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Electron spin resonance (ESR) is usually viewed as a single-particle phenomenon protected from
the effect of many-body correlations. We show that this is not the case in a two-dimensional Fermi
liquid (FL) with spin-orbit coupling (SOC). Depending on whether the in-plane magnetic field is
below or above some critical value, ESR in such a system probes–up to three–collective spin-chiral
modes, augmented by the presence of the field, or the Larmor mode, augmented both by SOC and
FL renormalizations. We argue that ESR can be used as a probe not only for SOC but also for
many-body physics.

I. INTRODUCTION

Electron Spin Resonance (ESR) spectroscopy is an in-
valuable tool for studying dynamics of electron spins.1–3

In a single-particle picture, ESR can be understood ei-
ther classically, as resonant absorption of electromagnetic
(EM) energy by a classical magnetic moment precessing
about the magnetic field, or quantum-mechanically, as
absorption of photons with frequency equal to the Zee-
man splitting. The absorption rate, w, of an incident
EM wave (with frequency Ω and amplitudes of the elec-

tric and magnetic fields, ~Eem and ~Bem, correspondingly)
is given by the Kubo formula4–6

w = 2
∑

ij

[

σ′

ij(Ω)E
em
i Eem

j +Ωχ′′

ij(Ω)B
em
i Bem

j

]

, (1)

where σ′
ij(Ω) is the real part of the conductivity and

χ′′
ij(Ω) is the imaginary part of the spin susceptibility.

If the static magnetic field ( ~B) is in the plane of a two-
dimensional electron gas (2DEG) and there is no spin-
orbit coupling (SOC), the only resonant feature is due
to a pole in the second term of Eq. (1) at the Larmor
frequency. This is a conventional (or direct) ESR. How-
ever, because the spin susceptibility is proportional to
1/c2, where c is the speed of light, the direct ESR signal
is very weak. SOC of Rashba7,8 and/or Dresselhaus9,10

types changes the situation drastically by producing an
effective magnetic field, which acts on the spin of an elec-
tron with given momentum ~p and is proportional to |~p|.
The driving electric field (either from a dc current or EM
wave) gives rise to a flow of electrons with a non-zero drift
momentum; hence the electron system as a whole expe-
riences an effective magnetic field due to SOC. The mag-
nitude of bare SOC is strongly enhanced by virtual in-
terband transitions;11 as a result, the electric component
of an EM field couples to electron spins much stronger
than the magnetic one. This is an electric dipole spin
resonance (EDSR),12–15 which gives rise to a range of
spectacular phenomena, e.g., a strong enhancement of

microwave absorption in a geometry when ~Eem is in the
plane of a 2DEG16 and a shift of the resonance frequency
by a dc current.3,5

In this article, we discuss the effect of the electron-
electron interaction on the ESR signal. In the Fermi-
liquid (FL) language, ESR in the absence of SOC is
an excitation of the Silin-Leggett (spin-flip) collective
mode,17,18 cf. Fig. 1a. Although the very existence of
this dispersive mode is due to many-body correlations,
its end point at q = 0–the Larmor frequency–is protected
from renormalizations by these correlations and given by
the bare Zeeman energy.19 In addition, there is a contin-
uum of spin-flip single-particle excitations (shaded region
in Fig. 1a), whose end point corresponds to the renor-
malized Zeeman energy. Although the absorption rate
should, in principal, contain the contributions from both
the collective mode and continuum, the latter does not
contribute to ESR because its spectral weight vanishes
at q = 0. These two main features of the ESR signal–no
many-body renormalization of the resonance frequency
and no contribution from the continuum–are due to con-
servation of the total spin (~S) projection onto ~B.

The situation changes drastically in the presence of

SOC, which breaks conservation of ~S · ~B and thus gives
rise to fundamentally new features in the excitation spec-
trum discussed in this aricle. (Modification of the ESR
spectrum due to both SOC and electron-electron interac-
tion in the quantum Hall regime was considered in Ref. 20
within the Hartree-Fock theory.) Depending on whether
the ratio of the Zeeman energy to spin-orbit splitting
is larger than, comparable with, or smaller than unity,
one can define the regimes of “high”, “moderate”, and
“weak” magnetic fields. We show that the ESR frequency
in the high-field regime is affected both by SOC and
many-body correlations and scales non-linearly with B
(see Fig. 1b). The deviation from linearity can be used to
extract the amplitudes of both SOC and electron-electron
correlations. In addition to the resonance peak, the ESR
signal now also shows a broad feature due the continuum
of spin-flip excitations. In the presence of SOC, the reso-
nance itself is entirely a many-body effect; in the absence
of interactions, the signal comes entirely from the contin-
uum.21 The conventional ESR regime is reached in the
limit of B → ∞. As the field gets weaker, the ESR fre-
quency scales down and finally vanishes at a critical field,
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FIG. 1. [color on-line] (a) The Silin-Leggett mode (red) and continuum of spin-flip excitations (shaded, blue) for a Fermi liquid

in the magnetic field. ∆Z and ∆̃Z are the bare and renormalized Zeeman energies, correspondingly. (b) Schematically: the
frequencies of the collective modes and continuum boundaries as a function of B for a Fermi liquid with Rashba spin-orbit
coupling in the magnetic field. The gap in the continuum closes at the critical field Bc, where the spin-split bands become
degenerate. For B < Bc, there are three spin-chiral modes, Ω1...3. For B > Bc, there is one mode with a renormalized Larmor
frequency, Ω∗

L. Insets: spin-split Fermi surfaces. (c) RPA diagrams for the spin susceptibility. (d) Evolution of polarizations of
the collective modes with B.

