
ure 2(c) shows proton NMR data from two different NV
centers measured with the same pulse sequence under the
same experimental conditions (within the same diamond
sample at the same static magnetic field) to illustrate
the profound effect an NV center’s depth can have on
its sensitivity to NMR signals from nuclear spins at the
diamond surface.
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diamond Sample A, implanted with 3.0-keV 15N ions, and (b)
13 NV centers in diamond Sample C, implanted with 2.5-keV
14N ions. Solid lines represent estimates from SRIM simula-
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Finally, we compared the distribution of NV depth val-
ues extracted from diamonds with different nitrogen im-
plantation energies. Figure 3 shows histograms of the
estimated depths for 11 NV centers in Sample A, which
had been implanted with 3.0-keV 15N ions and 13 NV
centers in Sample C, which had been implanted with 2.5-
keV 14N ions (see also Table I). We found that the 3.0-
keV implanted NV centers had a mean depth of 10.5 nm,
with 2.8 nm standard deviation, and that the 2.5-keV im-
planted NV centers had a slightly shallower mean depth
of 8.5 nm, with 2.8 nm standard deviation. In contrast,
SRIM simulations predict a mean depth of (5.2±2.1) nm
for 3.0-keV 14N ion implantation and a mean depth of
(4.5±1.9) nm for 2.5-keV; thus our measurements of NV
depth are consistent with previous estimates on samples
implanted at higher implant energies (10-30 keV) that
SRIM underestimates NV depth by as much as a factor
of two.18 However, it is important to note that the SRIM
software estimates the distribution of implanted nitrogen
ions whereas the NV NMR analysis estimates the depths
of NV centers, which may have depth-dependent factors
limiting their formation in diamond beyond the distribu-
tion of implanted nitrogen impurities. Furthermore, in
addition to the NV centers whose extracted depths are
represented in Figure 3, in all diamond samples we ob-
served that a fraction of the optically observed NV cen-
ters (e.g., roughly 1/2 in Sample C) had optical and/or
spin properties that were too unstable for any detailed
measurements to be performed on them. These unstable
optical and/or spin properties are likely symptomatic of
very shallow NV centers whose depths cannot therefore
be measured with the NMR technique presented in this
paper. While this behavior may indicate a bias in the NV
depth statistics extracted using this analysis technique,
it also illustrates how this analysis may be applied to-
wards determining how close to the diamond surface NV
centers’ optical and spin properties remain stable enough
for sensitive spin measurements and furthermore provides
an avenue for studying how surface treatments and pro-
cessing can be used to stabilize very shallow NV centers.

TABLE I: Summary of the depths determined from 36 NV
centers in 3 diamond samples under a range of external static
field magnitudes B0 and number of π-pulses N used in the
XY8k measurement protocol. Sample A was implanted with
3.0-keV 15N ions; Sample B was implanted with 2.0-keV 15N
ions; and Sample C was implanted with 2.5-keV 14N ions. In
Samples A and C, measurements were performed on a ran-
dom collection of NV centers such that the determined depth
values reflect the NV depth distribution. In Sample B, mea-
surements at 1609 G were performed only on NV centers that
showed strong proton NMR signals for short averaging times;
consequently these measurements are weighted towards shal-
lower NV centers and do not accurately reflect the NV depth
distribution.

Sample NV # B0 (G) π-pulses NV depth (nm)
A 001 197 32 10.4(7)
A 002 197 64 13.2(3)
A 005 197 64 14.8(3)
A 006 197 16, 32, 64 8.5(4)
A 007 197 32, 64 9.0(4)
A 008 197 64, 256 15.3(3)
A 010 197, 1580 16, 32, 64, 508 8.9(5)
A 012 197 32 8.3(3)
A 104 150 16 6.4(2)
A 110 150 64 10.7(4)
A 111 150 64 10.0(2)
B 009 206 64 10.7(7)
B 022 159 32, 64, 96, 128 9.7(6)
B 100 206 32 11(2)
B 112 1609 60 6.2(6)
B 115 1609 124 7.7(3)
B 116 1609 124 5.2(2)
B 118 1609 124 6.5(3)
B 119 1609 124 4.8(2)
B 120 1609 124 4.8(2)
B 121 1609 124 5.6(3)
B 122 1609 124 5.0(2)
B 123 1609 124 7.3(3)
C 009 156 16, 32, 64, 96 8(1)
C 014 156 64 13.3(9)
C 025 156 64 9.4(5)
C 030 156 16 4.9(4)
C 056 156 8, 16 4.7(2)
C 075 156 64 7.4(2)
C 090 156 64, 96, 128 7.5(5)
C 093 156 64, 128 9.4(6)
C 098 156 64, 96, 128 12(1)
C 107 156 64 8.6(4)
C 111 156 16, 32 4.6(6)
C 116 156 64 9.7(6)
C 125 156 64, 128 11(1)

