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Abstract

We give a detailed physical argument for the area law for entanglement en-

tropy in gapped phases of matter arising from local Hamiltonians. Our approach

is based on renormalization group (RG) ideas and takes a resource oriented per-

spective. We report four main results. First, we argue for the “weak area law”:

any gapped phase with a unique ground state on every closed manifold obeys

the area law. Second, we introduce an RG based classification scheme and give a

detailed argument that all phases within the classification scheme obey the area

law. Third, we define a special sub-class of gapped phases, topological quantum

liquids, which captures all examples of current physical relevance, and we rigor-

ously show that TQLs obey an area law. Fourth, we show that all topological

quantum liquids have MERA representations which achieve unit overlap with

the ground state in the thermodynamic limit and which have a bond dimension

scaling with system size L as ec logd(1+δ)(L) for all δ > 0. For example, we show

that chiral phases in d = 2 dimensions have an approximate MERA with bond

dimension ec log2(1+δ)(L). We discuss extensively a number of subsidiary ideas and

results necessary to make the main arguments, including field theory construc-

tions. While our argument for the general area law rests on physically-motived

assumptions (which we make explicit) and is therefore not rigorous, we may con-

clude that “conventional” gapped phases obey the area law and that any gapped

phase which violates the area law must be a dragon.
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1 Introduction

In this paper we make progress towards a proof of the area law for entanglement entropy

in gapped phases of matter arising from local Hamiltonians. The area law conjecture

states that if ρ = |g〉〈g| is a ground state of a local Hamiltonian with an energy gap

to excitations, then given a subregion A with state ρA = trĀ(ρ) the entanglement

entropy S(A) of A obeys S(A) ≡ −tr(ρA log(ρA)) ≤ |∂A|. Although the area law for

gapped phases is widely believed to hold, at least for “conventional” gapped phases,

there are no rigorous proofs of the area law outside one dimension. Hastings’ seminal

result [1] gave the first rigorous proof of an area law for local gapped Hamiltonians in

one dimension. There have since been several alternative proofs and improvements of

Hastings’ result in one dimensional systems [2–5]. In more than one dimension there

are various partial results including area laws for gapped free fermion systems, for

certain special kinds of gapped frustration free systems, and numerous special cases

which have been checked numerically [2–25]. It has also recently been shown that if

one representative (meaning a particular Hamiltonian) within a phase obeys the area

law, then all representatives within the phase obey the area law [26].

By contrast, the authors have long believed on physical grounds that “conventional”

gapped phases obey the area law and that the area law is robust within phases. Indeed,

we believe that the area law is robust even within gapless phases like emergent U(1)

electrodynamics, but the existing rigorous techniques are unable to demonstrate this.

This circumstance raises the following questions: Can we at least give a convincing, if

not rigorous, physical argument for the area law in “conventional” phases? And what

about “unconventional” phases where physical intuition provides a weaker guide? To

make various physical intuitions into a real argument for the area law, three things

are required. First, we must specify what is meant by “conventional” phases (our

answer, for gapped states, is the notion of “topological quantum liquids”). Second,

we must characterize the range of possible “unconventional” phases. Third, we must

show that all such phases obey the area law. In this paper we propose a classification

scheme for gapped phases of matter (which quantifies how conventional they are) and

give a detailed physical argument for the area law based on it. Our argument for a

general area law is not rigorous and rests on our classification scheme. As part of the

argument, we develop additional tools based on the idea of reconstructing global states

from local data which are independent of the classification scheme but which rest on

other assumptions. As anticipated in Hastings’ original work, the techniques necessary

to argue for the area law give additional insight into the structure of gapped phases.

Our approach is based on renormalization group (RG) ideas and takes a resource

oriented perspective. We define the notion of an s source RG fixed point in d dimensions
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as a phase of matter where we need s copies of the entangled ground state at linear size

L (the resource) along with initially unentangled degrees of freedom to produce the

ground state at linear size 2L by acting with a quasi-local unitary transformation1. It

follows from our definitions that all s source RG fixed points with s < 2d−1 obey the area

law. Much of the paper is concerned with demonstrating that various interesting models

are s source fixed points and with building tools that relate s to spectral properties of

the Hamiltonian. Ultimately, our approach is an attempt to make rigorous the simple

intuition that violations of the area law are infrared phenomena, so to violate the area

law a phase of matter should have many low-energy states.

It should also be emphasized that we are studying quantum phases of matter, not

just isolated gapped Hamiltonians. In our analysis we make crucial use of the existence

of families of Hamiltonians at varying length scales with uniform local properties which

are all in the same phase; this leaves open the possibility of isolated cases outside our

framework (a possibility we discuss further below). See Appendix A for a further

discussion of what we mean by a phase of matter.

Besides the importance of understanding the entanglement structure of gapped

phases of matter, e.g., for purposes of classical simulation, we have a seemingly differ-

ent motivation for the constructions presented here. Holographic duality [27–31] relates

quantum many-body systems without gravity to quantum gravitational systems. It has

long been known that entropy is related to geometry in gravitational systems, e.g., ther-

mal entropy [32] and entanglement entropy [33]. [34] proposed to construct the dual

holographic geometry from entanglement in the quantum many-body system using a

renormalization group construction like MERA [35] (see also [36]). Besides qualita-

tively matching many features of conventional holographic duality, it is now possible

to directly derive the gravitational dynamics from the dynamics of entanglement plus

the assumption that “entanglement = geometry” [37, 38]. The proposal of [34] natu-

rally produces the identification “entanglement = geometry”, but applying this to a

particular model requires that a MERA representation (or something similar) exists.

Our demonstration that such MERA representations exist for gapped field theories (in-

cluding long-range entangled topological theories) thus strengthens the logic beginning

from [34] and ending at quantum gravity.

1In our formulation, the RG transformation is reversible. This assumption can be relaxed to give

a more general construction, but we will not need it here. Relatedly, we are using the term ‘fixed

point’ in the metonymic sense that a fixed point of the RG labels a phase of matter. The systems we

describe will often have finite correlation length.
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1.1 Overview of results and axioms

The overall structure of the argument for the area law is as follows. We first rule out

very highly entangled states using a thermodynamic argument based on weak spectral

assumptions. Then we discuss in detail two more-or-less independent approaches to

the remaining range of gapped phases, the s source RG fixed point approach and the

reconstruction from local data approach. With certain physical assumptions which can

be proven in some cases and for which we offer general arguments, both approaches give

an area law for phases with fewer than ecL
d−1

ground states on various spaces. Finally,

while neither approach seems able to give a general area law by itself, the combination

of the two does permit us to argue for a general area law.

In terms of the s source framework, we argue that gapped phases with fewer than

ecL
d−1

torus ground states (d dimensions, size L torus, c a constant) have s < 2d−1 and

obey the area law. We also show that, with a weak assumption about the thermal free

energy, the area law may be violated at most logarithmically. This argument rules out

phases with s > 2d−1 and leaves one interesting case, s = 2d−1, which is dangerous to

the area law. We treat the special case s = 2d−1 separately and argue such phases of

matter either do not exist or obey the area law.

Throughout this paper we will, with a few exceptions, consider gapped phases of

matter that are stable to arbitrary weak Hamiltonian perturbations (sometimes this

can be proven [39–42], but we take it as a physical assumption). Except for translation

invariance, symmetry plays no role in our analysis, and translation invariance beyond

rough homogeneity is not at all essential to the construction. We will also assume that

when the phase of matter possesses degenerate ground states, those ground states are

locally indistinguishable. Local indistinguishability is a consequence of stability, for if

the degenerate ground states were locally distinguishable then the degeneracy could be

split with a local field and the system would not be stable2. Quantitatively, we assume

that the ground states are split by at most an exponentially small amount of order

e−cL
α

for some constants c and α (see the Ground State Degeneracy Lemma in §3.2).

Our fundamental assumption is that all stable gapped phases of matter are gener-

alized s source fixed points (defined below) for some s. We will discuss this assumption

further, but for now let us simply note that we know of no gapped phase of matter

that is not plausibly such a fixed point; we refer to a phase which is not a fixed point

2For example, this restriction rules out a dilute array of decoupled spins for which there exist linear

combinations of degenerate states with lots of entanglement. A more interesting case is a dilute array

of non-abelian anyons. Unlike in the spin case, there are no operators localized at a single anyon that

can split the degeneracy. Nevertheless, as we discuss in Appendix D the anyon array also violates our

assumptions.
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as a dragon. (For work towards constructing a possible dragon, see [43]3). In essence,

we are assuming that all phases of matter are renormalization group fixed points.

Within our broader analysis an important role is played by what we call the “weak

area law” which asserts that all gapped states with a unique ground state on any

closed manifold obey the area law for entanglement entropy. We give several physical

arguments for the weak area law. Using the weak area law plus our basic assumption

that all gapped phases are generalized s source fixed points, we show that all gapped

phases with torus ground state degeneracyG(L) scaling slower than ecL
d−1

obey the area

law. This leaves a small window of highly degenerate topological phases (with s = 2d−1)

which, if they exist, may violate the area law. We give a special argument in this

marginal case (§8) to show that such phases in fact do not exist. These arguments rely

on ideas about reconstructing quantum states from local data and lead to additional

arguments for the weak area law.

We further define the notion of topological quantum liquids (a subset of all possible

topological phases) which are, roughly speaking, topological phases that are insensitive

to the local details of the system and to the precise geometry. For example, the ground

state degeneracy of a topological quantum liquid depends only on long distance data,

so the ground state degeneracy on a d-torus is independent of torus size. The primary

experimental realizations of topological quantum liquids are the fractional quantum

Hall states [44–46]. Any phase of matter which can be adiabatically deformed from

linear size L to linear size 2L is a topological quantum liquid. States with ground state

degeneracy independent of system size and shape have also been singled out in [47]

and more recently in [48].

We prove that topological quantum liquids obey the area law in d > 1. We also

show how to produce a MERA representation using modest resources for all topological

quantum liquids in any dimension. For example, we show that chiral topological phases

in d = 2 have approximate MERA representations (see [49–53] for important prior work

on this topic; see [54] for a discussion of some obstructions). The MERA representative

has bond dimension ec logd(1+δ)(L) in d dimensions and achieves unit overlap with the

ground state in the thermodynamic limit. The δ factor arises from truncating almost-

exponentially decaying interactions; any δ > 0 will do, and we can even achieve a

dependence like ec(log(L) log(log(L)))d as a limit δ → 0. Although such a MERA is not

quite contractible in time polynomial in L, it is much more easily contracted than PEPS

3The system described in [43] is similar to two infinite dimensional clusters coupled by a weak

link. As such, it appears to violate our assumptions that the space must have a definite dimension

and that the Hamiltonian arise from a Hamiltonian motif (Appendix A). Other examples of highly

entangled states include [9, 12]. These states also fall outside our assumptions since the gap vanishes

with increasing system size, however, they are interesting in that they challenge standard field theory

scalings of entanglement with spectral gap.
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constructions [17, 55, 56] of similar bond dimension. Furthermore, if we don’t require

such fantastic accuracy in the thermodynamic limit, our results support the conjecture

that universal properties can be captured with a constant bond dimension MERA. Our

procedure for constructing a MERA is quite different from one which obtains a MERA

by variational calculation, so it may lead to interesting new algorithms.

We conclude with discussion and conjectures about the extension of our results to

gapless systems. The ideas previewed in this final section will be discussed in greater

detail in a forthcoming companion paper.

Given the length and complexity of the paper, here is a brief summary of results

and a guide to notation. An attempt has been made to render the sections modular

so that readers may skip around. The paper may be roughly divided into three parts.

First, the basic s source RG construction is introduced and developed (§2-§4). Second,

a number of concrete examples and some elaborations of the basic framework are

discussed (§5-§7). Finally, the more advanced arguments for the area law, for MERA

representations, and for all field theories having s ≤ 1 are presented (§8-§10). The

quickest way to proceed is to study the basic s-source definitions in §2 and §3 and the

examples in §5. After listing the main results and definitions, we briefly indicate the

level of rigor of the various results. The main definitions and results include:

• Definition of s source RG fixed points and demonstration that a large number of

phases fall into this class. [§2,§3,§5]

• Definition of an inverse state |ψ−1〉 for a state |ψ〉: a state |ψ−1〉 such that |ψ〉|ψ−1〉
is deformable to a product state by a quasi-local unitary. [§3]

• Definition of short-range entangled states: a state is short-range entangled if it

has an inverse state. [§3]

• “Wormhole array” argument that phases with a unique ground state on any

closed manifold have an inverse state, implies the weak area law. [§3]

• Demonstration of at most logarithmic violation of the area law with a weak

assumption about thermal free energy (generalizes Hastings’ argument [17]). [§4]

• Explicit demonstration that a chiral phase (Chern insulator) is an s = 1 fixed

point. [§5]

• Definition of a topological quantum liquid (TQL): a phase which can be adiabat-

ically locally deformed, proof that TQLs are s ≤ 1 fixed points, proof of an area

law for TQLs in d > 1. [§6]
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• Definition of generalized s source RG fixed points, conjecture that all stable

gapped phases are such fixed points. [§7]

• Argument for area law for generalized s source fixed points with ground state

degeneracy G scaling slower than ecL
d−1

, assumes weak area law. [§7]

• Reconstruction from local data argument for weak area law, argument for the

entanglement entropy bound S(A) ≤ O(|∂A|) + log(G(HA)) where G(HA) is the

ground state degeneracy on a space with boundary. [§8]

• Proof that entropy bound S(A) ≤ O(|∂A|) + log(G(HA)) plus assumption that

all phases are s source fixed points implies area law. [§8]

• Construction of approximate MERA representative with ec logd(1+δ)(L) bond di-

mension (δ > 0) for TQLs in d dimensions. [§9]

• Conjecture that TQLs have an approximate MERA representative with poly-

nomial bond dimension, argument for universal properties from bounded bond

dimension. [§9]

• Expanding universe construction for field theories, argument that all gapped

field theories are s ≤ 1 fixed points, explicit example with Dirac fermions (same

universality class as Chern insulator), discussion of relation to dS/CFT. [§10]

Of these results, the area law for TQLs, the area law for s < 2d−1 RG fixed points,

the MERA construction for TQLs, the demonstration that Chern insulators are TQLs,

the logarithmic bound on area law violations from thermodynamics, the Dirac fermion

field theory construction, and the weak area law for frustration free Hamiltonians are

(or can be made) rigorous. The weak area law in full generality, the general field theory

constructions, the bound S ≤ O(|∂A|) + log(G), and the suggestion that system-size-

independent bound dimension in MERA suffices to capture universal properties are

given strong physical arguments. The s source RG framework (and the general area

law result which relies on it) plausibly applies to all phases we are aware of, but we

cannot rule out isolated cases outside the framework at the present time.

Notation: A denotes a subregion, L is the linear size of the whole system, R is the

linear size of A. c and k denote generic constants which don’t depend on important

parameters, s specifies the number of copies or the matrix of RG dependencies. d

is the dimension of space, D is the local Hilbert space dimension. ∆ and m denote

gaps, J denotes the magnitude of terms in the Hamiltonian. G(L) is the ground state

degeneracy on a torus of linear size L; sometimes we use G(R) to denote the ground

state degeneracy on an open manifold of size R and G(H) to denote the ground state
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degeneracy of a Hamiltonian H. Ground states are often denoted |g〉 or |gi〉. Couplings

in the Hamiltonian are denoted gx or sometimes λ and should not be confused with

the labels of ground states.

2 The RG-like transformation

L black sites are intercalated with L blue sites using a quasi-
local unitary.  The output is the black state on on 2L sites.  In 
the simplest case (s=0), the blue sites start in product states. 

Figure 1: A d = 1 version of the RG trans-

formation.

We begin by defining an s source RG

fixed point in d dimensions. The num-

ber s specifies the number of non-trivial

resources (“source states”) needed to con-

struct the state of a larger system in

terms of states of smaller systems. Un-

entangled states always cost nothing and

can be added or removed at will. Note

that this first definition is a simplified ver-

sion (single type theory) of the full theory

(multi-type theory) where we restrict to

source states that are identical. Below

(§7) we define the notion of a generalized

s source RG fixed point (multi-type the-

ory) which we conjecture is a sufficiently powerful notion to include all gapped phases.

The single type theory is nevertheless quite useful as it illustrates the main ideas in a

simpler setting and describes many cases of physical interest.

Definition 1 (s source RG fixed point) A d dimensional s source RG fixed point

is a system where a ground state on (2L)d sites can be constructed from s copies of

the ground state on Ld sites plus some unentangled degrees of freedom by acting with a

quasi-local unitary as in Fig. 1. Unless otherwise noted, s is assumed to be the smallest

value for which the construction is possible.

A quasi-local unitary is a unitary U generated by time evolution for a time of order

L0 by a Hamiltonian K which is a sum of terms that are local up to tails decaying

faster than any power. In detail, K =
∑

xKx and

Kx =
∑
r

Kx,r (2.1)
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where each term Kx,r is supported on a disk of radius r centered at x and has norm

‖Kx,r‖ decaying faster than any power of r.4

Recall that we restrict to stable phases, so the gap does not close under small

Hamiltonian perturbations (i.e. the s source fixed point is a completely attractive RG

fixed point). We will relax this assumption for future extensions to gapless states. In

many cases we need only consider 0 ≤ s ≤ 2d−1 (see §4). The case s = 0 corresponds

to ground states which can be produced at any size just from product states with a

quasi-local unitary.