Bc, where the spin-split energy levels become degenerate
(see insets in Fig.1b) and the gap in the continuum closes.
The region around Bc defines the moderate-field range.
For B < Bc, the resonance appears again and two more
modes split off the continuum as the field passes through
the critical values, Bc2 and Bc1. At B → 0, the three
modes evolve into spin-chiral resonances–collective oscil-
lations of magnetization in the absence of the magnetic
field.4,22,23 In the most general case of both Rashba and
Dresselhaus SOC present, all the three spin-chiral modes
are ESR-active.

In the prior literature, the discussion of the effect
of SOC on ESR was largely limited to two aspects:
D’yakonov-Perel’ damping24 of the signal25,26 and cou-
pling of electron spins to the electric field via the EDSR
mechanism. We show in this article that the effect of SOC
is much richer than the two aspects mentioned above.
To the best of our knowledge, all the experiments thus
far have been performed in the high-field limit, where
the effect of SOC is quantitative rather than qualitative.
We propose to study ESR in moderate and weak field
regimes, where the SOC-induced changes are qualitative.

II. MODEL AND FORMALISM

We study a two-dimensional (2D) electron system with
both Rashba and Dresselhaus types of SOC (RSOC and
DSOC, correspondingly) and in the presence of an in-
plane magnetic field. We adopt the form of Dresselhaus
SOC appropriate for a GaAs [001] quantum well and
choose the x1 and x2 axes to be along the [11̄0] and [110]
directions, correspondingly. The single-particle part of
the Hamiltonian then reads27

Ĥ0 =
~k2

2m
σ̂0 + α (σ̂1k2 − σ̂2k1)

+β (σ̂1k2 + σ̂2k1)−
gµB

2
σ̂1B, (2)

where m is the band mass, µB is the Bohr magneton,
σ̂1,2,3 are the Pauli matrices, σ̂0 is the 2 × 2 identity
matrix, and α (β) is the Rashba (Dresselhaus) coupling
constant. For simplicity, we chose the magnetic field to
be along one of the two high-symmetry directions, i.e.,
~B||x̂1. This restriction will be relaxed in Sec. III(c).

The many-body part of the Hamiltonian, Ĥint, de-

pends only on the electron positions, ~̂x. Consequently,

[Ĥint, ~̂x] = 0 and the velocity operator ~̂v = i[Ĥ0 +

Ĥint, ~̂x] = i[Ĥ0, ~̂x] retains its free-electron form:

~̂v =

(

k1
m

σ̂0 − (α − β)σ̂2,
k2
m

σ̂0 + (α + β)σ̂1

)

. (3)

The gradient (k1/m and k2/m) terms in ~̂v give rise
to the Drude part of the conductivity, while the spin-
dependent terms give rise to its B-dependent part, σB ,
which determines the EDSR signal. In the Voigt geom-

etry ( ~Eem|| ~B ⊥ ~Bem), the first (EDSR) term in the ab-
sorption rate [Eq. (1)] contains the component (σ′

B)11,
which is related to the spin susceptibility via

(σ′

B)11 =
e2

(gµB)2Ω
(α− β)2χ′′

22, (4)

while the second (ESR) term contains χ′′

22/33 for

~Bem||x̂2/3. Equation (4) also holds in the presence of
the electron-electron interaction. The ratio of the EDSR
amplitude to the ESR one is given by e2(α−β)2/µ2

BΩ
2
res,

where Ωres is the resonance frequency. For the spin-chiral
modes, Ωres ∼ |α− β|kF and the ratio of the amplitudes
is of the order of (λF /λC)

2 ∼ 108 − 109, where λF is
the Fermi wavelength and λC = ~/mec is the Comp-
ton length (me is the free electron mass).4 For the Silin-
Leggett mode, Ωres = gµBB ≡ ΩL and the EDSR/ESR
ratio is (λF /λC)

2×(∆SOC/ΩL)
2, where ∆SOC is the char-

acteristic spin-orbit splitting and ΩL is the Larmor fre-
quency.
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In this work, we assume that the EDSR part of the sig-
nal dominates the ESR one, so that the absorption rate
in Eq. (1) is determined by (σ′

B)11 to very high accuracy.
We also assume that both the spin-orbit splitting and
Zeeman energy are much smaller than the Fermi energy.
In this case, the corresponding terms in the Hamilto-
nian can be treated as corrections to the conventional,
SU(2)-invariant FL, and the complications encountered
in generalizing the FL theory for arbitrarily large spin-
dependent terms28,29 do not arise. The ESR signal is
completely characterized by the spin susceptibility. At
q = 0, the spin and charge sectors of the theory de-
couple because of charge conservation,23 and χij(Ω) can
be found within the usual random-phase approximation
(RPA), in which the Green’s functions include the B-
dependent shifts of the chemical potential (see Fig. 1c).
For an s−wave interaction (U = const), the Matsubara
form of χij is given by the matrix product23

χij(Ωm) = − (gµB)
2

4
Π0

ij′ (Ωm)

[

1 +
U

2
Π̂0(Ωm)

]−1

j′j

,

(5)

where Π0
ij(Ωm) =

∫

K
Tr
[

σ̂iĜK σ̂jĜK+Q

]

with i, j ∈
{1, 2, 3}, Q = (iΩm,~0); K = (iωm, ~k), and

∫

K ≡
T
∑

ωm

∫

d2k
(2π)2 . Furthermore, Ĝ−1

K = (iω + µ)σ̂0 − Ĥ′
0,

where Ĥ′
0 differs from Ĥ0 in that the Zeeman energy

is replaced by its renormalized value (see Appendix A):
gµBB → gµBB/(1 − u), where u ≡ ν2DU is the dimen-
sionless coupling constant and ν2D = m/2π is the density
of states in 2D. For weak SOC, i.e., for |α|, |β| ≪ vF with
vF being the Fermi velocity in the absence of SOC, the
system is characterized by four energy scales:

∆R ≡ 2αkF ; ∆D ≡ 2βkF ; ∆Z ≡ gµBB; ∆̃Z =
∆Z

1− u
,

(6)
where kF = mvF . We choose the Zeeman energies to be
positive, while the signs of ∆R and ∆D are arbitrary.
We note in passing that RPA for the case of an s-wave

interaction gives the same results as the kinetic equa-
tion for a FL with a Landau function that contains only
the zeroth angular harmonic in the spin channel (see Ap-
pendix D).