Both are topics of great importance in sensing, imaging,
and quantum information applications that rely on shal-
low NV centers.
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IV. DISCUSSION

The robust NMR technique presented here for deter-
mining the depth of shallow NV centers also enables de-
tailed investigations of the effect of NV depth on other
NV center properties. In particular, NV spin properties
such as dephasing time T ∗2 , coherence time T2, and re-
laxation time T1 may be characterized as a function of
depth; furthermore, NV spectroscopic techniques may be
applied to probe the local spin environment close to the
diamond surface26. Since magnetic sensing and quan-
tum information applications that employ shallow NV
centers also require long NV spin coherence times, bet-
ter understanding and control of NV spin properties and
the spin environment as a function of NV depth are key
challenges.

In the present work, we applied the NMR technique
to determine NV center depth using a well-known nu-
clear sample. However, once an NV center’s depth is
determined, this information can be combined with the
model presented here to perform NV NMR studies of un-
known nuclear samples. Also, as discussed in Section III,
applying appropriate pulse sequences allows for the ex-
traction of the nuclear spin T ∗2n, which can be used to
study nuclear spin interactions and diffusion in the sam-
ple. Furthermore, by probing an unknown nuclear sam-
ple using multiple NV centers of differing depths, infor-
mation about the nuclear spin distribution as a function
of sample depth may be extracted.15
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Appendix A: NV Spin Decoherence Normalization

As described in the main text, two NV− spin-state-
dependent fluorescence measurements F0(τ) and F1(τ)
are acquired from consecutive, near-identical but inde-
pendent dynamical decoupling experiments, each with
π-pulses spaced by time τ . For F0(τ), the final π/2-
pulse projects the NV spin coherence onto the |0〉 state,
whereas for F1(τ) the pulse phase is reversed to project
the coherence onto | ± 1〉. This procedure removes
common-mode noise from laser fluctuations occurring on
timescales & τ . The fluorescence signals are described as
a signal contrast, S(τ), of the form:

S(τ) =
F0(τ)− F1(τ)

F0(τ) + F1(τ)
. (A1)

The signal contrast effectively measures the projection of
the NV spin coherence after the pulse sequence onto the
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FIG. A.1: (a) Example NV signal contrast S(τ) data (circles)
measured by applying an XY064 pulse sequence on NVA006
(Sample A). The decay due to NV spin decoherence is fit to
a stretched exponential function (line), excluding the data
which makes up the narrow NMR dip (open circles). (b)
Normalized contrast C(τ) data isolates the NV NMR signal.

coherence at the beginning of the sequence. Measuring
S over a range of free evolution times τ yields a slow de-
cay due to NV spin decoherence and a narrow dip due
to nuclear spin Larmor precession. The background NV
spin decoherence can be fit to a stretched exponential
function, excluding the data points which make up the
narrow dip corresponding to the NMR signal, as shown
in Fig. A.1(a). Dividing by this exponential fit func-
tion yields a normalized contrast C(τ) which isolates the
NMR signal in the NV measurement, as shown in Fig.
A.1(b).

Appendix B: NV NMR Lineshape

In this appendix, we present a derivation for the sig-
nal expected from an NV NMR measurement made with
a dynamical decoupling sequence. We adopt the non-
unitary Fourier transform in angular frequency units,
such that the Fourier transform pair for f(t) is defined
as27:

f(t) = F−1(f(ω)) =
1

2π

∫ +∞

−∞
f(ω)eiωtdω,

f(ω) = F (f(t)) =

∫ +∞

−∞
f(t)e−iωtdt. (B1)

With the previous expression, Parseval’s theorem reads
as: ∫ +∞

−∞
f(t)g∗(t)dt =

1

2π

∫ +∞

−∞
f(ω)g∗(ω)dω

→
∫ +∞

−∞
|f(t)|2dt =

1

2π

∫ +∞

−∞
|f(ω)|2dω, (B2)

and the expressions for the Dirac delta and convolution
functions are:

δ(ω − ω′) =
1

2π

∫ +∞

−∞
eit(ω−ω

′)dt

F (f ∗ g) = f(ω)g(ω). (B3)
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1. Signal from a Dynamical Decoupling Sequence

During the dynamical decoupling measurement se-
quence, the NV spin coherence accumulates some phase
∆φ(τ) due to evolution in the presence of magnetic fields.
In this work, the magnetic field of interest is the NMR
signal from statistically-polarized spins in the sample on
the diamond surface. After normalizing out contributions
due to background NV spin decoherence (see Appendix
A), the contrast is related to the accumulated phase by:

C(τ) = 〈cos(∆φ(τ))〉. (B4)

The brackets around cos(∆φ(τ)) indicate that a typical
fluorescence measurement is an average over many re-
peated, nominally identical dynamical decoupling exper-
iments. If the accumulated phase ∆φ(τ) follows a nor-
mal distribution centered at zero with variance 〈∆φ2(τ)〉
as will typically be the case for an NMR signal from a
statistically-polarized nanoscale sample, then the aver-
age over the cosine can be converted to an exponential
function of the variance using the relationship28:

〈f(X)〉 =

∫ ∞
−∞

f(x)p(x)dx, (B5)

where p(x) is the probability distribution function for
random variable X. Applying the integral of Eq. (B5) to
Eq. (B4) yields24,29:

C(τ) = exp(−〈∆φ2(τ)〉/2). (B6)

Phase is accumulated during the dynamical decoupling
sequence as the NV electronic spins Larmor precess in the
presence of a magnetic field signal Bz(t), where z is the
NV quantization axis. (The NV spin Larmor precession
from the static background field B0 is removed by work-
ing in the rotating reference frame). The sign of phase
accumulation (i.e., positive or negative phase accumula-
tion) is reversed by each π-pulse of the sequence, and can
be represented over time as a function g(t), as shown in
Fig. B.1. The total phase accumulated at the end of the
sequence is then:

∆φ(τ) = γe

∫ +∞

−∞
g(t)Bz(t)dt, (B7)

where γe is the gyromagnetic ratio for the NV electronic
spin (in units of rad/s). The accumulated phase vari-
ance can be expressed in terms of a correlation function
between measurements across times t and t′:

〈∆φ2(τ)〉 = γ2e 〈
∫ +∞

−∞
g(t)Bz(t)dt

∫ +∞

−∞
g(t′)Bz(t

′)dt′〉.

(B8)

We now assume temporal translational invariance for the
local and time-dependent field correlator:

〈Bz(t)Bz(t′)〉 = SB(t− t′). (B9)

 

FIG. B.1: The dynamical decoupling sequence, induced by
resonant MW pulses with phases as labeled, defines a function
g(t) describing the direction of NV spin precession in response
to a magnetic signal Bz(t).

Then we can write:

〈∆φ2(τ)〉 = γ2e

∫ +∞

−∞

∫ +∞

−∞
SB(t− t′)g(t)g(t′)dtdt′

= γ2e

∫ +∞

−∞

∫ +∞

−∞
SB(τ)g(t′)g(τ + t′)dτdt′

= γ2e

∫ +∞

−∞

∫ +∞

−∞
SB(τ)g(τ + t′)dτg(t′)dt′

= γ2e

∫ +∞

−∞
Jz1,2(t′)g(t′)dt′

=
γ2e
2π

∫ +∞

−∞
Jz1,2(ω)g(ω)dω, (B10)

where in the last line of the previous expression we have
used Parseval’s theorem. Since the term Jz1,2(t′) is noth-
ing but a convolution, one can easily conclude that:

〈∆φ2(τ)〉 =
γ2e
2π

∫ +∞

−∞
SB(ω)g(−ω)g(ω)dω

=
γ2e
2π

∫ +∞

−∞
SB(ω)|g(ω)|2dω. (B11)

The quantity SB(ω) represents the spectral density of the
effective NV spin phase noise resulting from the magnetic
field Bz(t) and manipulation of the NV spin by repeated
dynamical decoupling sequences; it can be computed as
follows:

SB(ω) = 〈|Bz(ω)|2〉

=

∫ +∞

−∞
〈Bz(0)Bz(t

′)〉e−iωt
′
dt′. (B12)

2. Application to NMR Signals

a. Correlation Functions

We consider the NMR magnetic signal Bz(t) originat-
ing from nuclear spins on the surface of the diamond
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and in the vicinity of a shallow NV center (see Fig.
B.2). The statistically-polarized nuclear spin ensemble
produces fluctuations in Bz(t). For an ensemble of point
dipoles, Bz(t) at the NV center can be written as:

Bz(t) =
∑
j

Dj [ 3ujxu
j
zI
j
x(t) + 3ujyu

j
zI
j
y(t)

+(3ujzu
j
z − 1)Ijz (t)

]
, (B13)

where the NV is coupled to many nuclear spins j at posi-

tions given by a distance rj and a unit vector uj (which
can be written in terms of of its coordinates ujx, u

j
y, u

j
z).

The coupling factor is Dj = (µ0~γn)/(4πr3j ), where γn
is the gyromagnetic ratio of the nuclei and rj is the dis-
tance between the NV center and nuclear spin j. Terms
Ijx,y,z represent the operator projection of nuclear spin j
along the x, y, and z axes.