As a technical note, for concreteness we focus on coarse-graining schemes where

linear dimensions are halved, e.g. a decimation scheme where we map 2d sites to one

site. Nothing in the formalism depends on this choice, so we may immediately extend

our results to other kinds of decimation schemes. Indeed, some phases of matter in

the recent literature behave best under coarse-graining transformations with different

coarsening factors, and the formalism can easily accommodate this degree of freedom.

We can even grow the system anisotropically, enlarging some dimensions while keeping

others fixed, but we do not make use of this extra freedom in the present paper.

Let us also be clear about the notion of quasi-locality. What we are considering is

a situation where the s copies at scale L are intercalated and then glued together by

a quasi-local unitary as shown in Fig. 1. We are not gluing together regions at their

boundaries. We are imagining that the s copies exist in the same space and are merged

together locally (like riffling a deck of cards) with respect to the usual Euclidean metric.

Note that the range of the quasilocal unitary which accomplishes this does not depend

on the system size L.

Finally, we assume that there exists an L0 such that the local Hilbert space is

isomorphic at all scales L ≥ L0. If this were not so then we could always trivially

realize a size 2L system with local dimension D as a size L system with local dimen-

sion D2d , so to get an interesting definition we must make a restriction on the local

Hilbert space. Furthermore, throughout we assume no symmetry besides translation

invariance, and translation invariance primarily means that we consider Hamiltonians

which are roughly homogenous in space. Clearly our approach can be refined by the

inclusion of symmetry (leading to the physics of topological insulators [58–66]), but we

leave this for future work.

Several detailed examples are presented below. As a preview, any trivial insulator

is an s = 0 RG fixed point while the toric code/Z2 gauge theory is an s = 1 RG

4The terms decay with distance r as e−rg(r) where g(r) is any function with the property that∫∞
1
dr g(r)r < ∞ [57]. For example, g(r) ∼ r−δ or g(r) ∼ (log(r))−2 are sufficient. This almost

exponential decay is the origin of the δ factor in our MERA constructions.
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fixed point. Haah’s code [67] is an example of an s = 2 RG fixed point in d = 3 [68]

(see also [69]). The concept of an s source RG fixed point has been latent for some

time. In particular, the (gapless) case of fermions with a Fermi surface seems to realize

an s = 2d−1 fixed point (although we do not prove this claim here). Indeed, it is

the distinction between the RG for a conformal field theory (CFT) [70] and a Fermi

surface [71–73] which we are trying to capture with our notion of s source fixed point.

However, we will put these motivations aside for the present paper which is concerned

almost exclusively with gapped phases. The notion of an s source fixed point shares

some similarities with branching MERA [74], but we emphasize that our construction

is different in various important ways. Chief among them, our formalism (making

use of quasi-local unitaries) is sufficiently flexible to naturally describe a wide class of

phases, while producing a MERA or branching MERA with its strict causality structure

requires a blow-up of complexity5. Later we will discuss the precise relation to MERA

(see §9).

The concept of a phase of matter is a primitive notion discussed in Appendix A.

An important property of many phases is that they can be defined on any space6.

However, in some cases it is not clear at present how to make the definition, e.g. with

Haah’s code. The phases we consider must have some part of this flexibility so that

they may be defined on tori and disks of various sizes. Considerably greater flexibility

is available for phases obtained from a Hamiltonian with two-body interactions after

sufficient coarse-graining (e.g., by drilling a lattice of little holes). There is a large

literature on related two-body constructions realizing interesting topological states,

e.g., [75, 76]. We conjecture that at least all phases with s ≤ 1 have such two-body

Hamiltonians. In any event, we will work for the most part in the simplified setting of

tori and disks7.

5Our framework also preserves translation invariance, where as the MERA network breaks trans-

lation invariance. However, the MERA construction in §9 shows that a nearly translation invariant

MERA is achievable despite the bias in the network.
6Extending the real time quantum theory to a Euclidean theory defined on an arbitrary Euclidean

spacetime is a non-trivial further step.
7Interesting phenomena occur when we deviate substantially from flatness or significantly compli-

cate the topology, e.g., [77] which studied the toric code on a negatively curved space with extensive

first Betti number. Fascinating as such examples are, we restrict to flat geometries and small per-

turbations thereof; one reason for this is that the area law is less well defined in a hyperbolic-like

geometry where volumes and areas scale in the same way.
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3 The s source framework

We now present a number of basic assumptions and results within the s source RG

framework that will be used extensively later. The first statement is our basic assump-

tion, namely that all gapped phases of matter are generalized s source fixed points.

The second statement is the weak area law. We offer physical arguments for both these

assumptions, we also later rigorously prove the weak area law for the restricted class

of frustration free Hamiltonians. Then we characterize how the entropy of sub-systems

depends on size via a recursive bound. We also characterize the growth of ground state

degeneracy as a function of system size. Finally, we show that s can be restricted to a

certain reasonable range with an additional weak spectral assumption.

Conjecture 1 (Fundamental Assumption) All stable gapped phases are (general-

ized) s source RG fixed points for some s.

Evidence: As a warm-up note that all continuum topological field theories have s = 1

or s = 0. Indeed, we may place the field theory (mass gap m) into a slowly expanding

universe with metric ds2 = −dt2 +a2(t)d~x2 with the scale factor obeying ȧ/a� m (see

§10). The adiabatic time evolution from a = 1 to a = 2 generates an approximation

to the desired quasi-local unitary transformation. The short wavelength modes which

expand with the universe are the analogs of the unentangled auxiliary degrees of free-

dom. Since we need only one copy of the state to do this evolution we have s ≤ 1.

(More details of this protocol can be found in §10.)

More generally, as we show below, generalized s source fixed points can accom-

modate a wide variety of scalings of entanglement entropy (up to volume law scaling)

and can even support long-range correlations. In other words, the formalism is quite

expressive in terms of the states it can accommodate. Indeed, the authors know of no

gapped phase which isn’t plausibly in this class.

For a state to not be in this class, it must be the case that there is no path in the

space of local Hamiltonians (of system-size-independent length) which connects the

Hamiltonian on (2L)d sites to 2d other decoupled Hamiltonians each on Ld sites and

which keeps the gap open. This must be true even if we permit the use of extra initially

unentangled degrees of freedom which are returned to their unentangled state at the end

of the adiabatic path. Note that stability implies that we have an open set in the space

of Hamiltonians to work with, at least in the neighborhood of the fixed points and we

need just one connection between these open sets. The preceding statements must also

be true for all other choices of coarse-graining scheme. Given the considerable freedom

this construction affords us, we believe it is a plausible fundamental assumption.
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We also tend to the opinion to that a gapped Hamiltonian which is so radically

disconnected from any other gapped Hamiltonian at smaller scales would be very un-

usual beast. Our RG intuition probably provides very little guidance to the properties

of this Hamiltonian. Nevertheless, it should be said that our frustration free results (if

the Hamiltonian is in this class) still provide a measure of control independent of the

assumption of being an s source fixed point. For example, we can still show that to

violate the area law the system would have to have many degenerate ground states on

an open manifold. Thus our basic intuition that area law violations are related to the

existence of many low energy states is still partially preserved.

As a final point in favor of the s source framework, we observe that it produces

conclusions in harmony with a variety of independent results. For example, assuming

the entanglement entropy obeys an area law and the sub-leading terms have a certain

structure, [78] has shown that the number of locally indistinguishable ground states

is bounded by certain combinations of entanglement entropies. The structure of sub-

leading terms necessary to have G(L) ∼ ecL is precisely what is predicted by the s

source framework.

In essence, our fundamental assumption claims that all phases of matter arising

from local Hamiltonians are renormalization group fixed points. In any event, the very

wide applicability of the s source framework justifies its study even if phases outside

the framework are eventually identified.

3.1 Weak area law

“Physics” Theorem 1 (Weak Area Law) All gapped phases of matter with a unique

ground state (on any closed geometry) obey the area law.

Argument: We now present our first argument for the weak area law. In fact, we estab-

lish a stronger result: phases with a unique ground state on any closed geometry always

have an “inverse state” (defined momentarily). We give an independent argument for

the weak area law in §8.

Inverse state

To begin, let us define the notion of an “inverse state”. Given a gapped ground

state |ψ〉 defined on some local geometry, we say |φ〉 (defined on the same geometry)

is an inverse state for |ψ〉 if the tensor product |ψ〉|φ〉 can be deformed into a product

state with a quasi-local unitary. Note that |ψ〉 is also an inverse state for |φ〉. As an

example, if |ψn〉 is a quantum Hall state with n filled Landau levels, then a state |φ−n〉
with n filled Landau levels of the opposite magnetic field is an inverse state for |ψ〉.
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This is because we may cancel the chiral edge states between the two states, so while

either state alone is non-trivial, the combination is a trivial insulator.8

Now if |ψ〉 has an inverse state, then |ψ〉 obeys the area law. Indeed, we have

|ψ〉|φ〉 = U−1|0〉2Ld where U is quasi-local and we have assumed without loss of gener-

ality that ψ and φ are defined on Ld sites. Then the entropy bound for a quasi-local

unitary implies that

Sφ(R) + Sψ(R) ≤ Rd−1, (3.1)

so both entropies obey the area law separately since they are both positive. Our goal

is thus to show that every phase of matter with a unique ground state on every closed

geometry has an inverse state.

As an aside, the existence of an inverse state is a good criterion for calling a state

short-range entangled (and is different from circuit definitions, e.g. [81], which fail

to classify integer quantum Hall states as short-range entangled). Since phases with

an inverse have a unique ground state on any closed geometry, the ground state can

be exactly reconstructed from local data [82, 83], so the inverse-based definition of

short-range entanglement seems closely related to Kitaev’s definition of short-range

entanglement [80].

Edge inverse

Decoupled disks with edge states 

Disks   hemispheres 

Gapped sphere Hamiltonian 

Glue at equator 

Figure 2: Coupling H (blue disk) to its ori-

entation reversed partner Hrev (red disk)

along their common boundary, we can pro-

duce the gapped sphere Hamiltonian.

Intuitively, if a phase has a unique

ground state then there is little interest-

ing happening in the bulk of the phase.

However, the system may display inter-

esting physics if we place it on a man-

ifold with boundary. In particular, we

have the phenomenon of protected “edge”

or “boundary” states which are bound-

ary degrees of freedom that are necessar-

ily gapless (or otherwise have some neces-

sary low energy degeneracy). The canon-

ical example here is chiral edge states in

d = 2 dimensions. An integer quantum

Hall state has a unique ground state on

any closed manifold, but on any open

manifold the system necessarily possesses

8The related notion of an invertible topological field theory has been used recently in [79]. Kitaev

has independently developed a very similar notion [80]. Hastings has proven the existence of inverse

states for free fermions [49].
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chiral edge modes which transport charge and heat.

These edge states will obstruct attempts to deform the system to a product state

(making chiral states s = 1 fixed points, for example). Fortunately, every phase has

an “edge inverse”: another phase that can be coupled with the first phase just along

the boundary to gap out the edge states.

To show the existence of an edge inverse, let H be a Hamiltonian defined on a d-disk

which may have protected edge states, e.g., the top blue disk (d = 2) in Fig. 2. Let

Hrev be the Hamiltonian defined on a d-disk which is obtained from H by reversing

the orientation, e.g., the bottom red disk (d = 2) in Fig. 2. For example, if H were a

quantum Hall system, the sign of the magnetic field would be reversed in Hrev. Now

imagine deforming these two d-disks into the northern and southern hemispheres of

a d-sphere as in Fig. 2. Then couple the boundary of H to the boundary of Hrev

while keeping them decoupled in the bulk. The resulting state, for suitable couplings

and perhaps after passing through an edge phase transition, is the ground state of the

original system but defined on a d-sphere with Hamiltonian Hsphere. Since this is a

closed manifold, the Hamiltonian Hsphere possesses an energy gap, so every protected

edge state may be gapped out by pairing it with its reverse. Furthermore, if the phase

in question has a unique ground state on any closed manifold, then the edge inverse,

which can be defined analogously for arbitrary open geometries, always leads to a

unique gapped bulk state.

Wormhole array

Figure 3: An array of wormholes in d = 2.

At this point, it is important to note

that edge gappability by itself does not

imply that an inverse state exists. Edge

states can always be gapped by coupling

to Hrev, but the bulk remains non-trivial

if it has non-trivial ground state degen-

eracy. Indeed, if the ground states are

locally indistinguishable, then no quasi-

local unitary can connect the ground

states to product states because product

states are locally distinguishable. If such

a quasi-local unitary did exist, we could

locally distinguish the supposedly locally

indistinguishable ground states by choosing a local operator that distinguishes the

corresponding product states and conjugating it with the quasi-local unitary.
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However, we now argue that edge gappability plus trivial ground state degeneracy

on any closed manifold implies that an inverse state exists. To begin, consider such a

system with Hamiltonian H on an open manifold consisting of a d-torus of linear size L

with a periodic array of holes of linear size Lh and separation Ls. The system may have

gapless edge states around these holes, but we know that such edge states can be gapped

by coupling to Hrev. Hence we introduce an identical torus with holes supporting

Hrev and couple the two systems along the boundary of the holes. The resulting

coupled system is equivalent to the original system but defined on a closed “wormhole

array” geometry which is illustrated in d = 2 in Fig. 3. As shown there, we have two

layers, corresponding to H and Hrev, and the layers are coupled with “wormholes”

connecting the boundaries of the corresponding holes. Since this wormhole array is

a closed geometry, the system, by assumption, possesses a unique ground state on it.

A similar construction was used in [84] to relate topological groundstate degeneracy

to topological entanglement entropy. Ref. [85] studied phase transitions induced an

array of wormholes; here it is important that the introduction of the wormholes is

accomplished adiabatically.

Construction of adiabatic path

Create microscopic wormholes 
(white holes) 

Pinch off microscopic links 
(grey links) 

Expand wormholes 

Expand wormholes 

Figure 4: The transformation to a trivial

state using an expanding wormhole array.

The white spaces denote product states or

just empty space. We have suppressed the

wormholes and are effectively viewing the

whole system as a composite of H and Hrec

on a system with boundary.

To complete the argument we make

two physical assumptions. Assumption

1: [Deformability] Because the system

possesses a unique ground state on the

wormhole array for any set of parame-

ters L, Lh, and Ls, we assume that it is

possible to deform the size and shape of

the wormhole array without closing the

gap. Assumption 2: [Micro-insensitivity]

We assume that we may make local mi-

croscopic deformations, e.g. creating and

pinching off microscopic wormholes with-

out closing the gap. Both assumptions es-

sentially say that because the initial and

final Hamiltonians are gapped, because

the changes are local, and because the

state is completely featureless, i.e. no bulk

physics, no edge physics, and hence noth-

ing to require a phase transition, it should

be possible to find a gapped path in Hamiltonian space connecting the initial and final

points. In other words, surely we can drill a dilute array of small holes in the system
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without closing the gap.

For example, to drill a single hole, consider the Hamiltonian H(η) = (1−η)Hno hole+

ηHhole. Since this is a local perturbation, finite size effects may be sufficient to keep

the gap open. However, suppose the gap does close along this path, say at η0. Then we

should be able to add to the Hamiltonian a local perturbation V (η) which only turns

on near η0 and which keeps the gap open. Suppose the two states that are about to

cross are |0〉 and |1〉. Zooming in on these two states, the Hamiltonian can be put in

the form H(η) ∼ (η − η0)(|0〉〈0| − |1〉〈1|) = (η − η0)Z. The gap may be kept open by

adding an X perturbation, e.g., V (η) = v(η)X with v(η) a coupling localized in η near

η0. We must only show that X is a local operator, but this follows because |0〉 and

|1〉 are indistinguishable far from the hole (they are gapped ground states of the same

stable unique ground state Hamiltonian modulo a localized perturbation). Hence the

operator which sends |0〉 to |1〉 is local and we can drill a hole in the system without

closing the gap. Using the locality of the process plus the stability of the system to

weak perturbations (due to effects from distant holes), we should also be able to drill a

dilute array of holes without closing the gap. A similar argument applies to the process

of expanding the holes, e.g., done a site at a time.

Using [Deformability] and [Micro-insenstivity], an adiabatic path to a product state

may be found as illustrated for d = 2 in Fig. 4. Begin with two decoupled layers, one

containing H and one containing Hrev, which are shown as a single system in Fig. 4.

Then introduce an array of microscopic wormholes coupling the two layers. This can

be done without closing the gap by [Micro-insensitivity]. Next expand the wormholes

to larger and larger sizes. This can be done without closing the gap because we know

H coupled to Hrev has a unique gapped ground state and by [Deformability]. Finally,

when the wormholes have expanded to consume almost the entire system, pinch off

the remaining thin tubes connecting different bulk regions. This can be done without

closing the gap by [Micro-insensitivity]. At the end of this process we have reduced

the system to product states. Our assumptions imply that a system-size-independent

gap may be maintained throughout this process and that therefore the duration of

the required adiabatic time evolution (as well as the depth of the resulting circuit

approximation) is also independent of system size.