III. THE ESR SPECTRUM: MANY-BODY

DESCRIPTION

A. ESR without spin-orbit coupling

We start by revisiting the well-known case of a FL
without SOC in the magnetic field (α = β = 0 in
Eq. 2). In this case, Π0

1j(Ωm) = 0 (j ∈ {1, 2, 3}) be-

cause the projection of spin on the direction of ~B is
conserved. For the rest of the components we obtain,
upon analytic continuation (iΩm → Ω+ i0+): Π0

22(Ω) =

Π0
33(Ω) = 2ν2D∆̃

2
Z/(Ω

2− ∆̃2
Z) and Π0

23(Ω) = −Π0
32(Ω) =

−2iν2DΩ∆̃Z/(Ω
2 − ∆̃2

Z). The collective mode corre-
sponds to a pole of Eq. (5), when det

[

1 + U
2 Π

0
ij(Ω)

]

= 0

or 1 + U
2 Π

0
22 = ±U

2 iΠ
0
23. The only solution of this equa-

tion outside the spin-flip continuum is the Larmor fre-
quency: ΩL = ∆̃Z(1 − u) = ∆Z . On the other hand,

χ′′
ij(Ω) vanishes at the continuum (Ω = ∆̃Z), and thus

the continuum does not contribute to ESR.

B. ESR with Rashba spin-orbit coupling

This case is realized by setting β = 0 in
Eq. (2). After including the self-energy correction
to the Zeeman term30 (see Appendix A), the disper-
sions of the spin-split bands become ε±~k

= k2/2m ±
1
2

√

(2αk)2 + (∆̃Z)2 − 2∆̃Z(2αk) sin θk, where θk is the

angle between ~k and the x1−axis. Although the spin

projection onto ~B is not conserved anymore, some off-
diagonal components of Π0

ij still vanish. Indeed, since
~Bem × ~B = 0 for ~Bem ‖ ~B ‖ x̂1, the only two pseudo-

vectors in the system are ~Bem and ~B themselves. The

magnetization induced by ~Bem is also a pseudo-vector

and thus can only be parallel to ~B, which implies that
Π0

1j = 0 for j = 2, 3. The non-zero components of Π̂0 are
given by (see Appendix B):

Π0
11(Ω) = −2ν2D

W 2(1− f)

4∆̃2
Z

, (7)

Π0
22(Ω) = −2ν2D

[

∆̃2
Z

fW 2
+

(

1− 1

f

)

(

1− W 2

4∆̃2
Z

)]

,

Π0
33(Ω) = −2ν2D

[

1 +
Ω2

fW 2

]

,

Π0
23(Ω) = 2ν2D

iΩ

∆̃Z

[

1

2

(

1− 1

f

)

+
∆̃2

Z

fW 2

]

= −Π0
32(Ω),

where f ≡
√

1− 4∆2
R∆̃

2
Z/W

4 and W 2 ≡ ∆2
R + ∆̃2

Z −
Ω2 − i0+sgnΩ. The formulas above reduce to the known
limits23 when ∆R → 0 and ∆Z → 0, respectively.

The subband energies vary around the Fermi sur-
face, reaching the maximum and minimum values of
∣

∣

∣
∆̃Z ± |∆R|

∣

∣

∣
, correspondingly. As a result, the contin-

uum of spin-flip excitations occupies a finite interval of

frequencies
∣

∣

∣∆̃Z − |∆R|
∣

∣

∣ < Ω < ∆̃Z+|∆R|, where all Π0’s

in Eq. (7) have non-zero imaginary parts. This is in con-
trast to the case of α = 0, where the continuum has zero
spectral weight (see Fig. 1a). The gap in the continuum

closes at a special field, Bc, such that ∆̃Z(Bc) = |∆R|
and the spin-split bands become degenerate (Fig. 1b).

The collective modes correspond to the poles of Eq. (5)
outside the continuum. The eigenmode equation splits
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FIG. 2. [color on-line] (a) Chiral-spin modes as a function of the Zeeman energy, ∆Z , in units of the Rashba spin splitting, ∆R

(on a semi-logarithmic scale). Inset: renormalized Larmor mode (Ω∗

L) at higher fields. (b) Imaginary part of the susceptibility
in the weak field limit (∆R/∆Z = 20). (c) Same as in the high-field limit. The dashed line marks the bare Larmor frequency
(ΩL). The continuum is seen as a broad hump to the right of the resonance. In panels (a)-(c), the dimensionless interaction
is u = 0.3. (d) Evolution of the ESR signal with u. Here ∆R/∆Z = 0.5. Damping of Γ = 0.01∆R was added to the Green’s
functions to mimic the effect of disorder in all plots.
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FIG. 3. Left: Collective modes in the presence of the magnetic field, and both Rashba and Dresselhaus spin-orbit coupling.
β/α = −0.25. Below the field at which the gap in the continuum closes, there are two spin-chiral modes; above this field there
is only one precessing mode. All the modes in this case are elliptically polarized. Inset: zoom of the high-field region. Right:
Collective modes in the presence of Rashba and Dresselhaus spin-orbit coupling but in the absence of the magnetic field. There
are three modes on either side of the gap closing point. The entire structure of the collective mode is symmetric under α → β.
All the three modes are linearly polarized. Inset: zoom of the region |∆D| ≪ |∆R|. u = 0.3 in both plots.

into two:

1 +
U

2
Π0

11(Ω) = 0, (8a)
[

1 +
U

2
Π0

22(Ω)

] [

1 +
U

2
Π0

33(Ω)

]

= −U2

4

[

Π0
23(Ω)

]2
.