Using Eq. (B13), the time-dependent correlator for the
NMR magnetic field can be expressed as:

〈Bz(0)Bz(t)〉 = 〈
∑
j

Dj(rj)
[
3ujxu

j
zI
j
x(0) + 3ujyu

j
zI
j
y(0) + (3ujzu

j
z − 1)Ijz (0)

]
∑
i

Di(ri)
[
3uixu

i
zI
i
x(t) + 3uiyu

i
zI
i
y(t) + (3uizu

i
z − 1)Iiz(t)

]
〉. (B14)

For an ensemble of nuclear spins that do not interact
with each other, time-dependent correlators can be de-
fined for every spin’s operator projection along each of
its axes:

〈Ijα(0)Iiβ(t)〉 = δα,βδ
i,jfα,β(I, T,B0, t). (B15)

The function fα,β represents the local nuclear spin-spin
correlation function. By treating the nuclear spins as
paramagnetic, the correlations between different nuclear
sites are identically zero. Note that the correlator is a
function of the nuclear spin’s total spin quantum num-
ber I as well as the temperature T and the applied field
B0 (which determines the Larmor frequency of the nu-
clei). In the simple case in which the external magnetic
field for the nuclei is applied along the NV axis one can
write fx,x = fy,y, i.e., behavior in the transverse plane
is independent of the relative phase between the nuclear
spin and the NV. Moreover, all nuclear spins of the same
species have the same correlator, and so the index j is
dropped for fα,β . Then

〈Bz(0)Bz(t)〉 =
∑
j

D2
j (rj)

[
9fx,x

(
(ujxu

j
z)

2 + (ujyu
j
z)

2
)

+fz,z
(
3ujzu

j
z − 1

)2]
.

(B16)

Assuming that the energy of the nuclear spin state |mz〉
is ~ωmzmz, the transverse fx,x, fy,y and longitudinal
fz,z spin-spin correlation functions have their natural
expression in frequency-space with the definition in Eq.
(B1). The relevant spin projections Iα for each nucleus
are found using their respective operators:

Iα = 〈nz|Îα|mz〉 (B17)

Then in the spectral representation

fα,α(I, T, ω) = F (fα,α(t)) =

∫ +∞

−∞
〈Iα(t)Iα(0)〉e−iωtdt

=
2π

Z

∑
n,m

e
− En
kBT |〈nz|Îα|mz〉|2δ

(
Em−En

~ − ω
)
, (B18)

where Z is the spin partition function and Em,n are the
energies of nuclear spins m,n.30 In the high temperature
limit where En � kBT , the eigenstates are equally pop-
ulated, and

fα,α(I, ω) =
2π

Tr(1)

∑
n,m

∣∣∣〈nz|Îα|mz〉
∣∣∣2 δ (Em−En~ − ω

)
.

(B19)
We now make use of the definitions for the z and x spin
projections:

Iz = 〈nz|Îz|mz〉 = mz〈nz|mz〉

Ix = 〈nz|
Î+ + Î−

2
|mz〉, (B20)

where

Î±|I,mz〉 =
√
I(I + 1)−mz(mz ± 1)|I,mz ± 1〉.

(B21)

Then the longitudinal correlator is

fz,z(I, ω) =
2π

Tr(1)

∑̂
z
|〈mz|Iz|mz〉|2 δ(ω). (B22)

The correlator (B22) can be computed by noting that
a Curie-Weiss prefactor appears due to the relation∑
zm

2
z/Tr(1) = I(I+1)/3. Because the longitudinal cor-

relator is centered at zero energy, it will not contribute to
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the final integral (B11) as long as g(ω = 0, τ,N) = 0 (i.e.,
the dynamical decoupling pulse sequence is not sensitive
to DC fields). The transverse correlator is

fx,x(I, ω) =
2π

Tr(1)

∑
n,m

∣∣∣〈nz|Îx|mz〉
∣∣∣2 δ (Em−En~ − ω

)
,

(B23)
which is non-zero only when mz, nz are adjacent en-
ergy levels. For the case of spin-1/2 nuclei (I = 1/2),
where the nuclear spins precess at Larmor frequency
ωL = γnB0, we evaluate (B23) as:

fx,x(I = 1/2, ω) =
2π

8
(δ(ω − ωL) + δ(ω + ωL)) . (B24)

The two contributions in (B24) represent the Stokes and
anti-Stokes lines, equal in the limit T →∞.30 Note that
the transverse correlator can also be calculated for nu-
clei with spin I > 1/2. These nuclei have an electric
quadrupole moment and, in the solid state, can exhibit
nuclear quadrupole resonances in the 0 − 2 MHz range
even when no external magnetic field is applied. Using
Eq. (B23), the correlator fx,x can be calculated for each
allowed transition among the multiple nuclear spin states.
We expect that NV center probing of nuclear spins with a
quadrupole moment will be particularly relevant to stud-
ies of solid state surfaces, as the electric field gradient at
the nuclear site should depend sensitively on variations
in surface properties.