In d = 1 the introduction of wormholes simply disconnects the space into many

small pieces, so we immediately obtain a product state. In d > 2 a slightly more

complicated recursive protocol is required. To begin, take two “layers” consisting

of H and Hrev and introduce an array of microscopic wormholes coupling them as

before. Let the wormhole spacing be Ls. Expand these wormholes until their size is

close to Ls (the generalization of the process in Fig. 4 to higher dimensions). The

expanding wormholes eat most of the d-dimensional bulk of the system, but leave a
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set of d − 1-dimensional faces which are still entangled (analogous to the thin grey

tubes at the end of Fig. 4). Now repeat the procedure by introducing wormholes in

the d− 1-dimensional faces and expanding the wormholes to consume the faces. This

leaves d − 2-dimensional objects which are then eaten with still more wormholes and

so on. The process terminates when we reach a one-dimensional network at which

point introducing wormholes simply disconnects the remaining degrees of freedom into

product states.

Thus the ground state of H + Hrev is an s = 0 fixed point in any dimension d,

and the ground state of Hrev is an inverse state for the ground state of H. This more

general result, the existence of an inverse state, implies the weak area law. Note the

crucial role played by the wormhole array and the assumption that the system has a

unique ground state on it.

3.2 Basic s source results

Lemma 1 (Entropy Lemma) The entanglement entropy S(R) of a region of size R

in any s source RG fixed point obeys S(2R) ≤ sS(R) + kRd−1 where k depends on the

details of the quasi-local unitary.

Proof: The entropy of a region of size 2R can be no more than the sum of the

entropies of the s regions of size R used to make it plus a term coming from the quasi-

local unitary. Such a quasi-local unitary can generate at most area law entanglement

[26]. (This result is illustrated in Appendix E.) Although we have phrased this as a

bound, it should describe the asymptotic behavior provided all s copies are actually

being used at every RG step and the quasi-local unitary is adding some entropy. Note

that we have implicitly assumed that the entropy S(R) is independent of L provided

L � R; this is one example of what we call insensitivity to boundary conditions in

Appendix A. This assumption is not essential to the bound, but it is part of what we

mean by a phase of matter and can be proven in some cases.

This bound is similar to the entropy accounting in branching MERA [74], but our

bound is more general because we allow quasi-local unitaries instead of strictly local

circuits. The extension to quasi-locality, while intuitively plausible, is not immediate

and requires the technology in [26]. Furthermore, for strictly local circuits one has

much more control, e.g. over even the Schmidt rank, but such control is currently

lacking for quasi-local unitaries.

Lemma 2 (Ground State Degeneracy Lemma) The ground state degeneracy G(L)

of a s source RG fixed on a d-torus of linear size L obeys the recursion relation

G(2L) = G(L)s.
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Proof: Recall that we are assuming all ground states are locally indistinguishable.

Choose one ground state from each of the s copies at scale L. By assumption we can

construct a ground state at scale 2L using a quasi-local unitary. However, because the

unitary is quasi-local and because the ground states are locally indistinguishable, we

can actually produce a different orthogonal ground state at size 2L for every choice of

ground state from each of the s sources at size L using the same quasi-local unitary.

Indeed, the action of all local Hamiltonian terms, modulo the slight spreading due to

the quasi-local unitary, remains local throughout and so has the same effect on all

ground states. In other words, if we get a ground state from one choice, we get a

ground state for another choice, because all Hamiltonian terms act the same on the

locally indistinguishable states.

To be precise, we take local indistinguishability to mean that we have a set of

ground states {|gi〉}i=1,...,G such that we have

|〈gi|O|gj〉| < ε (i 6= j), (3.2)

and

|〈gi|O|gi〉 − 〈gj|O|gj〉| < 2ε, (3.3)

for any normalized local operator O and with ε ∼ e−cL
α
. To distinguish ground states

we need to act with some operator supported on Lα sites (called the code distance),

thus any exact ground state degeneracy is broken at order Lα in perturbation theory

which is the origin of the above estimate for ε.

Then let |ψI(2L)〉 = U |i1〉...|is〉 denote the state obtained at scale 2L from ground

states labelled I = {i1, ..., is} (plus product states) at scale L. By definition we

have
∑

x〈ψI(2L)|Hx(2L)|ψI(2L)〉 = Eg(2L) where {Hx(2L)} are the local Hamilto-

nian terms at size 2L and Eg(2L) is the ground state energy at size 2L. Since U is

quasi-local and Hx(2L) is local, the conjugated operators U †Hx(2L)U are also quasi-

local. Hence by local indistinguishability we have 〈i1|...〈is|U †Hx(2L)U |j1〉...|js〉 =

hx(2L)δi1j1 ...δisjs with hx(2L) a c-number up to exponentially small corrections. Hence∑
x〈ψI(2L)|Hx(2L)|ψJ(2L)〉 = Eg(2L)δIJ up to exponentially small corrections and we

have G(L)s ground states at scale 2L.

Lemma 3 (Restriction Lemma) Under weak spectral assumptions, we may restrict

to s ≤ 2d−1.

Proof: As discussed just below, a weak spectral assumption on the low temperature

thermal free energy implies that gapped phases obey the area law up to logarithmic

corrections. Assuming all s = 2d−1+α copies of the state at size L are needed to produce

the state at size 2L (otherwise, choose a smaller s) and that the quasi-local unitary
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is adding entropy, the bound in the entropy lemma will be asymptotically saturated.

Then the entanglement entropy scales as S(R) ∼ Rd−1+α, but this violates the area

law worse than logarithmically when α > 0. When α = 0 a logarithmic violation is

consistent with the entropy lemma. Hence we must have α ≤ 0 as claimed.

If the quasi-local unitary is not adding any entropy, then we have a decoupled

system which can be understood within the layer construction (see §5 just below).

Apply the argument of the previous paragraph to the non-trivial components making

up the layers to reach the same conclusion.

Alternatively, suppose the quasi-local unitary adds no entropy. In this case the

entropy obeys S(2R) = sS(R) and S(R) ∼ slog(R)S(1). Assuming there is some en-

tanglement to begin with, this formula gives an entanglement entropy growing faster

than Rd−1 log(R) for s > 2d−1. In fact, even considering the perverse possibility of the

quasi-local unitary removing entropy, it can only remove an area’s worth of entropy,

so there is a lower bound S(2R) ≥ sS(R) − kRd−1. For s > 2d−1 it may be verified

that the only consistent possibilities are S = 0 or S growing faster than Rd−1 log(R).

Hence as claimed s > 2d−1 implies worse than logarithmic violation of the area law.

4 S(R) ≤ Rd−1 log(R) from spectral assumptions

Following [14] and [17] (see also [13] for an argument for at most logarithmic viola-

tions of the area law with somewhat different spectral assumptions), we can show that

with a weak spectral assumption the area law can be violated at most logarithmically.

We first review Hastings’ original argument bounding ground state entanglement by

thermal mutual information at low temperature and then generalize the argument to a

wider class of physically relevant systems, e.g., perturbed conformal field theories which

flow to massive infrared fixed points and which violate Hastings’ density of states as-

sumption. We also give an explicit argument that the thermal mutual information

bounds the ground state entanglement even when we have many locally indistinguish-

able ground states.

To motivate the assumption, consider a trivial paramagnet on Ld sites. The Hamil-

tonian is just a local magnetic field which favors the spins to align with the field, and

the gap is ∆. The number of excited states at energy E (between E and E + ∆, say)

scales like

D(E) ∼ D0

(
Ld
)E/∆

(E/∆)!
(4.1)

where D0 is some constant. In other words, we can flip E/∆ spins, and these flipped

spins can be on any of the sites, but spin flips are indistinguishable so we must divide

20



by the factorial. In fact, the above formula overestimates D(E) because once a spin is

flipped, we cannot flip it again, so the correct formula is actually

D(E) ∼ D0
1

(E/∆)!
Ld(Ld − 1)(Ld − 2)...(Ld − (E/∆) + 1)︸ ︷︷ ︸

(E/∆) factors

. (4.2)

This formula is bounded by the form in Eq. 4.1, so below we assume that Eq. 4.1

bounds the true spectral density (with some system-size-independent constant ∆).

Now let P denote the ground state projector and let ρ(T ) = e−H/T/Z be the thermal

state of the system. Clearly we have

lim
T→0

ρ(T ) =
P

G
(4.3)

where G = tr(P ) is the ground state degeneracy. We would like to now approximate

the ground state projector by taking a small but non-zero temperature.

We can easily compute the trace distance between ρ(T ) and P/G to be∣∣∣∣PG − ρ(T )

∣∣∣∣
1

=
1

G
− 1

Z(T )
+
Z(T )−G
Z(T )

. (4.4)

We have set the ground state energy equal to zero and then used the fact that Z ≥ G.

We want the difference in trace norm to go to zero like L−q to achieve high overlap in

the thermodynamic limit.

To achieve this, we may set T = ∆
κ log(L)

. Then we write the partition function as

Z = G+
∑
E>0

D(E)e−E/T ≤ G+
∑
E

D0

(
Ld
)E/∆

(E/∆)!
e−κE log(L)/∆. (4.5)

Introducing the variable x = E/∆ we have

Z ≤ G+D0

∞∑
x=1

(Ld−κ)x

x!
= G+D0

(
eL

d−κ − 1
)
. (4.6)

If κ > d then the term in the exponent is going to zero at large L and we have

Z ≤ G+D0L
d−κ, (4.7)

and setting κ = d+ q provides the desired accuracy in trace norm.

We now use the property that the mutual information between any region A and

its complement Ā in such a thermal state obeys [14]

I(A, Ā) ≤ J |∂A|/T (4.8)
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where J is the norm of the local Hamilonian terms. This bound is proven by comparing

the free energy, defined as F (ρ) = tr(ρH) − TS(ρ), of ρAρĀ to the free energy of ρAĀ
and using F (ρAρĀ) ≥ F (ρAĀ) (the thermal state ρAĀ minimizes the free energy). Using

our expression for T we find that the mutual information is bounded by

I ≤ κJ

∆
|∂A| log(L). (4.9)

The mutual information in the thermal state is also close to the mutual information

in the equal weight mixture of ground states as follows from Fannes’ inequality [86,87]

provided q > d. Hence the mutual information of any region A of linear size R in the

equal weight mixture of ground states is bounded by ∼ Rd−1 log(L).

The above arguments also go through if the ground states are only approximately

locally indistinguishable and split by an exponentially small amount.

4.1 Entanglement entropy from mutual information

To compute the actual entropy of the region A in the equal weight mixture we need

a little more work. First, suppose that A is small enough so that the ground states

are still locally indistinguishable with respect to observables supported on A. Recall

we assume locally indistinguishable ground states up to exponential correctons, in the

sense of Eqs. (3.2), (3.3). With these definitions, any finite region of a sufficiently large

system satisfies the criterion of local indistinguishability. Now the state of region A is

ρA = trĀ

(
P

G

)
=

1

G

G∑
a=1

trĀ(|ψa〉〈ψa|) (4.10)

where |ψa〉 are the ground states. By the assumption of local indistinguishability we

have trĀ(|ψa〉〈ψa|) ≈ trĀ(|ψb〉〈ψb|) for all a and b. Thus the sum over a is a sum over

identical terms, so the sum cancels the overall factor of G and we find that the state

of A in the equal weight mixture of ground states is approximately the state of A in

any particular ground state.

What about the state of Ā? We have

ρĀ =
1

G

G∑
a=1

trA(|ψa〉〈ψa|), (4.11)

but now Ā is too large to guarantee local indistinguishability. However, this is now

useful because the states ρĀ,a = trA(|ψa〉〈ψa|) must be orthogonal. Let {Pa, 1−Pa} be

the projective measurement which distinguishes ρĀ,a from all other states ρĀ,b so that

we have tr(PaρĀ,b) = δa,b. It follows from positivity of PaρĀ,bPa that PaρĀ,bPa = ρĀ,aδa,b
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and that (1− Pa)ρĀ,b(1− Pa) = ρĀ,b(1− δa,b). Hence we have ρĀ,aρĀ,b = PaρĀ,aPa(1−
Pa)ρĀ,b(1 − Pa) = 0 as desired. With the assumption of orthogonality plus the above

results for the entropy S(ρA) we have

S(ρĀ) = log(G) + S(ρA). (4.12)

Hence the mutual information I(A, Ā) = S(ρA)+S(ρĀ)−S(ρAĀ) is given by I(A, Ā) =

2S(A), so the entanglement entropy of region A in any ground state is approximately

half the mutual information obtained above.

Above we bounded the entropy of a subregion of size R by Rd−1 logL (recall that

L is the whole system size). To see that the subsystem entropy actually satisfies the

stronger bound Rd−1 logR, we consider a position-dependent temperature. Consider a

temperature that is roughly T0 within the region and decays like 1/x outside the region,

where x is the distance from the center of the region. (Supposing the region in question

is a disk of radius R, a good choice is T (x) = T0
R√

x2+R2 ). The Fannes inequality again

bounds the difference in entropies between Pg and ρT (x) ≡ Z−1 exp
(
−
∑

x
1

T (x)
Hx

)
in

terms of their trace distance, which is Z−1 ∼ exp(+F/T0), where F is the free energy

in the state ρT (x) (with the groundstate energy set to zero). A simple local estimate

for the free energy gives F ∼ Rd exp (−∆/T0) (and not Lde−∆/T0 ). Therefore ρT (x)

can be used to approximate the mutual info between A and its complement in the

groundstate. In particular, we need only choose T0 to be of order ∆/ log(R) to get

close to (within 1/poly(R)) the true ground state, yet the local terms in the mutual

information bound are finite (because the temperature only gets low outside the region

in question).

4.2 Generalized argument for massive deformations of CFTs

Unfortunately, not all systems obey the spectral assumption discussed above. For

example, consider a massive relativistic field φ. Even with the mass gap m, the density

of states at high energies scales like

D(E � m) ∼ exp
(
cT (EL)d/(d+1)

)
, (4.13)

a result which is fixed by scale invariance and thermodynamics at high temperature

(cT is a constant). Since we will consider field theories explicitly in §10, it is important

to understand this case.

Of course, one may object that if a field theory is properly regulated, then perhaps

the scaling of D(E) in the previous section can be recovered from the physics of the

regulator. Perhaps this is so in some cases, but it is a physically irrelevant objection,
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because violations of the area law should have nothing to do microscopic details. In

fact, we can show directly in the continuum that the same argument of the previous

section, even with the CFT scaling of D(E) at high energies, gives at most logarithmic

violation of the area law for gapped field theories. The argument is identical except

that we assume the thermal free energy scales like F = −T log(Z) ∼ Lde−∆/T at low

temperature. This scaling is satisfied by all gapped field theories, for example, despite

the fact that these field theories violate the above spectral assumption above at high

energies. We now give a free field example to demonstrate the argument.

To carry out the argument in the previous section we need to know the density of

states D(E) of a massive free boson or fermion field in d dimensions. Since we will

be especially interested in the limit of low temperatures, where we have a dilute gas

of particles, both types of particles are effectively classical and their statistics become

irrelevant. We focus on the boson case for simplicity.

The density of states is by definition

D(E) =
∑
{nk}

δ(E − E({nk})) (4.14)

where E({nk}) =
∑

k εknk, εk =
√
k2 +m2 is the relativistic dispersion relation, and

nk is the number of particles in mode k. We can easily develop an expression for this

quantity, but in fact what we really need is the partition function. Since the total

density of states can be written as a many-fold convolution (over all k) of each mode’s

density of states and since the partition function is essentially the Laplace transform of

the density of states, we have a simple formula for the partition function as a product

of the partition functions of the individual modes.

That is, we have

Z(T ) =

∫
dED(E)e−E/T =

∏
k

∑
nk

e−εknk/T ≈
T→0

∏
k

(1 + e−εk/T ). (4.15)

Taking the logarithm of both sides we obtain

log(Z(T )) =
∑
k

log(1 + e−εk/T ) ≈ Ld
∫

ddk

(2π)d
e−εk/T . (4.16)

When T � m, the integral over k may be well approximated as∫
ddk

(2π)d
e−εk/T ≈ cde

−m/T (mT )d/2 (4.17)

with cd a dimension dependent constant.
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If we now wish to have the total partition function close to one we must have

Ldcde
−m/T (mT )d/2 ∼ ε� 1. (4.18)

This is easily satisfied if we take

T ∼ m

log(Ld/ε)
, (4.19)

and even if we demand ε ∼ 1/Lq, we can achieve this with only a logarithmically small

T .

More generally, it should be clear that what we require to demonstrate an area law

up to at most logarithmic violations is a low temperature free energy F of the form

F = −T log(G) + Fexcited (4.20)

where Fexcited is extensive and decays as e−∆/T . This suffices to bound the mutual

information. With the same assumptions about the scale of the failure of local indis-

tinguishability, the entanglement entropy can be bounded as well. This formula will

also be useful later when we argue for the area law in §8.

5 Examples

In this section we give numerous examples to flesh out the formalism. We also discuss

in more detail how to construct the quasi-local unitary which maps size L to size 2L.

5.1 Trivial insulators, any d

Any trivial insulator with an energy gap ∆ that is independent of system size is an

s = 0 RG fixed point (even if it is protected by a symmetry) because we can construct a

quasi-local unitary transformation (which may not commute with the symmetry) which

produces the ground state from a product state9. This is because by the definition of

a trivial insulator there is a path H(η) in the space of Hamiltonians such that H(0)

has a product ground state and H(1) is the Hamiltonian of the trivial insulator. With

this path in Hamiltonian space we can construct the required quasi-local unitary.