(8b)

For B > Bc, Eq. (8a) has no solutions while Eq. (8b) has
a unique solution (see Appendix C), which is the Larmor

frequency, Ω∗
L, renormalized both by SOC and electron-

electron interaction (cf. inset in Fig. 2a). At the highest

fields (∆̃Z ≫ |∆R|/u),

Ω∗

L ≈ ∆Z

[

1− (2− 3u)(1− u)

4u

(

∆R

∆Z

)2
]

. (9)

When B is just slightly above Bc, i.e., ∆̃Z ≈ |∆R| but
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Material n (1011cm−2) |g-factor| α(meVÅ) ∆R = 2αkF

gµB
(T ) β(meVÅ) ∆D = 2βkF

gµB
(T ) References

SiGe/Si/SiGe 1-7 2 0.055 7.5-19.9×10−3 - - 36

MgxZn1−xO/ZnO 2.1 1.94 0.7 0.15 - - 37

Cd1−xMnxTe 3.5 1.6-5 3.3 0.34-1.1 4.6 0.47-1.5 38

GaAs/AlGaAs 2.3 0.445 3.1 2.89 0.55 0.51 39

GaAs/AlGaAs 5.8 0.27 1.5 3.7 1.4 3.4 40

GaAs/AlGaAs 1.4-7 0.4 5 4.0-9.1 4 3.2-7.2 41

InAs 21 7.8-8.7 67 9.7-10.8 3.5 0.5-0.6 42 and 43

InAs 11-20 8 60 6.8-9.2 - - 44

In1−xGaxAs/In1−yAlyAs 17-24 4 65-92 21.6-25.9 - - 45

TABLE I. SOC parameters for some common quantum wells. The big range of g in Cd1−xMnxTe is due to magnetic moments
of the dopant Mn.

still ∆̃Z > |∆R|, we get

Ω∗

L ≈
(

∆̃Z − |∆R|
)

[

1− u2(1 − 3u
4 )2

2(1− u
2 )

2(1− u)2
(∆̃Z − |∆R|)2

∆̃2
Z

]

.

(10)
In the limit of u ≪ 1, we have an additional regime
defined by ∆R ≪ ∆̃Z ≪ ∆R/u, where

Ω∗

L ≈ |∆̃Z |
[

1− u2∆̃Z

2|∆R|

]

. (11)

For B < Bc, Eq. (8a) has one solution, Ω = Ω1,
which corresponds to oscillations of the x1 component

of the magnetization ~M , while Eq. (8b) has two solu-
tions, Ω = Ω2 and Ω = Ω3, which correspond to cou-
pled oscillations of the components M2 and M3. The
Ω1 and Ω2 modes run into the continuum at fields Bc1

and Bc2, correspondingly (cf. Fig. 1b). The three modes
are plotted in Fig. 2a for a range of fields below Bc. As
the field is lowered further, these three solutions evolve
into the spin-chiral resonances.4,22 At B = 0, Π0

23 in
Eq. (8b) vanishes by time-reversal symmetry, while Π0

11

and Π0
22 become equal by the C∞v symmetry. In this

limit, Ω1 = Ω2 = |∆R|
√

1− u/2 and Ω3 = |∆R|
√
1− u

23.
In the absence of DSOC, absorption is determined en-

tirely by χ′′
22 [cf. Eq. (4)]. Since the Ω1 mode is decoupled

from the Ω2 and Ω3 modes, it is ESR-silent. The mag-
netic field couples the Ω2 and Ω3 modes, both of which
show up in ESR. For B > Bc, there is only one ESR-
active mode, whereas for B < Bc there can be one or
two active modes, depending of whether B is smaller or
larger than Bc2. In addition to a sharp peak(s), there is
also a broad feature corresponding to absorption by the
continuum of spin-flip excitations.
Figure 2d depicts the evolution of the ESR signal with

increasing u. In the presence of SOC, a sharp mode oc-
curs only due to many-body interaction, as it pushes the
mode away from the continuum. This is in contrast to
the case without SOC, where the mode exists even with-
out interaction. Both the peak and broad hump due to

the continuum–have been observed in Ref. 38, although
the detailed shape of the hump is yet to be explained.
As the magnetic field increases from zero to values ex-

ceeding Bc, polarization of the collective modes changes
qualitatively (cf. Fig. 1d). At B = 0, the susceptibility is
diagonal, which means that the different components of
the magnetization oscillate independently and are thus
linearly polarized. For 0 < B < Bc, the M1 component
is still linearly polarized, while coupled oscillations of the
M2 and M3 components can be decomposed into two el-
liptically polarized modes. For B > Bc, there is only one
elliptically polarized mode which evolves into a circularly
polarized Larmor mode for B ≫ Bc.

C. ESR with both Rashba and Dresselhaus

spin-orbit coupling

Adding DSOC to RSOC lowers the symmetry from
C∞v to C2v. As a result, the doubly-degenerate spin-
chiral resonance splits into two already at B = 0. Other
than that, DSOC does not change the situation qualita-

tively, as long as ~B is along the high-symmetry axis [as in
Eq. (2)] : one of the three modes is still ESR-silent, so the

signal consists of up to two lines. If ~B is along a generic
in-plane direction (which means that σ1B1 in Eq. (2)
changes to σ̂1B1 + σ̂2B2), all modes become ESR-active,
and the signal consists of up to three lines. This case
can only be tackled by a numerical treatment of the gen-
eral equations presented in Appendix B. Figure 3 (left)
shows collective modes of a system with both RSOC and
DSOC and with the field oriented at 45 degrees to the
x1−axis, such that B1 = B2 = B. The RSOC and DSOC
couplings are chosen in such a way that there are only
two collective modes at B = 0.