The expression for magnetic field correlation is now

〈Bz(0)Bz(t)〉 = 9fx,x
∑
j

D2
j (rj)

[
(ujxu

j
z)

2 + (ujyu
j
z)

2
]
,

(B25)
with fx,x given by Eq. B24. By writing 1 − (ujz)

2 =
(ujx)2 + (ujy)2, the geometry-dependent terms can be col-
lected into one factor:

Γ =
∑
j

D2
j (rj)(u

j
z)

2
(
1− (ujz)

2
)
, (B26)

which we evaluate in the following section.

b. Calculation of the Geometrical Factor

For liquid samples such as immersion oil in which nu-
clear locations vary on a time scale short compared with
the dynamical decoupling sequence length, one can as-
sume a sample of nuclear density ρ continuously dis-
tributed on the diamond surface. Then the summation
of the geometrical factor (B26) can be converted to the
integral:

Γ = ρ

∫
dV

[(
µ0~γn

4π

)2
(ujz)

2(1− (ujz)
2)

r6

]

= ρ

(
µ0~γn

4π

)2

Γ̃. (B27)

I

FIG. B.2: An NV center at depth d below the diamond surface
on which resides a sample containing an ensemble of nuclear
spins, each with spin vector Ij and position uj

x, u
j
y, u

j
z. The

NV axis, and the axis for magnetic quantization, is at angle
α with respect to the vector normal to the diamond surface.
For purposes of integration across the sample, the spherical
coordinates r, θ, φ are used. The external magnetic field B0

is assumed to be aligned with the N-V symmetry axis.

We evaluated the integral Γ̃ using spherical coordinates
with the conventions of Fig. B.2. The polar angle ori-
gin θ = 0 is defined to be orthogonal to the surface of
the diamond, while φ is the azimuthal angle with arbi-
trary origin. The NV axis z points along a direction
z = [sin(α) cos(β), sin(α) sin(β), cos(α)]. The projection
uz needed for Eq. (B27) will in general depend on all four
angles just introduced. In particular, uz = z · ur, where
ur = [sin(θ) cos(φ), sin(θ) sin(φ), cos(θ)].

The integral for Γ̃ is then

Γ̃ =

∫ 2π

0

∫ π/2

0

∫ ∞
dNV / cos(θ)

(uz)
2(1− (uz)

2)

r4
sin(θ)drdθdφ,

(B28)

where dNV is the NV depth below the diamond surface.
The sample height is assumed to be semi-infinite, thereby
allowing integration of the radial component from the
diamond surface to infinity. Other sample geometries
can be accomodated with the proper integral limits and
choice of coordinate system (i.e., spherical, cylindrical,
etc.). Evaluating the integral produces a simple expres-
sion for Γ(dNV ):

Γ(dNV ) = ρ

(
µ0~γn

4π

)2
(
π
[
8− 3 sin4(α)

]
288d3NV

)
. (B29)

The expression is maximal when α = 0, where Γ̃(dNV ) =
π/(36d3NV ) However, in most diamond samples, the nor-
mal to the surface is aligned along the [100] crystal di-

rection, so that α = 54.7◦. At this angle, Γ̃(dNV ) =
5π/(216d3NV ). With the correlation functions and geo-
metric factors now evaluated, the spectral density can be
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written as:

SB(ω) = 〈|Bz(I = 1/2, ω)|2〉

= Γ(dNV )
9π

4
(δ(ω − ωL) + δ(ω + ωL)) . (B30)

The spectral density can be related to the magnetic field
variance from the NMR signal by:

SB(ω) = πB2
RMS (δ(ω − ωL) + δ(ω + ωL)) , (B31)

where

B2
RMS =

9

4
Γ(dNV )

= ρ

(
µ0~γn

4π

)2
(
π
[
8− 3 sin4(α)

]
128d3NV

)
. (B32)

For NV centers oriented at α = 54.7◦ this simplifies to:

B2
RMS = ρ

(
µ0~γn

4π

)2(
5π

96d3NV

)
. (B33)

If the nuclear spin sample on the diamond surface is semi-
infinite laterally but not vertically, such as a thin layer
between coordinates z1 and z2 above the diamond sur-
face, then Eq. B32 can be rewritten as:

B2
RMS = ρ

(
µ0~γn

4π

)2
(
π
[
8− 3 sin4(α)