Define the quasi-adiabatic generator

− iK(η) =

∫ ∞
−∞

dtF (t)eiH(η)t∂ηH(η)e−iH(η)t (5.1)

9It is worth mentioning that the ground state of quantum chromodynamics (QCD) in the context

of Hamiltonian lattice gauge theory, say, is likely an s = 0 fixed point.
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with F a filter function [88, 89]. F (t) is a fast-decaying, odd function of t with the

following properties. First, its Fourier transform F̃ satisfies F̃ (ω) = − 1
ω

for |ω| ≥ ∆

and second, F̃ (ω = 0) = 0. K(η) is designed to do the following job: when acting on the

ground state |ψ(η)〉 of H(η) it outputs i∂η|ψ(η)〉 as defined by first order perturbation

theory. The assumption of a finite gap is necessary to keep K(η) quasi-local. Once

we know that K(η) is quasi-local, then we know that it generates a quasi-local unitary

that maps the product state to the trivial insulator ground state. The quasi-locality

of K(η) also implies that all trivial insulators obey an area law [26].

To get a sense of what K(η) is doing, consider a family of gapped Hamiltonians

defined on L spins of the form

H(θ) =
L∑
x=1

∆

2
(Zx cos(θ) +Xx sin(θ)) . (5.2)

Observe thatH(θ) is gapped with gap ∆ for all θ. We could then appeal to the adiabatic

theorem to argue that if we vary θ slowly the time evolved state will approximately

follow the instantaneous ground state. However, even with a finite gap there will

typically be some small probability p of error, e.g., a transition into a local excited

state. Since the probability of error is independent between sites, it follows that the

total probability to remain in the ground state of the whole system is (1− p)L. Even if

p is quite small, for a sufficiently large L there will always be an excitation somewhere

in the system and we will no longer be in the global ground state.

There are three responses to this fact. The first response is to say that we just don’t

care if the system has a (roughly) exponentially small density of excitations, since this is

not expected to modify physical properties except perhaps at exponentially long times,

etc. And such a nearly exponential scaling is achievable since the probability p of error

can typically be made nearly exponentially small in the gap times the timescale, τ , of

the adiabatic evolution: p ∼ e−(∆τ)1−δ . The second response is to say that if we really

want close to zero excitations, we need only make p ∼ 1/Lq for some sufficiently large

q. Assuming p ∼ e−(∆τ)1−δ we may take τ ∼ log1+δ(L), an evolution time growing very

modestly with system size. The third response reminds us that the above concern is

silly: there is another Hamiltonian H̆(θ) which is a sum of single spin operators which

generates a time evolution that exactly maps the ground state of H(0) to the ground

state of H(θ). Identifying θ = η, the quasi-adiabatic generator K(θ) is nothing but an

explicit construction of a Hamiltonian like H̆(θ) which generates a time evolution that

exactly maps ground state to ground state. (For the example (5.2), the quasi-adiabatic

generator (5.1) evaluates to K(η) =
∑

x Yx, which clearly generates a rotation from Z

to X without incident.)

Returning to the general case of a gapped local Hamiltonian, we still have the first
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two responses above and they may be sufficient for many purposes. However, it is now

less obvious that the third response remains valid, that there exists a local Hamiltonian

like H̆(η) which generates a time evolution that maps ground states to ground states.

Remarkably, the quasi-adiabatic generator K(η) can still be defined and, at the cost of

a mild weakening of strict locality to quasi-locality, generates a time evolution which

exactly maps ground states to ground states. Note that this doesn’t preclude the

existence of a strictly local Hamiltonian which does the same job, but a quasi-local

generator like K(η) is sufficient for almost all purposes.

5.2 Chiral insulators, d = 2

Examples here include p+ ip superconductors, integer quantum Hall states [90,91], the

E8 state of bosons [92], and various kinds of chiral topological states such as fractional

quantum Hall states [44,45]. The distinguishing feature of this class is that any system

in it, when placed on a manifold with boundary, supports chiral edge modes which

cannot be gapped [93].

On general grounds, we can argue that such insulators are s = 1 fixed points. For

example, in the context of a coupled island construction it is possible to remove some

faction of the islands and place them into product states provided the rest of the islands

remain coherent. We cannot do this simultaneously for all islands, because the system

is not an s = 0 fixed point, but it is possible remove a finite fraction of the islands.

Later we will give a very general field theory argument for s = 1 which applies to

various field theoretic representations of these phases.

In the remainder of this sub-section we would like to give another construction for

chiral insulators using band engineering in a free fermion limit. For concreteness, we

consider the case of integer quantum Hall states in the guise of Chern insulators. A

simple lattice model for a Chern insulator [94] is obtained by taking a square lattice

with two orbitals cra per site r = (x, y) and Hamiltonian H =
∑

k c
†
khkck (cka =

L−1
∑

r e
ikrcra) where

hk = tAB (sin(kx)X + sin(ky)Y ) + (m+ tAB (cos kx + cos ky))Z. (5.3)

If 0 < m < 2tAB then at half-filling this system is a gapped Chern insulator with Chern

number C = 1.

Introduce a Q = (π, π) perturbation which doubles the unit cell. The perturbation

has the form ∆1H =
∑

r V (−1)x+yc†rcr. The resulting k space Hamiltonian is thus

h̃k =

(
hk V

V hk+Q

)
. (5.4)
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We then obtain the band structure for all V and find that up to V = 1 the bulk gap

remains open. At V = .8 the two filled bands below the gap are themselves separated

by a gap with the band nearer the chemical potential carrying C = 1 and with the

other band carrying C = 0. Having achieved a non-trivial separation of the original

Chern band into a non-trivial band and a trivial band, we may now add additional

perturbations to manipulate the trivial band. In fact, we may deform the trivial C = 0

band into a perfectly flat perfectly localized band which forms an independent trivial

insulator supported on L2/2 sites.

The specific perturbations which accomplish this are

∆2H =
1

2

∑
r∈A

tAA
(
c†r(Z − iX)cr+x−y + c†r(Z − iY )cr+x+y + h.c.

)
+
∑
r∈B

uc†rZcr (5.5)

where A/B refer to the two sites of the enlarged (by the V term) unit cell. In momen-

tum space, this is ∆2H =
∑

k c
†
k∆2h̃kck with

∆2h̃k =

(
tAA (2 cos(kx) cos(ky)Z + sin(kx − ky)X + sin(kx + ky)Y ) 0

0 uZ

)
The tAA term is a hopping term within the A-sublattice of the same form as the

original hopping; to preserve the gap, we must turn tAA on as we turn off the hopping

between sublattices tAB. The u term freezes the spins of the B-site particles. A specific

protocol for varying parameters between (5.4) and a Hamiltonian where the B-sites are

decoupled and host a completely trivial insulator, without closing any gaps, is given in

Table 1.

This construction can be performed two times to go from L2 to L2/2 to L2/4 sites

supporting the Chern insulator. Furthermore, since all manipulations preserved the

bulk gap, the quasi-local generator K(η) defined above generates a quasi-local unitary

that implements the coarse-graining. Hence such Chern insulators are s = 1 fixed

points. This also implies that they obey an area law.

Given a quasi-local evolution generated by K implementing an s source RG trans-

formation, the entropy S(2R) of a region of linear size 2R in the new 2L linear size

system obeys

S(2R) ≤ sS(R) + kRd−1 (5.6)

where S(R) is the entropy of the same region type at size R in the linear size L system

and k is a number dependent on the details of K. With s = 1 the bound (5.6) is easily

iterated to obtain

S(2log(R)) ≤
log(R)∑
m=1

k

(
2log(R)

2log(R)−m

)d−1

≤ k′(2log(R))d−1 = k′Rd−1. (5.7)
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tAB −V u −tAA description of step

1 0 0 0 Original bandstructure.

1 .8 0 0 Turn up (π, π) potential V , double unit cell.

1 .8 1 0 Turn on B-site field u.

1 .8 1 .4 Turn on AA hopping. The sign is important.

1 1.3 1 .4 Turn up (π, π) potential.

.5 1.3 1 .4 Turn down AB hopping.

.5 1.3 1 .6 Turn up AA hopping.

.3 1.3 1 .6 Turn down AB hopping.

.3 1 1 .6 Turn down (π, π) potential.

.3 1 1 .8 Turn up AA hopping.

0 1 1 .8 Turn off AB hopping.

0 1 1 1 Turn up AB hopping.

0 1 5 1 Crank up B-site field with impunity.

0 0 5 1 Turn off V →
B-site bands

become flat,

decouple.

A-sites have

original bandstructure,

rotated by π/4.

Table 1: The details of the Chern-band-folding protocol. Parameters are in units

of m. We checked that the gap stays open along a linear interpolation between each

of these these checkpoints, and (therefore) that the Chern numbers of the four bands

remain (0,−1, 1, 0) from top to bottom. The tricky part is gradually turning off tAB
while turning on tAA. A movie of the resulting band-folding is available upon request.

Hence the entropy is consistent with the area law.

One can also extend the argument to phases with chiral edge states and anyon

excitations. In this context it is useful to note that discrete gauge theories in d = 2

have exact MERA representations and hence are s = 1 fixed points [95–97], so there

is no obstruction to bringing anyons into the picture. Using a similar gauge theory

picture, we can exhibit wavefunctions for fractional quantum Hall states by projecting

copies of free fermion chiral states onto a gauge invariant subspace [98]. Adiabatically

deforming the state of the partons from size L to size 2L produces a short-ranged

quantum Hall state which adiabatically deforms as well, and it is quite plausible that

such a state is the ground state of a local Hamiltonian. The analysis of discrete gauge

theories can also be extended to higher dimensions to exhibit exact MERAs for a

variety of p-form gauge theories.

Before ending this subsection, we give one example with chiral edge states and
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topological order analogous to the model in [92]. Consider spinless fermions fr hopping

on some two dimensional lattice with mean-field-like pairing Hamiltonian

Hf =
∑
rr′

wrr′f
†
rfr′ +

∑
rr′

∆rr′frfr′ . (5.8)

The couplings in Hf are chosen so that the ground state of Hf is a ν = 1 p + ip

superconductor. Now introduce spins σzrr′ living on the links, and for every term in

the mean-field fermion Hamiltonian choose a path γrr′ connecting r and r′. Defining

W [γrr′ ] =
∏

`∈γrr′
σz` , we form the Hamiltonian

Hf+Z2 =
∑
rr′

wrr′f
†
rW [γrr′ ]fr′ +

∑
rr′

∆rr′frW [γrr′ ]fr′

−K
∑
p

∏
`∈p

σz` − U
∑
r

(−1)f
†
r fr
∏
`|r∈`

σx` . (5.9)

The Hamiltonian Hf+Z2 describes the f fermions coupled to a Z2 gauge theory in the

tensionless limit.

A π-flux defect where
∏

`∈p σ
z
` = −1 supports a single Majorana zero mode and this

system has Ising topological order [99]. Furthermore, because the Hamiltonian Hf+Z2

is solvable we can exhibit a quasi-local unitary mapping size L to size 2L. We use

a combination of the free fermion unitary which implements the mapping for the fs

and the Z2 circuit which implements the mapping for the spin degrees of freedom to

produce a mapping for the total system. Thus Ising topological order is (as expected)

an s = 1 fixed point.

5.3 Layer construction

A class of examples of s source RG fixed points for s > 1 is provided by the layer

construction. Consider an s0 source RG fixed point in d0 dimensions, the “layer”, and

stack Ld−d0 copies of these layers, which are size Ld0 objects, to form a torus of Ld

sites. We may also add local perturbations and couplings between the layers provided

the individual layers remain incoherent with each other. This layered system is an

s = s02d−d0 RG fixed point in d dimensions. By the restriction lemma s0 ≤ 2d0−1, so

the layered system also obeys the restriction lemma.

As a concrete example, consider a d = 3 system composed of L layers of integer

quantum Hall states. Such a system, when cut open along a boundary piercing through

the layers, supports L chiral edge states that cannot be gapped. Furthermore, since no

individual integer quantum Hall state can be produced from a product state using a
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quasi-local unitary, it follows that we need s = 2 copies of the L layer system to make

a 2L layer system using a quasi-local unitary.

Note that in the context of the layer construction, some cancellation may arise.

For example, it may be the case that multiple layers of a lower dimensional state can

be deformed into a product state even if a single layer cannot (as with the notion of

inverse states in §3.1). In such a case, the effective value of s will be reduced. In other

words, we do not require the full s copies since multiple layers can be produced from

product states.

There is one interesting line of thought suggested by the layer construction. Observe

that as s increases we come closer to violating the area law. However, in the layer

construction having large s requires stacking low dimensional objects. This intuition is

precisely the same as for Fermi liquid entanglement [100]. Following for a moment this

gapless line of thought, ordinary CFTs, being like s = 1 fixed points, are hopelessly far

from defeating the area law. We can do better by bundling lower dimensional gapless

systems, and when we bundle gapless one dimensional systems we finally manage to

violate the area law.

To obtain a gapped state, we want to stack lower dimensional topological objects.

If we could stack one dimensional topological objects with s = 1, then we would

obtain a d dimensional topological system which violated the area law. However,

such one dimensional s = 1 gapped states do not exist (see §8). Of course, the layered

construction is an amusing toy, but it is too trivial to cover the interesting examples (like

Haah’s code). We speculate that some local generalization of the layer construction, a

“bundle” of layers, similar to the idea of a Fermi surface’s worth of 1 + 1 CFTs, would

provide a more robust framework in which to understand the area law.

6 Topological quantum liquids

In this section we make good on our promise to define “conventional” gapped phases.

We call our proposal “topological quantum liquids” since they have the have the ability

to “flow” and take the local “shape” of the system. We prove that all topological

quantum liquids obey the area law and have s ≤ 1. We conjecture that all systems

with s ≤ 1 are topological quantum liquids. Our definition of a topological quantum

liquid is strong, so proving that s ≤ 1 implies liquidity requires some work establishing

local deformability from the global ability to map L to 2L.

A topological quantum liquid is, informally, a gapped (topological) quantum phase

of matter which is insensitive to the local details of the system (liquid). Continuum

field theories with a mass gap, by their very definition, are topological quantum liquids.
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This is because in order for a continuum limit to exist, the microscopic details of the

space must be irrelevant. A reason for singling out topological quantum liquids is that

they represent, almost exclusively, the type of gapped states encountered in Nature

so far. Indeed, all experimental realizations of gapped phases are, to the best of the

authors’ knowledge, topological quantum liquids, or layers thereof. These realizations

include most prominently all integer and fractional quantum Hall states.

An example of a gapped state which is not a topological quantum liquid is Haah’s

code. This interesting Hamiltonian has the property that the ground state space man-

ifold depends sensitively on the precise number of sites in the lattice. This is not to

say that Haah’s code is uninteresting, only that it is not liquid-like. Indeed, it displays

features much more reminiscent of a glass. Following [101], we might call such a phase

a topological quantum glass. We do want to imply that the dichotomy between topolog-

ical quantum liquids and topological quantum glasses is exhaustive. At the very least,

the layer construction demonstrates that we may have layers of topological quantum

liquids which do not form a higher dimensional topological quantum liquid and have

crystalline as opposed to glassy features.

The intuitive properties of topological quantum liquids include a ground state man-

ifold that depends only on global features of the system as well as the ability to relax

into thermal equilibrium on a reasonable timescale. We may formalize these criteria

by saying that a topological quantum liquid has the property that the shape of the

underlying geometry may be changed without closing the gap. We define a topological

quantum liquid as a gapped phase of matter with the property that any ground state

on a manifold M may be deformed into a ground state on a manifold M ′ without

closing the gap provided there is a homeomorphism from M to M ′. As a technical

point, M and M ′ should also support Riemannian metrics such that the deformation

from M to M ′ is slowly varying compared to the correlation length ξ.

In the discrete setting, we demand that for any two graphs M̂ and M̂ ′ which differ

only locally, there exists a gapped Hamiltonian path mapping ground states of the

TQL on M̂ to ground states of the same TQL on M̂ ′. This gapped Hamiltonian path

may be defined on a third graph M̂ ′′ having the property that both M̂ and M̂ ′ may be

obtained from M̂ ′′ by locally deleting or identifying edges and vertices. Equivalently,

we may imagine that both M̂ and M̂ ′ form locally equivalent triangulations of some

manifold M .

To give a few examples, in the continuous context the two manifolds M and M ′

could have different sizes. In the discrete setting, M̂ could be a torus with Ld sites

while M̂ ′ could be a torus with (L + 1)Ld−1 sites, i.e. having one extra layer of sites.

Topological quantum liquids have the property that any ground state on one such

manifold or graph can be deformed into a ground state on the other manifold or graph
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using a quasi-local unitary without closing the gap.

Theorem 1 (TQL structure theorem) All topological quantum liquids have s ≤ 1.

Proof: (trivial) Let M̂ be an isotropic d-torus of length L and let M̂ ′ be an isotropic d-

torus of length 2L. Then M̂ and M̂ ′ are locally equivalent. Indeed, we may take M̂ ′′ =

M̂ ′ so that M̂ is obtained by identifying every 2d sites into one site. By assumption

there exists a gapped path connecting ground states on M̂ to ground states on M̂ ′.

This is precisely the definition of an s = 1 fixed point. s = 0 fixed points are also

allowed.

As a trivial consequence of the structure theorem, all topological quantum liquids

obey the area law and have system-size-independent ground state degeneracy. There

is one subtlety, however. System size independent ground state degeneracy is not,

by itself, enough to guarantee s ≤ 1. Indeed, layers of s = 1, G = 1 states are

not topological quantum liquids (for example, we cannot in general add layers with

a quasi-local unitary), but they continue to have G = 1. However, it does seem that

system-size-independent G plus some measure of isotropy is often sufficient to give a

topological quantum liquid.