D. ESR with Rashba and Dresselhaus spin-orbit

couplings in zero field

For completeness, we also discuss the spin-chiral reso-
nances in the zero-field limit but in the presence of both
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Rashba and Dresselhaus couplings. (The case when only
one type of SOC is present has been thoroughly analyzed
in the prior literature, see Refs. 4, 22, and 23). In the
absence of field, the time-reversal symmetry is intact and
thus collective modes can only be linearly polarized. Fig-
ure 3 (right) shows the collective modes as a function of
the Dresselhaus coupling β (parametrized as ∆D ≡ 2βkF
). Although the evolution of the spectrum with the ra-
tio ∆D/∆R is qualitatively similar to the evolution with
∆Z/∆R in B 6= 0 case (in terms of closing and reopening
the gap in the continuum), there are crucial differences
between these two cases, namely: 1) whereas the B = 0
spectrum is symmetric about the zero-gap point, it is
asymmetric in the B 6= 0 case; 2) whereas the modes
are linearly polarized in the B = 0, they are elliptically
polarized in the B 6= 0. These results for the B = 0 case
can be derived analytically, see Appendix B 2.

IV. CONCLUSIONS

We presented a many-body theory of the ESR/EDSR
effects in the presence of SOC of both Rashba and Dres-
selhaus types. The combined effect of the electron-
electron and spin-orbit interactions leads to a splitting of
the resonance into up to three lines, which should be ob-
servable in an experiment . These multiple resonances are
the optical (massive) collective modes of a Fermi liquid
subject to both external and spin-orbit magnetic fields.
We have also shown that the Larmor mode is affected
by the electron-electron interaction in the presence of

SOC; this effect must be accounted for when extracting
the g-factors and SOC parameters from the precession
measurements.33–35

The best platform for observing the effects predicted
in this paper are the semiconductor heterostructures in
the regime when the SOC energy splitting is compara-
ble to the Zeeman splitting due to an in-plane mag-
netic field. In Table I, we provide a summary of rele-
vant material parameters for some of the conventional
heterostructures. The Rashba and Dresselhaus SOC en-
ergy scales are presented in units of Tesla to give an
idea of the strength of the field required to probe the
multiple-resonance regime of the spectrum. Recent ad-
vances in microwave technology46 have greatly broadened
the range of frequencies thus making ESR a promising
tool for the detection of the spin-chiral modes.
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Appendix A: Single-particle Hamiltonian: eigenstates and self-energy correction

In this appendix, we derive the form of the self-energy that enters the Greens’ functions in the calculation of the
polarization tensor. It is convenient to start with the Hamiltonian in Eq. (2) which can be re-written as

Ĥ0 =
~k2

2m
σ̂0 + λ~kk (sinφkσ̂1 − cosφkσ̂2) . (A1)

The parameters λ~k and φk are defined by the following relations

2λ~kk =
√

(2αk)2 + (2βk)2 − 8αβk2 cos 2θk + (gµBB)2 − 4(gµBB)(α+ β)k sin θk,

sinφk =
α+ β

λ~k
sin θk −

gµBB

2λ~kk
,

cosφk =
α− β

λ~k
cos θk, (A2)

where θk is the azimuthal angle ~k with respect to the x1-axis. The eigenvalues and eigenvectors are given by

ε±~k
=

k2

2m
± λ~k, (A3)

|~k,±〉 = 1√
2

(

1

∓ieiφk

)

. (A4)
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To account for renormalization of the Zeeman energy and spin-orbit parameters entering the Green’s function,
one needs to find the momentum- and frequency-independent part of the self-energy, Σ̂. For an s−wave interaction
(U = const), Σ̂ can be found in the self-consistent Born approximation as:

Σ̂ = −U

∫

K

ĜK , ĜK =

(

[

Ĝ0
K

]−1

− Σ̂

)−1

, (A5)

where [Ĝ0
K ]−1 = (iωm + µ)σ̂0 − Ĥ0. By construction, Σ̂ does not depend on K and thus can be written as

Σ̂ =
∑

i=1...3

aiσ̂i, (A6)

where the coefficients ai are to be determined. Note that we dropped the coefficient a0 as it would only result in a
shift of the chemical potential. Solving the algebraic matrix equation, we get a1 = u

1−u
gµBB

2 (where u ≡ mU
2π ), and

a2 = a3 = 0. This amounts to changing gµBB → gµBB
1−u or ∆Z → ∆̃Z . Since a2 = a3 = 0, the spin-orbit parameters

are not renormalized. This is a special feature of the s-wave interaction approximation.

The Green’s function (with the self-energy correction) is then explicitly written as:

ĜK =
∑

r±

grKΩ̂r, Ω̂r =
1

2
[σ̂0 + r(σ̂1 sinφk − σ̂2 cosφk)] , (A7)

where grK = 1/(iωm−ε̃r~k) and ε̃r~k is the electron dispersion which contains the renormalized Zeeman energy: ∆Z → ∆̃Z .

Appendix B: Collective modes within the random-phase approximation

1. General case

In this appendix, we provide some details of the calculation of the spin-charge polarization tensor, Π0
ij , which is

needed to find the collective modes within the random-phase approximation (RPA). This is a challenging task in the
most general case, when the magnetic field, and both Rashba and Dresselhaus types of spin-orbit coupling (RSOC
and DSOC, correspondingly) are present. However, in the limit when both the magnetic field and SOC are weak, i.e.
when the Zeeman energy and spin-orbit splitting of the energy bands are small compared to the Fermi energy, one can
confine the momentum integration to the vicinity of the Fermi surface and carry out some of the steps analytically.