]
128

)
(

1

(dNV + z1)3
− 1

(dNV + z2)3

)
. (B34)

c. The Filter Function |g(ω, τ)|2

To complete evaluation of the accumulated NV spin
phase variance integral (B11) and thus the signal contrast
Eq. (B6), the filter function |g(ω, τ)|2 must be determined
for the dynamical decoupling sequence. For a CPMG or
XY8 sequence with N π-pulses, such as that in Fig. 1c,
we compute the Fourier transform:

g(ω, τ,N) =
2

π

+∞∑
k=−∞

Nτ(−1)k

2k + 1
e−i

Nτ
2 (ω− (2k+1)π

τ )

sinc

[
Nτ

2

(
ω − (2k + 1)π

τ

)]
.

(B35)

For most purposes, only the first-order terms in Eq. (B35)
need to be retained. Additional terms contribute only to
higher harmonics, which are not measured in this work.
The expansion must include k = 0,−1 to be symmet-
ric around ±ω. However, the integral over positive and
negative frequencies will be equivalent to twice the in-
tegral over positive frequencies as long as kBT � ~ωL.
If the nuclear spin dephasing time is assumed to be infi-
nite, such that the nuclear spin signal can be described
by delta functions, we can now obtain a final formula for
the signal contrast in the I = 1/2 case, keeping terms
k = 0,−1:

C(τ) ≈ exp

{
− 2

π2
γ2eB

2
RMS(Nτ)2

(
sinc2

[
Nτ

2

(
ωL −

π

τ

)]
+ sinc2

[
Nτ

2

(
ωL +

π

τ

)]
+ 2 sinc

[
Nτ

2

(
ωL −

π

τ

)]
sinc

[
Nτ

2

(
ωL +

π

τ

)])}
.

(B36)

The off-resonant terms contribute very weakly to the line-
shape and can be ignored, resulting in an approximate
formula:

C(τ) ≈ exp

[
− 2

π2
γ2eB

2
RMS(Nτ)2sinc2

(
Nτ

2

(
ωL −

π

τ

))]
.

(B37)

3. Nuclear spin dephasing time

In the previous section, we assumed that the nuclear
spin signal could be represented by a delta function,

meaning that it has a dephasing time (T ∗2n) much longer
than the length of the NV dynamical decoupling se-
quence. However, the effective nuclear spin linewidth is
broadened due to both dephasing from spin-spin interac-
tions and diffusion through the nanoscale NV interaction
volume. In order to take these effects into account, we
substitute the delta functions of Eq. (B24) with normal-
ized Lorentzian functions such that:
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fx,x(I = 1/2, ω) =
2π

8

(
1

π

T ∗−12n

(ω − ωL)2 + (T ∗−12n )2

+
1

π

T ∗−12n

(ω + ωL)2 + (T ∗−12n )2

)
.

(B38)

As before, we need to compute:

C(τ) = exp

(
−〈∆φ

2(τ)〉
2

)
= exp

(
− 1

π
γ2eB

2
RMS

∫
ω

fx,x(I, ω) |g(ω, τ,N)|2 dω

)
.

(B39)

Once again, symmetry allows us to simplify the expres-
sion using only the positive-frequency component if we
multiply the expression by two, leading to:

C(τ) = exp

(
− 2

π2
γ2eB

2
RMS

∫
ω

1

π

T ∗−12n

(ω − ωL)2 + (T ∗−12n )2
(Nτ)2sinc2

[
Nτ

2

(
ω − π

τ

)]
dω

)
. (B40)

It is evident that the integral is a convolution between a
Lorentzian l(ω) and a function ψ(ω) ∼ sinc2(u). Using
the convolution theorem, the integral can be solved by
multiplying the respective Fourier transforms and then
taking the inverse Fourier transform of the result. The
Lorentzian component is

l(ω) =
1

π

T ∗−12n

(ω − ωL)2 + (T ∗−12n )2
. (B41)

Its Fourier transform is

L(t) =
(
e−tT

∗−1
2n −itωLH(t) + etT

∗−1
2n −itωLH(−t)

)
,

(B42)
where H(t) is the Heaviside step function. The sinc2(u)

component is

ψ(ω) = (Nτ)2sinc2
[
Nτ

2
(ω)

]
. (B43)

Notice that the frequency offset π/τ has been removed
to simplify the Fourier transform. The Fourier transform
is

Ψ(t) = π [ (t−Nτ) sgn(t−Nτ)

−2t sgn(t) + (t+Nτ) sgn(t+Nτ)] . (B44)

Taking the inverse Fourier transform K(ω) =
F−1(L(t)Ψ(t)), and using the identity ω = π/τ for the
filter function resonance condition, gives the expression:

K(τ) ≈ 2T ∗22n[
1 + T ∗22n

(
ωL − π

τ

)2]2
{
e
− Nτ
T∗2n

[[
1− T ∗22n

(
ωL −

π

τ

)2]
cos
[
Nτ

(
ωL −

π

τ

)]

− 2T ∗2n

(
ωL −

π

τ

)
sin
[
Nτ

(
ωL −

π

τ

)]]
+
Nτ

T ∗2n

[
1 + T ∗22n

(
ωL −

π

τ

)2]
+ T ∗22n

(
ωL −

π

τ

)2
− 1

}
. (B45)

The final expression for signal contrast, including nuclear
spin dephasing and again ignoring off-resonant terms in
the filter function, is

C(τ) ≈ exp

(
− 2

π2
γ2eB

2
RMSK(τ)

)
. (B46)

In practice, experimental determination of whether the
nuclear spin T ∗2n is long or short relative to the length
of the NV dynamical decoupling sequence can be carried
out by checking the scaling of the observed contrast dip
amplitude and width as a function of N and τ .
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4. Pseudospin Derivation

An alternative derivation of the signal contrast C(τ)
can be obtained using the pseudospin formalism7. The
contrast is a product of the pseudo-spin signal Sj from
each nuclear spin j in the sample on the diamond surface:

C(τ) =
∏
j

Sj . (B47)

For a CPMG sequence (or XY8) with N pulses, the
pseudo-spin signal for nuclear spin j is

Sj =1−2~ωj0×~ω
j
1 sin2

(
Ωj0τ

4

)
sin2

(
Ωj1τ

4

)
sin2(Nα

j

2 )

cos2(α
j

2 )
,

(B48)
where

cos(αj) = cos

(
Ωj0τ

2

)
cos

(
Ωj1τ

2

)

− ~ωj0 · ~ω
j
1 sin

(
Ωj0τ

2

)
sin

(
Ωj1τ

2

)
(B49)

is the effective NV spin rotation angle during one cycle.

Here the vectors ~Ωji = Ωji
~
ωji represent the sample nuclear

spin Hamiltonians in the two subspaces of the NV elec-
tronic spin, i.e., i takes the value of the NV spin state -1,
0, or 1. In the case of nuclear spin-1/2, we have ~ωj0 = ωjLẑ,
where ωL is the nuclear spin Larmor frequency. On the

other hand, ~ωj1 = ωjLẑ+ ~Ajz, where ~Ajz is the dipolar cou-
pling component along the NV z axis. Then the dip in
the signal, Dj = 1− Sj , can be related to contrast by:

C(τ) =
∏
j

Sj =
∏
j

[1−Dj ]

=
∏
j

[
1− 2(~ωj0×~ω

j
1) sin2

(
Ωj0τ

4

)
sin2

(
Ωj1τ

4

)
sin2(Nα

j

2 )

cos2(α
j

2 )

]
.

(B50)

The expression can be further simplified in the limit

ωL � |Ajz|, where ~Ajz = Ajz[cosϕ sinϑ, sinϕ sinϑ, cosϑ].
Then, to second order in Ajz, the signal is determined by:

Sj ≈ 1− 2(Ajz)
2 sin2(ϑ)

ω2
L

sin4
(
ωLτ
4

)
sin2

(
NωLτ

2

)
cos2

(
ωLτ
2

) . (B51)

For simplicity in the following steps, we define κj =
Ajz sin(ϑj) = (Ajzx)2 + (Ajzy)2. We can also simplify Eq.
(B35) using all k values to get

|g(ωL, τ)|2 =
16

ω2
L

sin4
(
ωLτ
4

)
sin2

(
NωLτ

2

)
cos2

(
ωLτ
2

) . (B52)

Then the NV signal contrast from an ensemble of nuclear
spins precessing at Larmor frequency ωL is

C(τ) =
∏
j

(
1− 1

8 |g(ωL, τ)|2κ2j
)
. (B53)

This product can be reconciled with the exponential form
of the previous section in the following manner. First a
variance of the effective field is defined as:

〈κ2〉 =
1

n

n∑
j=1

κ2j . (B54)

The variance is just an average of the individual κ2j val-
ues. If the number of nuclear spins n is large, one can
assume that each spin acts like an average spin, and κ2j
can be replaced with 〈κ2〉. Then the product simplifies
to:

C(τ) =
∏
j

(
1− 1

8 |g(ωL, τ)|2κ2j
)

⇒
(

1− 1

8
|g(ωL, τ)|2〈κ2〉

)n
. (B55)

Substitution with Eq. (B54) yields:

C(τ) =

1− 1

8
|g(ωL, τ)|2 1

n

∑
j

κ2j

n

. (B56)

Note that for large n this is the definition of the expo-
nential. Then

C(τ) = lim
n→∞

1− 1

8
|g(ωL, τ)|2 1

n

∑
j

κ2j

n

= exp

−1

8
|g(ωL, τ)|2

∑
j

κ2j

 . (B57)

The term
∑
j κ

2
j can converted into an integral of the

form
∫
ρ(~r)κ2(~r)d3r and integrated over the sample.