This section may be summarized with the following brief statement. If size L and

size 2L are in the same phase (meaning connected by a quasi-local unitary) and if

d > 1, then the phase obeys the area law.

6.1 Local stability for s = 1 fixed points

Here we sketch an argument that gapped s = 1 fixed points are stable to local defor-

mations of the space. This is of course plausible since the ground state degeneracy is

independent of system size. It is obvious for s = 0 fixed points. Local gapped quantum

field theories also boast this kind of local stability; this follows because local changes

in the geometry couple to a local operator, the stress tensor, which is short-range cor-

related (and in fact identically zero in the topological limit). The motivation for this

sketch is simple: since the definition of a topological quantum liquid is naively quite

strong, it is helpful to show that local deformability follows from simpler assumptions.

What we are after is a spatially varying Hamiltonian Hinterpolate which, given a local

region A, interpolates between HL far away from A and H2L deep inside A. Let H(η)

be a gapped path between HL at η = 0 and H2L at η = 1. Decompose H(η) into local

terms as

H(η) =
∑
x

Hx(η), (6.1)
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and then construct Hinterpolate as

Hinterpolate =
∑
x

Hx(ηx), (6.2)

where ηx is a slowly varying function that asymptotes to zero far from A and to one

deep inside A. Since both size L and size 2L are in the same phase, since the phase is

stable, and since the perturbation is slowly varying, it must be that Hinterpolate is also

gapped. We will give a more detailed argument for this conclusion in §8.

Combined with the ability to rearrange local regions without closing the gap (see

the discussion of [Micro-insensitivity] in §3.1), the ability to insert and remove degrees

of freedom strongly suggests that the phase possesses local deformability. Indeed, given

any two homogeneous Hamiltonians H1 and H2 connected by an adiabatic path H(η),

we should be able to construct a gapped interpolating Hamiltonian which asymptotes

to H1 or H2 in different regions. Thus adiabatic deformability in time implies adiabatic

deformability in space (but not vice versa: there are states with topological order but

no gapless edge modes) [102], and the phase appears to be locally stable. Hence our

original definition of a topological quantum liquid is apparently essentially equivalent

to having s ≤ 1.

7 Generalization of the s source framework

In this section we generalize the s source framework to effectively allow fractional s.

The data defining a generalized s source fixed point are as follows. We have a label

set Λ whose elements label distinct gapped phases which transform into each other

under the RG. We also have an RG rule which specifies that a type i phase can be

obtained from si1 copies of a type 1 phase plus si2 copies of a type 2 phase plus and

so on. As a technical assumption, we assume that the total number of types of phases

over all scales involved in producing a given phase at a given scale is bounded by a

system-size-independent constant. We also assume that the quasi-local unitary at each

RG step always adds some entropy (so the entropy recursion relation determines the

asymptotic entropy instead of simply bounding it). We believe these assumption can

be relaxed, but they make the arguments much simpler, so we leave their relaxation

for future work.

Definition 2 (Generalized s source RG fixed point) A d dimensional generalized

s source RG fixed point is a phase, denoted i, with the property that a ground state on

(2L)d sites can be constructed from a set of ground states on Ld sites using a quasi-local

unitary U . We write |ψi(2L)〉 = U
(∏

j |ψj(L)〉sij
)

. Unless otherwise noted, we assume

that s represents the smallest set of states for which the construction is possible.
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What follows are generalized entropy and ground state degeneracy lemmas.

Lemma 4 (Generalized Entropy Lemma) The entanglement entropy Si of a type

i phase obeys Si(2R) ≤
∑

j sijSj(R) + kRd−1 where k depends on the details of the

quasi-local unitary.

Lemma 5 (Generalized Ground State Degeneracy Lemma) The ground state

degeneracy Gi(L) of a type i phase on a d-torus of linear size L obeys the recursion

relation Gi(2L) =
∏

j Gj(L)sij .

Lemma 6 (Generalized Restriction Lemma) For each type i, we must have
∑

j sij ≤
2d−1. In particular, only a finite number of the sij can be non-zero even if the index

set is infinite.

Proof: The argument is identical to the case of the single type theory. Roughly speak-

ing, if we are really using more than 2d−1 copies, then the entropy must violate the

area law worse than logarithmically. This contradicts the bound from thermodynamics

in §4.

7.1 Entropy scaling in generalized s source fixed points

Let us characterize the set of phases that can violate the area law. Let Y0 be the set

of phases obeying the area law and let Ylog be the set of phases violating the area law

logarithmically. We can imagine other types of violation, weaker than logarithmic,

which could also arise in the generalized s source framework. Let Yf denote the set

of phases which violate the area law like S(R) ∼ Rd−1f(R). We must have k1 ≤ f ≤
k2 log(R).

Assume that the recursion relation in the entropy lemma is saturated (this being

the worst case for the growth of S(R)). Then the entropy at size R = 2log(R) scales like

S(2log(R)) ∼
log(R)∑
`=0

(
R

2`

)d−1

s`k (7.1)

where s is a matrix and k is some vector of entropies added by the local unitary. The

fastest growth of entropy occurs if

s` = λ`ŝλ + ... (7.2)
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or if this is obeyed after taking some number of RG steps as one. Then the entropy is

given by

S(R) ∼ Rd−1ŝλk
∑
`

(
λ

2d−1

)`
∼


Rd−1, λ < 2d−1

Rd−1 log(R), λ = 2d−1

Rd−1+α, λ = 2d−1+α

. (7.3)

So long as λ < 2d−1 the area law is obeyed.

Next we analyze the ground state degeneracy. Taking logarithms of the terms in

the ground state degeneracy lemma gives us

log(Gi(2L)) =
∑
j

sij log(Gj(L)). (7.4)

Thus the logarithm of the ground state degeneracy obeys a very similar recursion

relation to the entanglement entropy. With the same assumptions on s, we find

log(Gi(L)) ∼ slog(L) log(G(2)) (7.5)

where logG(2) denotes the ground state degeneracy of all types on some fixed small

system size in the ideal limit of no ground state mixing.

Two cases are relevant. If ŝλ log(G(2)) 6= 0, that is if some state with non-trivial

ground state degeneracy is participating in the asymptotics controlled by ŝλ and λ,

then the ground state degeneracy grows like λlog(R). Thus if λ = 2d−1, so that the area

law is violated, then the number of ground states must also grow like logG ∼ Ld−1 as

claimed.

If no phases with non-trivial ground state degeneracy participates in the asymp-

totics, then at large scales all source terms have no ground state degeneracy and hence

obey the area law (by the weak area law). The generalized entropy lemma with all

sources obeying the area law is then only consistent with an area law for the state at

larger scales.

7.2 Example: Haah’s code

Within the layered construction we can construct various examples which make use of

the generalized s source framework. As a non-trivial example, Haah has shown that

his code is a generalized s source RG fixed with Λ = {1, 2} and source rules s11 = 1,

s12 = 1, s21 = 0, s22 = 2 [67,68].

A simple calculation then gives

s` =

(
1 2` − 1

0 2`

)
. (7.6)
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s` grows at large ` like λ`ŝλ with λ = 2 and

ŝλ =

(
0 1

0 1

)
. (7.7)

Hence both phases have roughly log(G) ∼ 2` = L on a size L = 2` system.

Since Haah’s code is a stabilizer code with locally indistinguishable ground states,

the entanglement entropy in any ground state can be computed exactly, see e.g., the

discussion in [103] for the toric code. The general formula for the entropy is S(A) =

qubits in A − stabilizers in A. Haah’s code is defined on a cubic lattice with two

qubits per site and two stabilizers per cube [67]. In a cube of R3 sites there are 2R3

qubits and 2(R − 1)3 stabilizers, so the entanglement entropy of the cube is S(R) =

2R3 − 2(R− 1)3 = 6R2 − 6R + 2. This formula obeys the area law but has a peculiar

subleading term proportional to R.

By contrast, the entanglement entropy of Z2 gauge theory in d = 3, which is also a

stabilizer code, has no such term. Z2 gauge theory in d = 3 dimensions can be defined

on a cubic lattice with one qubit per link and stabilizers for each vertex (Gauss’ law)

and face of the lattice (flux constraint). Given a cube with R links on a side, the number

of qubits is 3R(R + 1)2, the number of vertex stabilizers is (R − 1)3, and the number

of plaquette stabilizers is 3R3 + 3R2 − R3 (the last subtraction accounts for the fact

that only 5 of the 6 plaquette stabilizers for each elementary cube are independent).

Hence the entanglement entropy is S(R) = 6R2 + 1. To understand this formula, note

that the number of surface sites is 6R2 + 2, so the entropy is the number of surface

sites minus one. In gauge theory language, each surface site gives one bit of freedom

(electric flux or no electric flux entering the site from outside) and there is one overall

constraint of total Z2 charge neutrality.

8 Towards a general area law

In this section we discuss the structure of states that could, within our RG framework,

violate the area law, and we give a physical argument that such states do not exist.

The tools developed here, based on reconstructing states from local data, also provide

independent arguments for the weak area law and for the stronger claim that phases

with ground state degeneracy scaling slower than log(G) ∼ Ld−1 obey the area law.

Thus we provide an independent check on the results from the s source RG framework.

For convenience in this section we will typically assume that the phases in question

have no protected edge states. This assumption entails no loss of generality as regards

the area law. Intuitively, this is because edge states can only contribute area law
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entropy. Alternatively, the general existence of an edge inverse (§3.1) implies that for

every phase which has protected edge states and violates the area law, there is another

phase which violates the area law and has no protected states. Hence ruling out area

law violations in all phases with no protected edge states rules out area law violations

in phases with protected edge states. Except where explicitly stated otherwise, we

assume the “accidental” edge states which arise in the constructions below can be

removed with local perturbations.

Our goal is to establish a bound of the form S(ρA) ≤ O(|∂A|) + log(G) for an

appropriate ground state degeneracy G10. We do this by constructing a local Gibbs

state (exponential of a local “effective Hamiltonian”) which is locally consistent with

the state ρA and which upper bounds the entropy of ρA. The quickest route through the

argument is to jump to the main argument in §8.2 referring back to the preliminaries

in §8.1 as needed.

Although the arguments in this section are powerful by themselves, we still need

the s source framework to argue for the general area law. Furthermore, the s-source

RG also provides a powerful method to argue for the existence of frustration free

Hamiltonians (see the MERA discussion in §9). Frustration free Hamiltonians are an

important special case in our analysis, and we expect such Hamiltonians to exist on

general RG grounds provided we are deep within the phase where spatial correlations

are minimized. We also use ideas from §4, in particular the free energy estimate (4.20),

in the arguments below.

8.1 Preliminaries

Several tools are needed to proceed with the arguments. First we discuss reconstruction

of global states from local data. Then we discuss the idea of a local gap and the stability

of spatially varying local Hamiltonians. Finally, we describe the idea of a diverging

local gap.

Local reconstruction

It is useful to consider trying to reconstruct the ground states from local data (for

important early work in this direction see [83, 104–106]). This reconstruction is more

feasible than one might at first imagine. For example, given access to the states of all

local d-disks of sufficiently large (but still microscopic) size, [82, 83] have shown that

the maximum entropy global state approximately consistent with this local data is

close to the ground state projector. In other words, one can reconstruct global ground

10Assuming the bound is saturated, as is plausible, states with unusual ground state degeneracy

will have unusual terms in their entanglement entropy, e.g., a linear in L term in d = 3 for G ∼ ecL.
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states from local data (even in topological phases). Here we consider a variant of this

situation: the problem of reconstructing the state of a subsystem A of size R from local

data.

Suppose we have a set of local operators {Oi} supported in a region A. We want to

find the maximum entropy state which gives expectation values for the Oi that agree

with expectations taken in the true state, ρA, of A. In other words, among all possible

states σA such that tr(σAOi) = tr(ρAOi) for all i, we want the state that maximizes the

entropy S(σA). This problem has a known solution. Construct the variational function

f(σ, {λi}) given by

f(σ, {λi}) = S(σ) +
∑
i

λi(tr(σOi)− tr(ρAOi)) + λ(tr(σ)− 1). (8.1)

Then maximize f with respect to σ and the λs. The resulting maximum entropy state

has the form

σ? =
exp (−

∑
i λ

?
iOi)

Z
, (8.2)

and hence is a local Gibbs state.

Suppose the operators Oi form a complete set of observables for a set of small regions

{Aj} such that ∪jAj = A. Then we say σ? is a maximal entropy reconstruction of ρA
from local data. Denoting the disk of radius r centered at x0 by D(r, x0), a typical

choice for the Aj might be all regions of the form A∩D(r, x0) for all x0 and some fixed

small r. The linear size, R, of A will be much larger than r in our constructions.

Why is this formalism useful? Note that ρA is locally consistent with itself, so it is

a candidate for the maximum entropy state and

S(ρA) ≤ S(σ?). (8.3)

Furthermore, σ? is by construction a local Gibbs state, so it is easier to manipulate

than ρA.

Localized excitations

Let σA be the maximum entropy state consistent with local data on patches of

linear size r � R. Write

σA = e−H̃A (8.4)

and define HA to be the Hamiltonian H restricted to terms having support just in A.

We have just shown that H̃A is a sum of local operators supported on patches of linear

size r. But what does H̃A look like? It turns out that σA is close to being a ground

state of HA as we now show.

The Hamiltonian of the whole system is H =
∑

xHx where, without loss of gener-

ality, we assume each term Hx ≥ 0. Let the ground state energy of HA be Eg,A and
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let the ground state projector be Pg,A. To control the energy of σA we first bound the

expectation value of HA in the state ρA as follows [13].

Separate the Hamiltonian into three pieces, and H = HA + HĀ + H∂A, where the

terms act within A, Ā, and at the boundary of A respectively. We use the positivity

of H∂A to bound 〈HA +HĀ〉,

〈HA +HĀ〉g ≤ 〈HA +HĀ +H∂A〉g = Eg, (8.5)

where we have taken expectation values in a global ground state |g〉. Now we bound

the ground state energy using the variational principle and the trial state ρfactor =
Pg,A

tr(Pg,A)
trA(|g〉〈g|). We obtain

〈HA+HĀ+H∂A〉g ≤ tr(ρfactor(HA+HĀ+H∂A)) ≤ Eg,A+〈HĀ〉g+max
x∈∂A

(‖Hx‖)|∂A|. (8.6)

Combined with the first inequality we have for 〈HA〉g = tr(ρAHA) = 〈HA〉ρA the result

Eg,A ≤ 〈HA〉ρA ≤ Eg,A + J∂|∂A| (8.7)

where J∂ = maxx∈∂A(‖Hx‖).

Because the correct expectation values of the terms in HA are included in the local

data defining σA (assuming r is bigger than the range of the terms Hx), we also have

the bound

Eg,A ≤ 〈HA〉σA ≤ Eg,A + J∂|∂A|. (8.8)

Since H̃A a sum of local operators and since the average excitation energy of σA is

non-extensive, it must be that the entropy coming from excitations is non-extensive

and scales like the average excitation energy.

For example, if we restrict the local data defining σA to just the terms Hx contained

in HA, then H̃A has the form

H̃A =
∑
x

gxHx (8.9)

where we have renamed the Lagrange multipliers λi → gx. The local effective temper-

ature, 1/gx, must go to zero away from ∂A in order for the excitation energy of HA to

be proportional to |∂A|. Equivalently, σA reproduces ground state correlations of HA

away from ∂A, so the local temperature must go to zero or equivalently the local gap

must diverge away from ∂A.

Local gap and local thermodynamics

To justify the notion of a local gap, we first appeal to the stability of the phase.

It is trivially true that H and gH give the same ground states for all g > 0. Now

consider the Hamiltonian H[g] =
∑

x gxHx. We expect that the stability of the phase
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implies that the couplings in H can be modulated slowly in space without closing the

gap. Suppose the variation in gx is bounded and small. Then since H[g] − H[1] is a

sum of bounded local operators, the gap must be preserved if the perturbation is small

enough since the phase is stable. To build up larger changes in gx we can consider as

a basic building block bump configurations of gx. These bump configurations, gx =

g0 +(g1−g0)χx(A), are smooth functions gx which approach g0 outside region A and g1

inside region A. If the region A is sufficiently large, then inside A the Hamiltonian is

effectively indistinguishable from g1H[1]. Since H[1] and g1H[1] trivially have the same

ground state, the difference in the ground states of H[1] and H[g0 + (g1 − g0)χx(A)] is

actually localized near ∂A.

Finally, since the ground state properties deep inside A are indistinguishable from

those far outside of A, the stability of the uniform Hamiltonian implies that we may

make further changes deep inside A. Hence we may repeat the argument by adding

another bump function localized deep inside A which further increases gx. To argue

for stability to arbitrary smooth variations gx, we first approximate gx by collection of

bump functions, then we use the stability of the bump function Hamiltonian itself to

smooth out the bump functions and produce gx. This is possible because the difference

between gx and its bump function approximation is a sum of bounded local operators

and hence obeys the criterion of stability for sufficiently slow variations.