We choose the magnetic field to be along an arbitrary in-plane direction. Consequently, the Zeeman term in Eq. (2)
is replaced by −(gµB/2) (σ̂1B1 + σ̂2B2). The corresponding changes in the eigenvalues and eigenvectors can readily
be traced down; we will refrain from giving explicit forms here. Linerazing the dispersion near the Fermi energy as
ε±~k

− µ = ξ ± Λθk , where Λθk ≡ 2λk=kF ,θkkF is the SOC splitting at the point θk on the Fermi surface, we arrive at

two types of integrals [here, kF is the Fermi momentum in the absence of both the magnetic field and SOC and Q
stands for the 2 + 1 bosonic momentum with the zero spatial part: Q = (iΩm, 0)] :

1

2

∫

dξ(g+Kg−K+Q + g−Kg+K+Q) =
1

2

∫

dξ

{

nF (ε
+
~k
)− nF (ε

−

~k
)

iΩm + ε+~k
− ε−~k

+ (+ → −)

}

= −
Λ2
θk

Ω2
m + Λ2

θk

(B1)

and

1

2

∫

dξ(g+Kg−K+Q − g−Kg+K+Q) =
iΩmΛθk

Ω2
m + Λ2

θk

. (B2)

A general form of λ~k is obtained from Eq. (A1) by adding the second component of the magnetic field, which amounts

to replacing sinφk by α+β
λ~k

sin θk − gµBB1

2λ~k
k and cosφk by (α − β) cos θk/λ~k + gµBB2/(2λ~kk) in Eq. (A2). Using these
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relations, we get

Π0
11(Ωm) = −2ν2D

∫

dθk
2π

Λ2
θk

Ω2
m + Λ2

θk

cos2 φk,

Π0
12(Ωm) = −ν2D

∫

dθk
2π

Λ2
θk

Ω2
m + Λ2

θk

sin 2φk,

Π0
21(Ωm) = Π0

12(Ωm),

Π0
13(Ωm) = 2ν2D

∫

dθk
2π

ΩmΛθk

Ω2
m + Λ2

θk

cosφk,

Π0
31(Ωm) = −Π0

13(Ωm),

Π0
22(Ωm) = −2ν2D

∫

dθk
2π

Λ2
θk

Ω2
m + Λ2

θk

sin2 φk,

Π0
23(Ωm) = 2ν2D

∫

dθk
2π

ΩmΛθk

Ω2
m + Λ2

θk

sinφk,

Π0
32(Ωm) = −Π0

23(Ω),

Π0
33(Ωm) = −2ν2D

∫

dθk
2π

Λ2
θk

Ω2
m + Λ2

θk

. (B3)

For Fig. 3, we considered the magnetic field to be at 45 degrees to the x1 axis, i.e., B1 = B2 ≡ B. Solutions of the
eigenmode equation det(1 + (U/2)Π̂0)= 0 are shown in the left panel of Fig. 3. In general, there are no qualitative
differences compared to the case of only RSOC and the magnetic field: for B < Bc there are two or three modes
depending on the ratio α/β, whereas for B > Bc there is only one mode. For α/β = −0.25, as chosen in the left panel
of Fig. 3, there are only two modes.

2. Collective modes in zero field

Here, we present details of the derivation of collective modes in the absence of B but in the presence of both RSOC
and DSOC. In this case, the spin-flip continuum occupies the energy interval |∆R −∆D| < Ω < ∆R + ∆D, where
∆D ≡ 2βkF (for definiteness we choose ∆R,D > 0). The collective modes are well-defined is the occur below the lower
boundary of the continuum. The susceptibility is still a diagonal matrix so that its 11-, 22,- and 33-sectors are all
decoupled. The non-zero elements of Π̂0 are (in real frequencies):

Π0
11(Ω) = F1(Ω) + F2(Ω),

Π0
22(Ω) = F1(Ω)− F2(Ω),

Π0
33(Ω) = 2F1(Ω),

where F1(Ω) = −ν2D

[

1 +
Ω2

W 2
D

]

,

F2(Ω) = −ν2D
∆2

R +∆2
D

2∆R∆D

[

1 +
1

W 2
D

(

−Ω2 − (∆2
R −∆2

D)2

∆2
R +∆2

D

)]

, (B4)

and W 2
D =

√

[Ω2 − (∆R +∆D)2] [Ω2 − (∆R −∆D)2]. The diagonal form of Π̂0 suggests that all the modes are linearly

polarized. The eigenmode equation, det(1 + U Π̂0/2) = 0, leads to the following three equations:

1 + UF1(Ω) = 0, (B5)

1± u(∆R ∓∆D)2

4∆R∆D

(

1−
√

(∆R ±∆D)2 − Ω2

(∆R ∓∆D)2 − Ω2

)

= 0,

(B6)
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Solving those, we get the frequencies of the collective modes:

Ω2
i = (∆R −∆D)2

[

1− ufi
2zi

]

, i ∈ (1, 2); where

z1 = 1 +
2∆R∆D

u(∆R −∆D)2
, z2 = 1− 2∆R∆D

u(∆R +∆D)2
, f1 = 1, f2 =

(∆R +∆D)2

(∆R −∆D)2

(

1− 4∆R∆D

u(∆R +∆D)2

)2

,

Ω2
3 = (∆R −∆D)2



1− u2

1− 2u

√

1 + z3 + z3
∆2

R
+∆2

D

2∆R∆D
− (1 + z3)

z3



 , z3 =

(

u

1− u

)2
(∆R −∆D)2

2∆R∆D
. (B7)

These solutions are plotted in Fig. 3 (right) as a function of increasing DSOC. It follows from Eq. (B7) that Ω1 and
Ω3 graze the continuum up to the gap-closing point, where ∆R = ∆D, whereas Ω2 hits the continuum at a point
where f2 = 0, which is below the gap-closing point. The solution is symmetric under ∆R ↔ ∆D and, as a result,
there are three collective modes on each side of the gap-closing point.