Since Az represents the frequency shift from dipolar cou-
pling, one can show from the definition of κ that:∑

j

κ2j = 9γ2e
∑
j

D2
j (rj)(u

j
z)

2
(
1− (ujz)

2
)

= 4γ2eB
2
RMS.

(B58)
This along with the approximated expression of the filter
function finally allows Eq. (B57) to be written as:

C(τ) ≈ exp

(
−1

2
γ2e |g(ωL, τ)|2B2

RMS

)
= exp

(
− 2

π2
γ2e (Nτ)2sinc2

(
Nτ

2

(
ωL −

π

τ

))
B2

RMS

)
.

(B59)

Importantly, the expression (B59) for contrast exactly
matches that given in Eq. (B37), showing the equivalence
of the two calculational approaches presented here.

Appendix C: Estimated Proton Nanoscale NMR
Linewidth Calculated from Correlation Time

The NV NMR protocol detects a nuclear spin signal via
the dipole-dipole interaction, which makes it extremely
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FIG. C.1: Estimate of proton nanoscale NMR linewidth as
a function of NV depth, for immersion oil on the diamond
surface.

sensitive to changes in nuclear spin position. As a conse-
quence of the strong distance dependence of dipolar cou-
pling, nuclei diffusing in a liquid on the diamond surface
move in and out of the nanoscale sensing volume very
quickly, which limits the interaction time between the
NV and nuclear spin. As a result, the nanoscale NMR
linewidth is broadened. This is in contrast to conven-
tional NMR detection via an inductive coil surrounding
the sample, in which the nuclei can be fully contained
within the sensing volume and changes in nuclear posi-
tion have little effect on the signal.

We assume that the interaction between the NV and
nuclear spin lasts for a characteristic correlation time, τd,
and that the probability of finding the particles interact-
ing drops off exponentially in time. By taking the Fourier
transform, this behavior produces a Lorentzian lineshape
L(ω) typically written as:

L(ω) =
1

π

τd
1 + ω2τ2d

. (C1)

This can also be written in a standard Lorentzian form:

L(ω) =
1

π

1/τd
ω2 + 1/τ2d

. (C2)

The full width at half maximum (FWHM) is then 2/τd.
The translational diffusion correlation time for two

spins in three dimensions (in our case the immobile NV
and diffusing nuclei in molecules in the sample) can be
related to molecular geometries and diffusion coefficients

by31,32:

τd =
d2

Dav
, (C3)

where d is the distance of closest approach between the
two spins and Dav is the average of the diffusion coeffi-
cients for the two spins. Since the NV center is immobile,
we can assume that its diffusion coefficient is zero. The
distance of closest approach is the NV depth, dNV . Then
the correlation time becomes:

τd =
2d2NV
Dnuc

, (C4)

where Dnuc is the diffusion coefficient of the molecules in
the sample carrying the nuclear spins.

Low-fluorescent immersion oil is typically composed
of liquid polybutadiene mixed with smaller amounts of
paraffins and carboxylic acid esters33. In one example of
an immersion oil with kinematic viscosity ν = 450 cSt33,
the polybutadiene component has an average molecular
weight of 1600 g/mol. The hydrodynamic radius of the
molecule is on the order of r ∼ 1 nm34, and the density
is ρ ∼ 0.9 g/mL. The dynamic viscosity is then

η = ρν = 0.405 cP. (C5)

We use this viscosity as an approximation for the similar
immersion oil employed in our experiment. Using the
Stokes-Einstein relationship

D =
kBT

6πηr
(C6)

gives a diffusion coefficient Doil ≈ 5× 10−13 m2/s.
Figure C.1 plots the estimated nanoscale NMR

linewidth for immersion oil as a function of NV center
depth calculated using equation C4. The estimated NMR
linewidth is ∼ 5 kHz for a ∼ 10 nm deep NV center, while
the broadest NMR linewidth we expect to see in the mea-
surements performed in this work is ∼ 30 kHz for a ∼ 4
nm deep NV center. Consequently, we expect that the
NV NMR detection bandwidth is much broader than the
sample’s NMR linewidth (i.e., the infinite T ∗2n approxi-
mation is valid) for nearly every measurement, excepting
measurements with long pulse sequence durations on the
shallowest NV centers.
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