To be quantitative suppose we have some disk B(l, x0) of radius l centered at x0

where the Hamiltonian locally looks like

H =
∑
x∈B

gx0Hx + (∂g)x0(x− x0)Hx + ..., (8.10)

where ... includes terms outside B and higher derivative corrections. These local terms

are smoothly patched together to form the entire Hamiltonian, and as long as the local

gap is larger than the perturbation, the phase should be stable. If ∆ is the bulk gap

when gx = 1 then the local gap is roughly g(x0)∆, and the strength of the perturbation,

assuming the norm of the Hamiltonian terms is of the same order as the gap, should

be roughly ξ(∂g)x0∆ where ξ is the correlation length. Hence stability only requires

that g vary slowly,

ξ(∂g)x � gx. (8.11)

Stability for all slowly varying gx and hence the persistence of short-range correlations

justifies the notion of a local gap.

Infinite bulk gap

We now make quantitative the idea that the local gap must diverge away from ∂A

sufficiently fast to bound the entropy of excitations by |∂A|. This property of [Infinite
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Bulk Gap] implies that entropies may be bounded by the logarithm of the relevant

ground state degeneracy plus a term of order |∂A|.

Call ςA the maximum entropy state consistent just with the expectation values of

the local terms in HA. This state has the form

ςA =
exp

(
−
∑

x∈A gxHx

)
Zς

(8.12)

and satisfies the inequality S(ςA) ≥ S(σA) (because ς satisfies fewer constraints than

σ). Since the average excitation energy of this state is proportional to |∂A|, local

thermodynamics implies that the entropy of excitations is similarly bounded.

The condition for stability (8.11) when interpreted as a statement about local tem-

peratures is the condition for local thermodynamics to be valid,

ξ
|∂T |
T
� 1, (8.13)

where T = T (x) ∼ 1/gx is a position-dependent temperature. Given the validity of

local thermodynamics, we can estimate the free energy of ςA using the formula (4.20),

F = −T log(G) + Fexcited. (8.14)

In particular, we assumed Fexcited was extensive, so the excited state free energy per

unit volume goes like ∼ e−∆/T where ∆ and T are the local gap and temperature. Of

course, there is an ambiguity in splitting the ratio ∆/T into a gap and a temperature;

all that really matters is the ratio.

Suppose (8.11) is not obeyed by gx. Then gx increases at least exponentially fast

away from ∂A and clearly the entropy of excitations will be bounded by |∂A|. Thus

suppose gx does obey (8.11) so that local thermodynamics is applicable. The free

energy of excitations may be estimated as

Fexcited ∼
∑
x

e−∆gx (8.15)

where ∆ is the gap when gx = 1. The danger is this: it might be possible for gx to

decay in such a way that the energy of excitations is bounded by |∂A| while the entropy

of excitations scales less favorably with the size of A.

To put this danger to rest, consider the generalized free energy

F(T ) = F0

∑
x

e−∆gx/T (8.16)
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which reduces to Fexcited when T = 1. Conventional thermodynamics relates the energy,

E(T ), and the entropy, S(T ), of excitations to F :

S(T ) = −∂TF(T ) (8.17)

and

E(T ) = F(T ) + TS(T ). (8.18)

The entropy is thus

S(T ) = F0

∑
x

∆gx
T 2

e−∆gx/T (8.19)

while the energy is

E(T ) = F0

∑
x

(
1 +

∆gx
T

)
e−∆gx/T . (8.20)

It is thus clear that since gx is increasing, the entropy of excitations cannot outgrow

the energy of excitations. The entropy of excitations is bounded by |∂A| and gx must

increase sufficiently rapidly away from ∂A to guarantee these bounds.

As an aside, if one is uncomfortable with the idea of using local thermodynamics

near zero temperature, another way to phrase the above results is in terms of the density

of states. Since the magnitude of the local terms in
∑

x gxHx is slowly increasing, it

must be the density of states is also thinning relative to the density of states of
∑

xHx.

With the rather mild assumption that the density of states thins relatively locally with

gx, the above claims about entropy again follow.

8.2 Main argument for area law

Using the ideas just established plus the s source framework, we now give our main

argument for the area law. A is a subregion with state ρA inside a large gapped phase

in a ground state of the global Hamiltonian H .

Let σA be the state of maximal entropy locally consistent with ρA. σA has the form

σA =
e−H̃A

Z
. (8.21)

Since ρA is locally consistent with itself, we have S(ρA) ≤ S(σA).

Recall that we may restrict to phases without protected edge states. H̃A is locally

gapped away from ∂A, but H̃A may have accidental edge states. Repair these with a

perturbation V which is localized near ∂A.
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Let the thermal state of the fully gapped Hamiltonian H̃A + V be

σ′A =
e−(H̃A+V )

Z
. (8.22)

σ′A minimizes its own free energy, so we have (temporarily dropping the A subscript)

〈(H̃A + V )〉σ − S(σ) ≥ 〈(H̃A + V )〉σ′ − S(σ′). (8.23)

Rearranging terms gives

S(σ) ≤ S(σ′) +
[
〈(H̃A + V )〉σ − 〈(H̃A + V )〉σ′

]
. (8.24)

The terms in [...], whatever they may be, are proportional to |∂A| because V is

localized near ∂A and σ and σ′ give approximately the same expectation values for

local terms Hx in H̃A far from ∂A. In fact, the convergence of the local terms is

exponentially fast since the system has a finite correlation length and the perturbation

V is localized near ∂A.

This gives

S(σA) ≤ S(σ′A) +O(|∂A|). (8.25)

H̃A + V is in the same phase as a gapped local Hamiltonian on A and has a diverging

local gap away from ∂A by [Infinite Bulk Gap]. Thus the entropy of σ′ is bounded by

the ground state degeneracy of H̃A + V , which is the universal value associated with

the phase on this open geometry, plus a term proportional to |∂A|,

S(ρA) ≤ S(σA) ≤ log(G(H̃A + V )) +O(|∂A|). (8.26)

If S(ρA) ∼ Rd−1f(R) with f a growing function of R, then the number of ground

states G(H̃A + V ) must also grow faster than ecR
d−1

. However, if we build up the open

boundary system defined on A using our RG procedure (which we can do if the system

has no protected edge states), then the ground state degeneracy on A will obey the

same recursion relation as the torus ground state degeneracy. Violating the area law

with a logarithmic correction requires s = 2d−1, but s = 2d−1 gives a ground state

degeneracy growing only like log(G) ∼ Rd−1. This growth violates the lower bound

on log(G) in (8.26): we simply don’t have enough ground states to account for the

anomalous entropy. Hence S(ρA) ≤ S(σA) must obey the area law even with s = 2d−1.

If we further assume that the entropy recursion relation is saturated, then there are

no gapped phases with s = 2d−1. Either way, we obtain a general area law for gapped

phases.

Even without the s source framework, the bound (8.26) implies the weak area law.

Of course, the wormhole array argument in §3.1 gives more information than just the

area law, but the present argument provides a useful independent check.
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8.3 Frustration free Hamiltonians

Frustration free local Hamiltonians provide a very general setting in which the above

argument can be made more rigorous. Suppose that the global ground states are

frustration free ground states of the local Hamiltonian H =
∑

x Px which is assumed

to be a sum of projectors Px (not necessarily commuting, the easier commuting case

is discussed in Appendix F). Frustration free means that every term Px independently

annihilates the ground state. The truncated Hamiltonian HA is still a sum of projectors

and the state ρA lies entirely within the ground state manifold of HA. This is because

ρA is annihilated by every projector in HA, so we have tr(ρAHA) = 0 which is the

minimal energy of HA.

The following lemma bounds the entropy of ρA in terms of the number of ground

states of HA.

Lemma 7 (Frustration Free Entropy Bound) Let H be a frustration free Hamil-

tonian (meaning its ground states are frustration free) and let ρ be a ground state of

H, tr(ρH) = 0. Then the entropy S(ρ) obeys S(ρ) ≤ log(G(H)) where G(H) is the

ground state degeneracy of H.

Proof: (trivial) Since ρ is a ground state, it cannot have more entropy than the max-

imum entropy ground state. The maximum entropy ground state is the equal weight

mixture of all G(H) ground states and its entropy is log(G(H)).

Applied to the case of HA and ρA, this lemma bounds the entropy of ρA as desired.

In particular, if HA descends from another frustration free Hamiltonian H ′A which

differs from HA only at the boundary ∂A and has fully gapped edge states, then one

expects that deleting the boundary terms in H ′A within ` of ∂A can only add ec|∂A|`

additional ground states associated with the edge. Then the entropy of ρA would be

bounded by the logarithm of the bulk ground state degeneracy of H ′A (assumed to have

no edge states) plus an area term.

Theorem 2 (Limited Growth of Ground State Manifold) Let ȞA be a gapped,

stable, and frustration free Hamiltonian written as a sum of positive operators with

strictly bounded support on an open region A with G(ȞA) locally indistinguishable zero

energy ground states and let HA be obtained from ȞA by deleting operators within ` of

∂A. Then we have log(G(HA)) ≤ log(G(ȞA)) + c|∂A|`.

First Proof: Let V denote ȞA−HA, i.e. the edge terms which gap out the accidental

edge states of HA. Then consider the Hamiltonian H(λ) = λHA+V and let its thermal
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state at temperature T be σ(λ, T ),

σ(λ, T ) =
e−H(λ)/T

Z(λ, T )
. (8.27)

Because σ(λ, T ) minimizes its own free energy, we have the bound

tr

(
(λHA + V )

Pg,A
G(HA)

)
− T log(G(HA)) ≥ tr ((λHA + V )σ(λ, T ))− TS(σ(λ, T )).

(8.28)

Rearranging terms, using the positivity of the Hamiltonian, using that tr(Pg,AHA) = 0,

we find

T log(G(HA)) ≤ tr

(
V

Pg,A
G(HA)

)
+ TS(σ(λ, T )). (8.29)

The above bound holds for all λ, so send λ → ∞. Since the “bulk temperature”

T/λ is now zero, we would like to argue that S(σ(∞, T )) is scales like |∂A|. To do this

we compute the heat capacity, C(T ) = T∂TS(T ), using the formula C(T ) = ∂TE(T ).

By definition, E(T ) is given by

E(T ) = lim
λ→∞

tr ((λHA + V )σ(λ, T )) . (8.30)

As λ goes to infinity, the average of all the terms in HA are set to zero. Indeed, every

term in HA is positive definite, so if any term had a non-zero value, the energy would

tend to infinity in the Boltzmann weight thus giving zero contribution. Hence the

contribution from λHA must be zero as λ goes to infinity.

This intuition may be proven by noting that, given two positive operators P1 and

P2 with a common null space, the partition function Z(λ1, λ2) = tr
(
e−λ1P1−λ2P2

)
is a

monotonically decreasing function of λ1. Indeed, we have −∂λ1 log(Z(λ1, λ2) = 〈P1〉 ≥
0. Integrating both sides with respect to λ1, we obtain the formula − log(Z(∞, λ2)) +

log(Z(1, λ2)) =
∫∞

1
〈P1〉(λ1)dλ1. Since the left hand side is finite, it must be the case

that 〈P1〉 vanishes faster than 1/λ1 as λ1 goes to infinity. Hence limλ1→∞ λ1〈P1〉 = 0.

Now since V is explicitly localized near ∂A, it follows that E(T ) and C(T ) are

bounded by |∂A|. Integrating the heat capacity to produce the entropy, we find that

S(T )− S(0) is also bounded by |∂A|. Hence we bound log(G(HA)):

log(G(HA)) ≤ O(|∂A|) + log(G(λHA + V )) = O(|∂A|) + log(G(ȞA)). (8.31)

The second equality follows because log(G(λHA+V )) = log(G(ȞA)) since every ground

state of a frustration free Hamiltonain
∑

xHx is also a ground state of
∑

x gxHx for all

gx > 0 and vice versa.
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Second (Restricted) Proof: We give another proof of a weakened version of the

theorem. Let a Hamiltonian HA defined on an open region A be called ` bulk stable

if the ground state manifold is stable to all perturbations a distance greater than `

from ∂A. Then if ȞA is stable and HA is at least bulk stable, we can again prove that

log(G(HA)) ≤ log(G(ȞA)) + c|∂A|`.

Let |gA〉 be a ground state of HA which is not a ground state of ȞA and let |ǧA〉
be a ground state of ȞA. If |gA〉 is locally indistinguishable from |ǧA〉 then |gA〉 is a

ground state of ȞA. Thus |gA〉 must be locally distinguishable from |ǧA〉. However,

|gA〉 cannot be distinguishable from |ǧA〉 in the bulk because HA is bulk stable. If |gA〉
could be distinguished from |ǧA〉 by a bulk operator then we could partially lift the

degeneracy of HA by a bulk perturbation contradicting bulk stability.

Thus |gA〉 must be distinguishable from |ǧA〉 only near the boundary ∂A. The num-

ber of states distinguishable from |ǧA〉 only by operators within ` of ∂A is bounded

by ec|∂A|` for some constant c. Hence the ground state degeneracy of HA obeys

log(G(HA)) ≤ log(G(ȞA)) + c|∂A|` as claimed.

Two annoying features of the second (restricted) proof are the requirement of strict

locality of the Hamiltonian terms and the extra assumption of bulk stability for ȞA.

Does bulk stability not follow from the stability of HA? Indeed, it does but at the cost

of relaxing strict locality.

Lemma 8 (Bulk Stability from Stability) Let ȞA be a gapped, stable, and frus-

tration free Hamiltonian written as a sum of positive operators with quasi-local support

on an open region A with G(ȞA) locally indistinguishable zero energy ground states and

let HA be Hamiltonian obtained from ȞA by deleting up to c|∂A|` operators localized

near ∂A. Then HA can be taken to be bulk stable.

Proof: Observe that every ground state of ȞA is a ground state of HA. Let |gA〉 be a

ground state of HA which is not a ground state of ȞA and assume |gA〉 is distinguishable

from a ground state |ǧA〉 of ȞA in the bulk. Then there exists a quasi-local bulk operator

O such that O|gA〉 6= 0 but O|ǧA〉 = 0. Add to ȞA a bulk term O†O. The resulting

bulk Hamiltonian has the same ground state manifold since O|ǧA〉 = 0, and the bulk

Hamiltonian is of the same form as assumed in the theorem statement. However, the

resulting edge deleted Hamiltonian no longer has as a ground state the state |ǧA〉 since

there exist zero energy states, e.g., |ǧA〉, but the energy of |gA〉 is non-zero. Hence we

may assume that HA is bulk stable.

The technical subtlety is that while we can guarantee that a quasi-local O exists,

we cannot guarantee that a strictly local O exists. If O does have some quasi-local tail,

then we must not delete O†O from the bulk Hamiltonian when removing boundary
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terms. We can truncate these tails with 1
poly(R)

error by taking ` ∼ log(R), but this

leads to weakened (and not useful for the area law) bound of the form log(G(HA)) ≤
log(G(ȞA)) + c|∂A| log(R). This technical point leads us naturally to the general case.

8.4 Reducing general gapped phases to frustration free phases?

What about general gapped ground states |g〉 which may not be frustration free? If it

were possible to approximately reduce any gapped phase to a frustration free phase,

then the logic of the previous section might be sufficient. On very general RG grounds,

one expects that in the extreme long wavelength limit of a gapped phase, the ground

state can be specified by local constraints. Unfortunately it is difficult to prove this

intuition, although some progress is possible (see also the MERA discussion §9).

Suppose we have a general Hamiltonian H =
∑

xHx where each term satisfies

〈g|Hx|g〉 = 0 and has bounded norm. Then we can construct new operators Ĥx that

annihilate the ground state [92]. Let the gap of H be ∆ and let f̃(ω) be smooth

function satisfying f̃(−ω) = f̃ ∗(ω), f̃(0) = 1, and f̃(ω) = 0 for |ω| ≥ ∆. The Fourier

transform f(t) =
∫

dω
2π
e−iωtf̃(ω) decays faster than any power of t and we can define a

quasi-local Ĥx by

Ĥx =

∫
dtf(t)eiHtHxe

−iHt. (8.32)

Each Ĥx then annihilates all ground states up to terms exponentially small in system

size. Indeed, since f̃ = 0 beyond the gap, the operators Ĥx keep us within the ground

state manifold, and since the ground states are locally indistinguishable, the operators

Ĥx don’t connect different ground states. Local operators that annihilate the ground

state manifold are called local constraints.

Given local constraints, a simple local frustration free Hamiltonian with the same

ground state manifold as H can be defined. Let Ĥ be

Ĥ =
∑
x

Ĥ2
x, (8.33)

so that every term is a positive operator and annihilates the ground states of H. The

issue is that Ĥ may not be gapped, although Kitaev has conjectured that a gapped

Hamiltonian built from local constraints always exists.

Conjecture 2 (Existence of local constraints (Kitaev [92])) Every gapped phase

with locally indistinguishable ground states admits a gapped Hamiltonian of the form

Ĥ =
∑

xM
†
xMx where the Mx are local operators that annihilate the ground state man-

ifold.
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We may still allow exponentially small splittings of the ground state manifold and we

have two versions of the conjecture depending on whether the constraints are assumed

to be strictly local or only quasi-local. For our purposes, Kitaev’s conjecture with strict

locality would certainly be sufficient to establish the required properties of [Universal-

ity] and [Infinite Bulk Gap]. Even the conjecture with quasi-locality may be sufficient,

but it appears to require surmounting some technical obstacles.

vacuum 

gapped bulk gapped edge 

Figure 5: The red dot is local term in the

Hamiltonian which is smeared into a quasi-

local constraint. The dashed circle is a cut-

off where we truncate the qausi-local con-

straint to a strictly local constraint. Gap-

pability of an edge suggests the constraint

can be chosen to live strictly within A.