Appendix C: Eigenmode equations for the case of when both the Rashba spin-orbit coupling and magnetic

field are present

In this apendix, we analyze some properties of the eignemode equations for the case when both the RSOC and
magnetic field are present.

a. Proving the absence of the collective mode in the 11-sector for B > Bc

The frequency of the collective mode in the 11-sector (corresponding to oscillations of magnetization along the x1

axis, i.e., along the static magnetic field) is determined from Eq. (8a): 1 + U
2 Π

0
11(Ω) = 0. Here, we prove that this

equation has no solutions for B > Bc. Explicitly, this equation reads:

1

u
=

(1 − f)W 2

4∆̃2
Z

, (C1)

where

f ≡
√

1− 4∆2
R∆̃

2
Z/W

4 (C2)

and

W 2 ≡ ∆2
R + ∆̃2

Z − Ω2 − i0+sgnΩ. (C3)

Using the standard inequality of arithmetic and geometric means, we find that f is always real and < 1, if we restrict
to the region below the continuum boundaries, i.e. for Ω < |∆̃Z −∆R|. This implies that the right-hand side (RHS)

of Eq. (C1) is smaller than W 2

4∆̃2

Z

, which on its turn can be immediately seen to be less than 1
2 for ∆R

∆̃Z

< 1, i.e, for

B > Bc. Therefore, we have 0 <RHS< 1/2, while the left-hand side is larger than 1 within the paramagnetic phase
(u < 1). Thus there is no solution of Eq. (C1) for B > Bc.

b. Collective modes in the 22 and 33 sectors

We now analyze Eq. (8b), which gives the collective modes in the 22- and 33-sectors, in the various limits and derive
the results presented in Eqs. (9-11). Equation (8b) can be rewritten as

1

u
= X +

1

1− u
Y, (C4)

where

X ≡ ∆̃2
Z

fW 2
− 1

4

(

1

f
− 1

)

(

3− ∆2
R

∆̃2
Z

)

, (C5)

Y ≡ Ω2

∆̃2
Z

[

∆̃2
Z

fW 2
− 1

4

(

1

f
− 1

)

]

. (C6)
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To proceed further, we introduce the dimensionless quantities w ≡ Ω/∆̃Z and r ≡ |∆R|/∆̃Z . We look for a solution of

the form w2 = (1−r)2−δ, where δ is a new variable confined to 0 < δ < (1−r)2. In these notations, W 2/∆̃2
Z = 2r+δ

and fW 2 =
√
δ
√
4r + δ. The quantities X and Y can be re-written as

X =
1

ab
− 3− r2

8

(a− b)2

ab
,

Y =

[

1

ab
− 1

8

(a− b)2

ab

]

[

(1− r)2 − δ
]

, (C7)

where a =
√
δ and b =

√
4r + δ. Its easy to see that in the limit r → 0, a → b and δ = u(2 − u). This makes

Ω2/∆̃2
Z = (1−u)2 or Ω = ∆Z , which is the bare Larmor frequency. In the opposite limit of r → ∞, we find two roots:

δ = r2u and δ = r2u/2. These give Ω2 = ∆2
R(1− u) or ∆2

R(1− u/2), which are the frequencies of the two spin-chiral
mode in the absence of the magnetic field.
Equation (9) corresponds to the strong-field limit and is derived assuming that r ≪ u < 1. We skip this derivation

as it is a brute force expansion in r2, which is lengthy but completely straightforward.
In the moderate-field limit, where r ≈ 1, we relabel r = 1− ε with 0 < ε ≪ 1 and look for a solution in the region

δ ≪ ε2. In this limit, the quantities X and Y reduce to

X =
1

2
+

3ε2

4
√
δ
,

Y =
ε2

4
√
δ
, (C8)

This yields

δ =
ε4

4

u2(1− 3u/4)2

(1− u)2(1 − u/2)2
, (C9)

which reproduces Eq. (10).
In the weak-coupling case (u ≪ 1), one can identify one more interval: u ≪ r < 1. There, we find that δ =

u2(1− r)4/r. This makes the frequency Ω2 ≈ ∆̃Z(1 − r)
[

1− u2

2
(1−r)2

r

]

, which reproduces Eq. (11).

Appendix D: Collective modes from the quantum kinetic equation

The quantum kinetic equation for a Fermi liquid (FL) subject to a spatially uniform external filed and in the
collisionless regime reads

i
∂δn̂~k

∂t
= [δε̂~k, n̂~k], (D1)

where

δε̂~k =
~s~k · ~σ
2

+

∫

~k′

Tr′[F̂~k~k′
δn̂′

~k
] (D2)

is a variation of the quasiparticle energy,
∫

~k′
≡
∫

d2k′

(2π)2 = ν2D
∫

dε
∫

dθ
2π , F~k~k′

= F a(θ − θ′)~σ · ~σ′ is the antisymmetric

part of an SU(2)-invariant Landau interaction function, θ and θ′ are the angle subtended by ~k and ~k′, correspondingly,
and ~s~k parametrizes the spin-orbit and Zeeman terms of the Hamiltonian. For RSOC, ~s~k = ∆R(sin θ,− cos θ, 0); for

purely Zeeman coupling, ~s~k = (−∆̃Z , 0, 0), etc. The electron distribution function can be written as

n̂~k =
~s~k · ~σ
2

∂n0

∂ε
+ δn̂~k, (D3)

where n0 is the equilibrium distribution function in the absence of both SOC and magnetic field, and δn̂~k is the
non-equilibrium part. The non-equilibrium part of the magnetization is given by

~M = −gµB

2

∫

~k

Tr[~σδn̂~k]. (D4)
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The non-equilibrium part of the distribution function can be expanded either over standard or rotated Pauli

matrices.4 In the first way, δn̂~k = ~N(θ)·~σ ∂n0

∂ε such thatMi = gµBν2D
∫

θ
Ni(θ), with i ∈ (1, 2, 3) and

∫

θ
≡
∫ 2π

0
dθk/(2π).