If we accept Kitaev’s conjecture with

strictly local operators, then the results

of the previous section complete the ar-

gument. What about quasi-local con-

straints? A quasi-local constraint can

always be truncated to a strictly local

one of range ` with an error which de-

cays faster than any power of `. To

make the error smaller than 1
poly(R)

, take

` ∼ log1+δ(R) for any δ > 0. This extra

∼ log(R) blowup seems dangerous to the

strict area law, e.g., the effective width

of the boundary region near ∂ may grow

slightly with R.

However, suppose the phase does not

have protected edge states. Then we have

some intuition, illustrated in Fig. 5, that

even quasi-local constraints may be suffi-

cient to prove the that entropy is bounded

by ∼ log(G). As long as the number of constraints we must delete from Ĥ to obtain

the Hamiltonian restricted to A is bounded by |∂A|` (plus terms strictly in Ā) for some

system-size-independent `, then the arguments of the previous section would be suffi-

cient. So the dangerous constraints are those that are further from ` from the boundary

but closer than log(L) so that they cannot be truncated without further analysis. Given

one of these dangerous distant but not too distant constraints, the idea is that if the

edge of the system can be gapped, then there is a different quasi-local constraint, shown

on the right in Fig. 5, which lives strictly within A and which does the same job (e.g.,

we smear the local Hamiltonian term with the gapped Hamiltonian with edge).

Pick a region A and suppose that all quasi-local constraints further than some

system-size-independent ` but less than ∼ log(L) from ∂A can be deformed as in

Fig. 5 to live strictly within A. Then we have a frustration free Hamiltonian Ĥdeformed

which has the property that when restricting the Hamiltonian to region A, the number
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of terms we must delete is bounded by |∂A|`. Since we already assumed the edge can be

gapped, it follows that Ĥdeformed,A (the restriction of Ĥdeformed to A) can be completed

to a gapped frustration free Hamiltonian with a perturbation V which consists of a

boundary’s worth of operators. Then the analysis of the previous section implies that

the ground state degeneracy of Ĥdeformed,A is bounded by ground state degeneracy of

Ĥdeformed,A + V times a factor of the order of ec|∂A|` (the exponential of the number of

operators in V ).

It should be said that the above intuition about squeezing quasi-local constraints

using gapped boundaries suggests that phases without protected edge states can be

described by strictly local constraints or perhaps even commuting projector Hamilto-

nians. This would be a converse to the result of [107].

In this section we have given a general argument for the bound S(ρA) ≤ O(|∂A|) +

log(G(HA)). It should be emphasized that we have not proven that the entanglement

Hamiltonian (named in [108]), log(ρA), is local (although we believe this is probably

true). Instead, we worked with the maximal entropy state σA consistent with local

data which is provably the Gibbs state of a local Hamiltonian and which can be more

easily controlled. The bound (8.26) sharply encodes our intuition that many ground

states are required to violate the area law. Besides our general arguments, we have

proven this bound in the context of frustration free Hamiltonians. Finally, we showed

how the above bound, together with the s source framework, leads to an argument for

the area law.

9 Relation to MERA

We now show how to cast our results into the form of a MERA provided the quasi-

local unitaries are generated by quasi-local operators. Quasi-locality will mean that

the effective range of the generator is bounded by a rapidly decaying function h(r)

which we may take to be, for example, h(r) ∼ e−r
1−δ

or h(r) ∼ e−r/ log2(r). The

basic idea of the construction is then to truncate quasi-local tails when they reach

size 1
poly(L)

; this requires us to take h(rtrunc) ∼ 1
poly(L)

and hence rtrunc ∼ log1+δ(L) or

rtrunc ∼ log(L) log(log(L)). We then group rdtrunc sites into a single supersite and show

that the quasi-local unitary may be approximated by a strictly bounded width circuit

acting on these supersites.

We restrict our discussion here to MERA representations for s = 1, although our

techniques should also provide approximate branching MERA representations for s > 1

states. We leave the details of these branching constructions to future work. Note that

MERA has been applied to models which probably host s = 1 fixed points [109].
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Finally, although the bond dimensions we achieve are comparable to those recently ob-

tained in the PEPS context using a very different method [56], the MERA construction

has the advantage that it is contractible in time polynomial in the bond dimension.

This gives an exponential speedup in the contractibility of the network in the worst

case. Our results show that, given the MERA network (which may still be hard to

find), it is possible to calculate properties of even complicated topological quantum

liquids in time almost polynomial in system size.

The MERA construction also sheds light on the question of the existence of frustra-

tion free Hamiltonians for gapped states. In §10 we will show how to construct MERAs

for all TQLs by studying gapped field theories in an expanding universe.

9.1 Truncating time evolutions with exponentially decaying

interactions

Given a quasi-local generator K, we may truncate the generator to a strictly finite

range generator K` by setting to zero all interactions acting beyond range ` (` is what

we called rtrunc just above). The neglected terms have size of order h(`). We may

determine the error in time evolution introduced by this truncation by studying the

evolution under K − K`. To be precise, we must compute the average of eiKe−iK`

to determine the error due to evolving with K` instead of K, and this exponential

can be processed using Baker-Campbell-Hausdorff to give ei(K−K`)+
1
2

[iK,iK`]+... where ...

denotes further commutators. Since the commutator [K,K`] is bounded by h(`) and

of the same order as K−K`, it suffices to consider K−K` to get the scaling structure.

We compute the probability p(t) to remain in the state |ψ〉 under time evolution

by δK = K −K` in perturbation theory. By definition we have

p(t) = |〈ψ|e−iδKt|ψ〉|2, (9.1)

and expanding to first non-trivial order we obtain

p(t) ∼ 1− t2

2
〈(δK)2〉. (9.2)

Suppose δK is the sum of an extensive number of terms, δK =
∑

x δKx, each of

magnitude Jh(`) or less. We then compute

〈(δK)2〉 =
∑
x,y

〈δKxδKy〉 ≤ J2h2(`)
∑
x,y

e−|x−y|/ξ, (9.3)

where we have used the exponential decay of connected correlations and have assumed

(without loss of generality) that 〈δKx〉 = 0.
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Evolving for a time of order 1/J we find

p(t ∼ 1/J) ∼ 1− h2(`)Ldξd. (9.4)

Demanding that this probability be close to one, so that the perturbative calculation

is valid, we must have

h(`) ∼ 1

L
d+q
2

(9.5)

with q > 0. Then we are guaranteed that p(t ∼ 1/J) ∼ 1 − L−q which converges to

one in the thermodynamic limit L→∞.

9.2 Conversion of an s = 1 fixed point to a MERA

Figure 6: The staggered circuit composed

of blocks of size ˆ̀ which approximates the

action of the quasi-local unitary mapping

|ψL〉 to |ψL/2〉|0〉L/2 in d = 1 for an s = 1

fixed point. The colors of the circuit el-

ements are coordinated with the colors of

the terms in the equation in the figure.

We have just argued that to have the evo-

lution under K−K` preserve the state in

the thermodynamic limit, we must take

` ∼ log1+δ(L). This cost is modest given

the global accuracy since we are only re-

quired to coarse-grain chunks of `d ∼
logd(1+δ)(L) sites into supersites of total

Hilbert space of dimension ec logd(1+δ)(L)

to have a local generator acting only on

neighboring supersites. We now show

that the unitary generated by K can

also be truncated to a strictly bounded-

causal-width circuit acting only on neigh-

boring supersites with local Hilbert space

scaling in the same way with L. This cir-

cuit then constitutes one layer of a MERA

of bond dimension ec logd(1+δ)(L).

Note that the contraction of a MERA

with ec logd(1+δ)(L) bond dimension is almost polynomial in system size, and since a

MERA is contractible in time polynomial in the bond dimension, it follows that phys-

ical properties of s = 1 fixed points may be computed in time ec logd(1+δ)(L) given the

MERA circuit (which may be hard to find). Furthermore, while this large a bond

dimension may be prohibitive in practice, our result provides strong support for the

conjecture that universal properties can be computed to high accuracy with a system-

size-independent bond dimension, as we discuss in §9.4.

To show that a ec logd(1+δ)(L) bond dimension MERA exists, we must take the strictly

local unitary evolution generated by the local operator K` and turn it into a quantum
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circuit with strictly bounded causal width. In this case, we can again appeal to a

coarse-graining argument.

1 

2 

3 

Figure 7: The three layers of an d = 2 cir-

cuit approximation of the quasi-local uni-

tary transformation. In layer 1 we apply

K in the red boxes to leave a qausi-one-

dimensional network which is dealt with

in layers 2 and 3 using the blue and pur-

ple unitaries similar to Fig. 6. We have

|ψL〉 ≈ U3U2U1|ψL/2〉|0〉3L
2/4. The colors

of circuit elements in the figure are coor-

dinated with the colors of terms in the pre-

vious equation.

Consider first the case of d = 1. Sup-

pose we are given a range ` two body

Hamiltonian K` acting on qubits. Group

neighboring sets of ˆ̀ sites into supersites

of Hilbert space dimension 2
ˆ̀

as shown in

Fig. 6. By acting with one layer of uni-

taries on the supersites and one layer of

unitaries between neighboring supersites

(say between ˆ̀/2 on the left and ˆ̀/2 on

the right) we obtain a causal width of 2ˆ̀.

To accuracy ε one can replicate the action

of the local time evolution generated by

K` by taking ˆ̀∼ `+ vLRt+ log(ε) where

` is the interaction range, vLR is the Lieb-

Robinson velocity [110, 111], and t is the

evolution time.

A crisp way to make the argument is

to use the interaction picture with respect

to the generator restricted to the size ˆ̀

blocks. The remaining coupling terms be-

tween blocks get effectively smeared out

by an amount much less than ˆ̀ by the

Lieb-Robinson bound [110, 111]. Then take the resulting time evolution with these

smeared generators which couple neighboring supersites and truncate the exponen-

tial tails beyond size ˆ̀/2 on either side of the interface. We have a two layer circuit

consisting of staggered unitaries acting on blocks of linear size ˆ̀; this is the bounded-

causal-width quantum circuit discussed above. Since ` already scales like log1+δ(L), it

follows that (even with ε ∼ L−q) ˆ̀ does as well. In fact, Lemma 1 of [7] can be adapted

to rigorously prove that the above construction provides an excellent approximation

to the time evolution; see also [112, 113] for earlier independent work along the same

lines.

When d > 1 a very similar construction may be used. First, we block the system

into blocks of linear size ˆ̀∼ log1+δ(L) as shown in Fig. 7. Then we apply a unitary

generated by K restricted to have support completely within the blocks. Each block

unitary commutes with every other block unitary by construction. Next, we switch to

the interaction representation of the block restricted K. The remaining terms in K
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will be smeared in the process, but provided we take ˆ̀ large enough, these interaction

terms will be confined to thin regions near the boundaries of the blocks. In d = 2,

for example, we would be left with a thin network of terms along the boundaries of

the blocks. These terms are now essentially one dimensional and the arguments in

the previous paragraph can be used to deal with them. For example, by applying the

blue and purple unitaries in Fig. 7 we approximate the remaining quasi-local unitary

acting on the quasi-one-dimensional network with a circuit. The only difference from

the setup in Fig. 6 is that we have junctions in the quasi-one-dimensional network,

but the purple junction unitaries (which play the role of the second staggered layer of

unitaries in Fig. 6) handle this overlap.

Figure 8: The blocking scheme in d = 3.

First, we deal with the red blocks. Then

we deal with the blue faces. Finally, we are

left with a quasi-one-dimensional network

where the blue faces intersect.

In d = 3 we would first block the

system into cubic blocks (red blocks in

Fig. 8) and apply the unitary generated

by K restricted to those blocks. Then

we would switch to the interaction repre-

sentation of the blocks and apply a uni-

tary generated by the terms in K re-

stricted to the faces between neighbor-

ing blocks (blue faces in Fig. 8. Then

we would again be left with a quasi-one-

dimensional network of unaccounted-for

terms in K, and the one dimensional con-

struction may be brought to bear. In

general d dimensions, we recursively deal

with the d-blocks, then the d − 1-blocks

between neighboring d-blocks, then the

(d − 2)-blocks between neighboring d − 1-blocks, and so on until we reach the one

dimensional limit. In this way, a general quasi-local evolution may be blocked into a

quantum circuit acting on up to ∼ logd(1+δ)(L) degrees of freedom at a time. This is

a generalized MERA with bond dimension ∼ ec logd(1+δ)(L) which has unit overlap with

the ground state in the thermodynamic limit.

9.3 Polynomial bond dimension MERA?

One reason to be optimistic that a polynomial bond dimension MERA exists is that

the quasi-local tails which obstructed our construction above can perhaps be partially

incorporated by modifying the tensors at smaller scales. Indeed, a MERA with bounded

bond dimension can accommodate power-law decaying correlations, so at least in terms
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of raw expressive power, a polynomial bond dimension MERA should easily be able to

accommodate exponential tails. We also know that many kinds of topological phases

without edge states have, at a certain point in their phase diagram, an exact MERA

representation with system-size-independent bond dimension.

We encode our speculations as a conjecture:

Conjecture 3 (Polynomial Bond Dimension MERA) Every s = 1 RG fixed point

has a MERA representation with poly(L) bond dimension which achieves high overlap

with the ground state in the thermodynamic limit.

Note that the conjecture implies a strong result, that s = 1 fixed points are well

approximated in the thermodynamic limit by states with Schmidt rank bounded by

ec|∂A| log(L) for any bi-partition AĀ. Such a result has already been proven in the context

of regulated field theories in [114] which showed that truncating the reduced density

matrix of a size R region to its ec|∂A|+δ largest eigenvalues left a state which was still

ε close to the correct reduced density matrix with δ ∼ − log(ε). As a rough estimate,

to produce a state with error ε ∼ 1
poly(L)

for all R, we must take a bond dimension of

order poly(L). With such a bond dimension, the Schmidt rank of any region will be

ec|∂A| log(L) which is sufficient to produce small error. Note that our construction above

gives a Schmidt rank going like ec|∂A| logd(1+δ)(L) for a ε ∼ L−q approximation to the true

state, but there are subtleties in this analysis; see Appendix C for a further discussion.

It should be further noted that ground states of frustration free Hamiltonians have

Schmidt rank bounded by G(HA), the ground state degeneracy of the Hamiltonian

truncated to region A. Since G(HA) obeys an area law for s = 1 fixed points, it

follows that these ground states have strictly area law Schmidt rank. Combined with

the existence of the quasi-local unitary mapping size L to size 2L, surely a polynomial

bond dimension MERA exists.

We proceed to set up some definitions to reduce the above conjecture to a sharp

technical statement. To be concrete, we mostly consider d = 1 and briefly remark

about what changes in d > 1.

Call K` a range ` quasi-local generator if it is a sum of local terms which decay faster

than any power of distance beyond distance `. Call U` a range ` quasi-local unitary if

it is generated by a quasi-local generator of range `′ evolving for a time t with ` = `′+ t

(we have put the Lieb-Robinson velocity to one). It follows that the effects of a range

` quasi-local unitary decay faster than any power of distance beyond size `. Finally,

call a range ` quasi-local unitary acting on L sites (`′, `loc, ε) recursively localizable if

its action on |0〉L can be reproduced up to error ε in norm by a two layer quantum

circuit of staggered unitaries of strictly bounded range `loc times another quasi-local
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unitary of range `′ acting only on every other site (more generally acting only on the

sites surviving at size L/2), ∥∥U`|0〉L − UcircuitU`′ |0〉L
∥∥ < ε. (9.6)

Since |0〉L is the ground state of a local gapped Hamiltonian, our construction

of the ec logd(1+δ)(L) bond dimension MERA shows that every quasi-local unitary is

(0, log1+δ(L), L−q) recursively localizable with the quasi-local unitary acting on L/2

sites taken to be the identity. By considering non-trivial quasi-local unitaries acting

on L/2 sites we can hope to improve the parameters.

Recursive localizability of unitaries acting on |0〉L is clearly equivalent to recursive

localizability of unitaries acting on any state obtained from |0〉L by a quasi-local unitary

V acting on every other site. Indeed, we may simply absorb this L/2 site quasi-local

unitary into the unitary defining the recursive localization at the cost of increasing

`′ by the range of V . If we define recursive localizability of unitaries acting on the

state |ψL/2〉|0〉L/2 with |ψL/2〉 not quasi-locally equivalent to |0〉L/2, then we obtain a

potentially different classification of unitaries. A particularly interesting classification

is obtained if |ψ〉 is allowed to be a local gapped s = 1 ground state on L/2 sites.

Call a quasi-local unitary U` acting on L sites (`′, `loc, ε)|ψ〉 recursively localizable

if there exists a staggered circuit and another quasi-local unitary acting on L/2 sites

such that ∥∥U`|ψL/2〉|0〉L/2 − UcircuitU`′ |ψL/2〉|0〉L/2
∥∥ < ε. (9.7)

These definitions generalize in an obvious way to higher dimensions by mimicking

the structure of the s = 1 fixed point. They are purposefully set up to be recursive.