The kinetic equation reads

~̇N(θ) = − ~N(θ) × ~sθ −
∫

θ′

F a(θ − θ′) ~N(θ′)× ~sθ, (D5)

where ~sθ ≡ ~s~k at k = kF . The time dependence of ~N is not explicitly specified. Equation (D5) can be solved by

decomposing ~N and F a into angular harmonics. Note that Mi is given by the zeroth harmonic of Ni.
As a demonstration, we solve Eq. (D5) for the case of RSOC in the s−wave approximation for F a(θ − θ′) = F a

0 .
Equation (D5) is then simplified to

~̇N(θ) = − ~N(θ)× ~sθ − F a
0
~M × ~sθ. (D6)

Note that ~sθ · ~̇N(θ) = 0 suggesting that ~sθ · ~N(θ) =const, which can be set to zero. Integrating Eq. (D6) over θ and
noticing that

∫

θ ~sθ = 0 for RSOC, we get

~̇M = −
∫

θ

~N(θ)× ~sθ. (D7)

Differentiating Eq. (D7) over time again and using Eq. (D6) for ~̇N(θ) with ~sθ · ~N(θ) = 0, we obtain

~̈M = − (1 + F a
0 )∆

2
R
~M + F a

0

∫

θ

~sθ

(

~sθ · ~M
)

. (D8)

This yields

M̈1,2 = −
(

1 +
F a
0

2

)

∆2
RM1,2, M̈3 = − (1 + F a

0 )∆
2
RM3, (D9)

which coincides with q = 0 limit of the hydrodynamic equations derived in Ref. 22.
For the field only case, when ~sθ ≡ (−∆̃Z , 0, 0) is isotropic in the momentum space, we obtain the familiar Bloch

equation by integrating Eq. (D5) over the angle47

~̇M = (1 + F a
0 )∆̃Z

~M × x̂1 = gµB
~M × ~B. (D10)

c. Equivalence of the RPA and FL approaches in the s-wave approximation

The results discussed thus far were presented in with a different choice of basis4,22 and reproduced in Ref. 23 within
the RPA approximation. We now wish to reproduce the RPA result for the case of RSOC in the presence of the
magnetic field using the quantum kinetic equation. It is convenient to work in the basis introduced by Ref. 4. In this
basis we write:

δn̂ = Ni(θ)τ̂i
∂n0

∂ε
,

τ̂1 = σ̂3, τ̂2 = cos θσ̂1 + sin θσ̂2, τ̂3 = sin θσ̂1 − cos θσ̂2.

(D11)

Expanding Ni(θ) into angular harmonics as

Ni(θ) =
∑

m

N
(m)
i cosmθ + N̄

(m)
i sinmθ (D12)

and using Eq. (D4), we obtain for the magnetization components

M1 = gµB

(

N
(1)
2 + N̄

(1)
3

)

,

M2 = gµB

(

N̄
(1)
2 −N

(1)
3

)

,

M3 = gµBN
(0)
1 . (D13)
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The case of RSOC only can be solved exactly for an arbitrary form of the Landau interaction function in the spin

channel, F a(θ−θ′), because equations for harmonics of ~N decouple in this case.4 However, harmonics do not decouple
in the presence of the field for an arbitrary Landau function, and thus an exact solution is not possible. To proceed
further, we adopt the s-wave approximation, F a

0 (θ − θ′) = F a
0 . In this case, the kinetic equation [Eq. (D1)] can be

written as

Ṅ1(θ) + ∆̃z [N2(θ) sin θ −N3(θ) cos θ]−∆RN2(θ) = F̃
[

∆R(M2 sin θ +M1 cos θ)− ∆̃zM2

]

,

Ṅ2(θ)− ∆̃zN1(θ) sin θ +∆RN1(θ) = F̃ (∆̃z sin θ −∆R)M3, (D14)

Ṅ3 + ∆̃zN1(θ) cos θ = −F̃ ∆̃z cos θM3.

where F̃ ≡ F a
0 /gµBν2D. After a Fourier transform in time, we obtain for those harmonics of N that are relevant for

magnetization:

N0
1 =

F̃

2W 2∆̃zf

[

iΩ
{

W 2(1− f) + 2∆̃2
z

}

M2 − 2∆̃z

{

(Ω2 +W 2f)M3

}

]

,

N1
2 =

F̃

8∆̃2
z∆

2
R

[

2W 2∆2
R(f − 1)−

{

W 4(f − 1) + 2∆̃2
z∆

2
R

}]

M1,

N̄1
2 =

F̃

8∆̃2
z∆

2
Rf

[{

2(1− f)(2∆̃2
z∆

2
R −W 2(∆̃2

z +∆2
R))− (2∆̃2

z∆
2
Rf +W 4(f − 1))

}

M2

+2iΩ(1− f)
{

W 2∆̃z − 2∆̃z∆
2
R

}

M3

]

,

N1
3 =

F̃

8∆̃2
z∆

2
R

[{

2W 2∆̃2
z(1− f) + (2∆̃2

z∆
2
R +W 4(f − 1))

}

M2 + 2iW 2Ω∆̃z(f − 1)M3

]

,

N̄1
3 =

F̃

8∆̃2
z∆

2
R

[

2∆̃2
z∆

2
R +W 4(f − 1)

]

M1, (D15)

where f and W are given by Eqs. (C2) and (C3), correspondingly. Combining the left-hand sides of the equations

above into components of ~M , we obtain the eigenmode equation







1− Fa

0

2ν2D
Π0

11(Ω) 0 0

0 1− Fa

0

2ν2D
Π0

22(Ω) − Fa

0

2ν2D
Π0

23(Ω)

0 − Fa

0

2ν2D
Π0

32(Ω) 1− Fa

0

2ν2D
Π0

33(Ω)













M1

M2

M3






= 0, (D16)

where Π0
ij(Ω) are the same as in Eq. (7). These are the same eigenmode equations as given by RPA, det[1+ U

2 Π] = 0,
upon replacing F a

0 → −ν2DU .
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