Indeed, suppose every quasi-local unitary W` is (`/2, `loc, L
−q)|ψ〉 recursively localizable

for all s = 1 RG fixed points |ψ〉 with `loc ∼ logζ(L) and ζ ≤ 1
d
. Then every s = 1 RG

fixed point has a MERA representation with poly(L) bond dimension. Note that `/2

was chosen as the first parameter because we are coarse-graining by a factor of 2, so

the quasi-local unitary on L/2 sites has the same effective range as before (since those

L/2 sites are twice as far apart as measured in the un-decimated lattice).

Proof: We work in d = 1 then remark on the extension to d > 1 at the end. By

assumption, there is a quasi-local unitary UL,` acting on L sites with range ` that

accomplishes the s = 1-source RG step UL,`|ψL/2〉|0...0〉 = |ψL〉. We assume that the

range ` can be taken to be the same at every scale L and that all range ` quasi-

local unitaries are (`/2, `loc, ε)|ψL/2〉 recursively localizable for all L with ε ∼ L−q and

`loc ∼ logζ(L).

Then there exists a quasi-local unitary VL/2,`/2 and a strictly local circuit VL,c such

56



that ∥∥∥∥∥∥UL,`|ψL/2〉| 0...0︸︷︷︸
L/2

〉 − VL,cVL/2,`/2|ψL/2〉| 0...0︸︷︷︸
L/2

〉

∥∥∥∥∥∥ < ε. (9.8)

Multiply the quasi-local unitary VL/2,`/2 by the unitary UL/2,` to produce a new quasi-

local unitary ŨL/2,3`/2. Apply recursive localizability for the unitary W = ŨL/2,3`/2 to

produce a new circuit VL/2,c and a new quasi-local unitary VL/4,3`/4 such that∥∥∥∥∥∥VL,c(VL/2,`/2UL/2,`)|ψL/4〉| 0...0︸︷︷︸
3L/4

〉 − VL,cVL/2,cVL/4,3`/4|ψL/4〉| 0...0︸︷︷︸
3L/4

〉

∥∥∥∥∥∥ < ε. (9.9)

Repeat the entire process by absorbing VL/4,3`/4 into UL/4,` to produce ŨL/4,7`/4.

Notice that the range of Ũ will always be less than 2` so there is no blowup of the

range in the recursive process. This is important because `loc depends in principle on the

range `, so to avoid a blowup of `loc we must avoid a blowup of the range. For example,

at the next stage we use recursive localizability of W = VL/4,3`/4UL/4,` = ŨL/4,7`/4 to

exhibit a new circuit VL/4,c and a new quasi-local unitary VL/8,7`/8 such that∥∥∥∥∥∥VL,cVL/2,cVL/4,3`/4UL/4,`|ψL/8〉| 0...0︸︷︷︸
7L/8

〉 − VL,cVL/2,cVL/4,cVL/8,7`/8|ψL/8〉| 0...0︸︷︷︸
7L/8

〉

∥∥∥∥∥∥ < ε.

(9.10)

To complete the argument, we iterate log(L) times, add and subtract the interme-

diate states within the norm, and use the triangle inequality to show that∥∥∥∥∥|ψL〉 − VL,cVL/2,c...| 0...0︸︷︷︸
L

〉

∥∥∥∥∥ < ε log(L). (9.11)

Since ε ∼ L−q we have shown high overlap between |ψL〉 and a MERA-like sequence

circuits of range `loc acting on |0...0〉.

Returning to general d, grouping `dloc sites into one supersite and using `loc ∼
logζ(L), we produce a MERA with ec`

d
loc ∼ ec logdζ(L) bond dimension. If ζ = 1/d

can be achieved, then we have a polynomial bond dimension MERA. If ζ < 1/d is

possible, the MERA actually has sub-linear bond dimension. We doubt this is possible

generically, but it may be achievable in some special cases.

It would thus be very interesting to make progress on the technical problem of

recursive localizability of quasi-local unitaries. As an intermediate step, we might

conjecture that phases which have exact MERAs at some point in their phase diagam

have at worst a poly(L) bond dimension MERA throughout the entire phase.

57



9.4 Universal properties from bounded bond dimension MERA?

We have stated that our results support the idea that universal properties can be

obtained with a bounded bond dimension MERA. We now sketch an argument for

this conclusion, but first we must clarify what is meant by universal properties. It is

difficult to give a general list of universal properties, but typically one means quantities

that depend only the phase of matter and not on the particular realization (particular

Hamiltonian) of that phase. Examples from two dimensional topological phases include

the statistics of anyons, topological entanglement entropy, and the chiral central charge.

Because it is difficult to define these universal properties in complete generality

not to mention rigorously prove that they are invariant under adiabatic deformations,

we adopt a simpler approach. Having already shown that MERA captures the correct

global structure of topological quantum liquids, we now argue that local properties may

be obtained to high accuracy with bounded bond dimension. Good local properties plus

the correct global (RG) structure of the network, when taken together, strongly suggest

that universal physical properties can be obtained from a bounded bond dimension

MERA. Indeed, it should always be kept in mind that demanding high overlap with

the wavefunction in the thermodynamic limit is an absurd requirement from the point

of view of most experimental settings where imperfectly known Hamiltonians, neglected

degrees of freedom, dirt, etc. essentially always guarantee that a model wavefunction

has tiny overlap with the physical state.

To argue for good local properties we appeal to the idea that adiabatic evolution

for a finite time, while failing to preserve the global ground state, will still generate

a controlled density of excitations. Alternatively, taking the quasi-adiabatic generator

and truncating it to finite range (independent of system size) will again introduce a

controlled density of excitations (while failing to preserve the global ground state).

Some additional local error is also incurred in the truncation of the resulting local

unitary evolution to a strictly bounded-causal-width circuit. We expect that both

types of error can be made roughly exponentially small (at least decaying faster than

any power) in the relevant cutoff length- or time-scale.

To make an estimate we suppose that approximating the exact quasi-local unitary

with a strictly bounded-causal-width (independent of system size) quantum circuit

produces a finite density of excitations. Let the induced energy density of excitations

be δE . As discussed above, we expect that δE ∼ e−(∆τ)1−δ for a finite evolution time

τ and gap ∆; similarly, we expect the δE ∼ e−`
1−δ

where ` is the causal width of the

truncated circuit approximating the full quasi-local unitary.

We estimate the energy density E2L at scale 2L as follows. Recall that (s = 1 fixed

points) to obtain the state at scale 2L we take the state at scale L, add (2d − 1)Ld
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product states, and act with a quasi-local unitary. Thus given the energy density EL
at scale L, we first dilute it (since the product states are in their exact ground state)

to obtain an energy density EL/2d. Then we act with the approximate circuit which

increases the density of excitations by δE . The final energy density is thus

E2L =
EL
2d

+ δE . (9.12)

Iterating this recursive equation then gives

EL ∼
log(L)∑
n=0

δE
(2d)n

∼ δE
1− 2−d

+O(L−d). (9.13)

Thus the density of excitations at scale L is essentially just given by δE , so by choosing

large but system-size-independent parameters τ and ` we may achieve a small density

of excitations. In fact, the convergence appears to be almost exponentially fast.

Finally, why should universal properties be captured correctly by such an approx-

imate state? One line of thought proceeds as follows. Once the energy density of the

approximate state is sufficiently close to zero, there should exist another Hamiltonian

H ′ which is a perturbation of H (whose exact ground state we are approximating) for

which the approximate state is the correct ground state. Furthermore, because the

energy density relative to H is close to zero, the necessary perturbation to reach H ′

should be small, hence the stability of the phase implies that H and H ′ are in the same

phase and thus have the same universal properties. A candidate for the Hamiltonian

H ′ (which turns out to be frustration free) is a sum of projectors onto the null spaces

of the local reduced density matrices of the approximate state.

This final point, that H ′ is frustration free, is interesting. If H ′ is also gapped, then

this answers in the affirmative (for s = 1 fixed points) Kitaev’s conjecture about the

existence of local constraints (strictly local case). It is hard to imagine that H ′ is not

gapped for sufficiently large (but still bounded) bond dimension, but we do not prove

that here.

9.5 Comments on algorithms

In addition to showing that a MERA with modest resources exists for s = 1 fixed

points, we have given a novel procedure to construct such a MERA. Start with the

exact ground state on some small cluster; this data forms the initial condition of the

MERA network (the “top” tensor). Then we take any path in Hamiltonian space that

connects size L to size 2L without closing the gap and form the quasi-local unitary

that maps the ground states. This can be converted into a layer of the MERA network
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as discussed above. Then repeat. When finished, we have the top tensor and all the

layers of the network and at no point have we done a variational calculation for a large

system.

Now of course it may be that finding such a gapped path in Hamiltonian space is

hard, and it may be that constructing the quasi-adiabatic generator is hard. On the

other hand, for some problems of interest we may have a plausible guess for a path, or

we may even be able to provably find such a path without knowing the ground state.

Furthermore, although constructing the quasi-adiabatic generator requires simulating

time evolution, the effective time under which we evolve is of order one, so the quasi-

local unitary should be open to efficient approximation. Alternatively, we could use the

adiabatic approach instead of the quasi-adiabatic approach if we are interested only in

local properties.

The point of this discussion is not that we have a provably superior algorithm,

but simply to observe that our procedure provides a rather different approach to con-

structing a MERA. In particular, we are never faced with the problem of an explicit

variational calculation on a large system, so we might hope to avoid the problem of

local minima in some cases. Of course, such local minima may manifest in other ways,

for example, as a small gap at some intermediate stage of the quasi-adiabatic evolution.

In any event, the present construction is close in spirit to the core motivation for the

MERA construction where one has a picture of removing local entanglement scale by

scale, a motivation that is to some extent obscured by the variational approach.

10 Field theory construction

In this section we consider what may be gained by studying topological quantum

liquids in the continuum limit. As discussed above, the continuum limit necessitates

the consideration of a topological quantum liquid. Let us simply assume that the

system has some conventional field theoretic representation where we may even impose

Lorentz invariance if we wish. We would like to implement the mapping from size L

to size 2L in this context. We show that this can be done by placing the system into

a background geometry consisting of an expanding universe. This construction shows

that all massive field theories are s ≤ 1 RG fixed points. We also give an explicit

example with free fermions.

Imagine we have a field theory with some mass gap m playing the role of the gap

∆ above. For example, we could consider a Chern-Simons theory, a massive Dirac

fermion, a gapped non-linear sigma model, a gapped discrete gauge theory, or even

fermions with a Fermi surface gapped out by a superconducting order parameter. We
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place the system into an expanding universe with metric

ds2 = −dt2 + a2(t)d~x2. (10.1)

Where necessary, we can compactify the spatial directions into a torus of coordinate size

L0; more generally, we could take the spatial geometry to be any closed d-dimensional

manifold. There may also be ambiguities in defining the field theory on such a curved

spacetime geometry, but we may resolve these ambiguities any way we like provided

the mass gap is preserved, e.g. non-minimal couplings to the background gravitational

field are allowed provided the gap is not closed.

In (10.1) the proper distance corresponding to a coordinate distance of |~x| is a(t)|~x|.
Thus letting a(t) run from a0 at t = t0 to 2a0 at t = t0 + τ effectively doubles the linear

size of the system. Furthermore, if τ is long compared to m−1, then we are in the

adiabatic limit and the instantaneous ground state will be a good local approximation

to the true state of the system at all times. The most useful aspect of the field theory

approach is that it dispenses with the lattice scale details and gives us a universal

recipe for implementing our RG transformation. Hence a very large class of topolog-

ical theories, regarded in a continuum approximation, indeed have a quasi-adiabatic

transformation which maps from L to 2L and MERA representatives with the basic

features outlined above.

Now it must be said that to be truly globally close to the ground state (i.e. finite

overlap as L → ∞), we must, as before, either use the quasi-adiabatic generator or

perform an adiabatic evolution for a time poly-logarithmic in system size. For variety,

let us first analyze the adiabatic approach. Assuming the function a(t) is smooth

and constant outside the interval [t0, t0 + τ ], the Fourier transform ã(ω) can be made

to decay faster than any power of ω for |ω| > τ−1. First order perturbation theory

then gives, for the probability to create an excitation, a quantity of order |ã(m)|2. An

achievable decay of ã(ω) is

ã(ω) ∼ e−(ωτ)1−δ (10.2)

for any δ > 0, hence by choosing

τ ∼ m−1 log1+δ(L) (10.3)

we may assure that the probability to create an excitation is bounded by L−q where

L = a(t)L0 is the proper size of the system. Furthermore, because the system is in

finite volume perturbation theory converges.

A comment about regulators is in order. If for example we impose a hard cutoff Λ0

on momenta defined with respect to the coordinate distance |~x|, then as space expands

the physical cutoff, Λ = Λ0/a, decreases with time. Without changing the cutoff Λ0
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the Hilbert space remains the same at all scales (unlike in our lattice constructions

above). In keeping with the lattice construction, it is better to keep the physical cutoff

Λ the same before and after space expands. One way to accomplish this is to add to

the system auxiliary heavy spectator fields. Then as space expands some of the high

energy states from these spectator fields can be incorporated into the “low energy”

(but still gapped) field theory of interest to keep the physical cutoff invariant. In other

words, we can always safely steal states from trivial field theories at very high energies

(in fact, this is in a sense the only non-trivial part of the construction). It may also

be necessary to truncate some unbounded operators to apply our results for bounded

strength interactions. This should always be possible. Hence we claim that any regu-

larizable massive field theory obeys the area law and has a MERA representation with

modest bond dimension.

10.1 Example: Dirac fermion, d = 2

We will now work through the example of a massive Dirac fermion ψ in d = 2 evolving

in a time dependent background. This case is interesting because the system exhibits

the quantized Hall effect determined by the sign of mass m, so our analysis will show

this theory is an example of an s = 1 fixed point. The background geometry is

ds2 = −dt2 + a2(t)(dx2 + dy2) (10.4)

which we cast in the form gµν = eaµe
b
νηab where η is the flat metric and e is the vierbein.

We read off the values of e from the metric and find that

ex̂x = eŷy = a, et̂t = 1. (10.5)

The spin connection ω is defined as

dea + ωab e
b = 0, (10.6)

and we find

ωx̂t̂ =
ȧ

a
ex̂, ωŷ

t̂
=
ȧ

a
eŷ, (10.7)

and all others zero.

For flat space γ matrices we take γ t̂ = iZ, γx̂ = X, and γ ŷ = Y which satisfy

{γa, γb} = 2ηab. Curved spacetime Γ matrices may then be defined as Γµ = eµaγ
a. The

Dirac action (with ψ̄ = ψ†Γ0) is then

SD[ψ] =

∫
dtdxdy a2

[
ψ̄ Γµ

(
i∂µ −

i

2
ωµabσ

ab

)
ψ −mψ̄ψ

]
(10.8)
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where σab = i
4
[γa, γb] are the Lorentz generators.

The necessary components of σ are σt̂x̂ = −iY/2 and σt̂ŷ = iX/2. If we also switch

to Fourier modes ψ(x) =
∑

k e
i~k·~xψk then the resulting action is SD[ψ] =

∑
k SD,k[ψk]

and the action for a given k mode is

SD,k[ψk] =

∫
dt a2(t)

[
ψ̄k
(
X
a

) (
−kx + ȧ

2
Y
)
ψk + ψ̄k

(
Y
a

) (
−ky − ȧ

2
X
)
ψk

+ ψ̄kiZi∂tψk −mψ̄kψk
]
. (10.9)

Observe that the two terms from the spin connection both combine to give 2iZ ȧ
a
. Per-

forming a time dependent rephasing ψk = ai/2Φk removes the spin connection term.

The details are not ultimately important; what is important is that we have a Hamil-

tonian system of finite dimension which is changing adiabatically.

As reviewed above, we may compute the probability pk for each k mode to remain

in its ground state using perturbation theory. We have pk ≥ 1− ce−(
√
k2+m2τ)1−δ , where

τ is the evolution time. This perturbation theory converges for any finite τ � m−1

since each k mode is finite dimensional.

Multiplying over all k modes, the total probability to remain in the ground state is

p ∼
∏
k

pk ∼ exp

(
−
∑
k

ce−(
√
k2+m2τ)1−δ

)
, (10.10)

where the second estimate follows if τ � m−1. Replacing the sum over k with an

integral we obtain

p ∼ exp

(
1− cLd

∫
ddk

(2π)d
e−(
√
k2+m2τ)1−δ

)
(10.11)

which can be made to approach one as 1 − L−q if τ ∼ m−1 log1+δ(L) for some δ > 0.

Crucially, the upper cutoff on k does not enter because the integral converges rapidly.

Hence in this case the formal cutoff may be sent to infinity and no heavy spectator

fields are required; the expansion of space smoothly brings down higher momentum

modes to continually fill the growing number of long wavelength modes.

10.2 Black holes and dS/CFT

The preceding discussion of continuum field theory in expanding universe, in particular

of bringing in product states at the UV cutoff, can be recognized as a regulated de-

scription of the “Unruh vacuum” for quantum fields in curved spacetime. Its defining

properties are “reasonable at short distances” – that is, the large-k modes are in their
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groundstates – plus no particles initially. The procedure we have described is just what

is done to compute density perturbations in inflation and also Hawking radiation [115],

and in particular is the resolution, in practice, of the so-called ‘trans-Planckian prob-

lem’ raised by large gravitational blue-shifts.

Such a connection between renormalization group evolution and the physics of an

expanding universe also appears in the ‘dS/CFT correspondence’ for the case of de

Sitter space [116] and for more general FRW spacetimes [117].

This connection between entanglement renormalization and gravitational physics is

different from the one proposed in [34,118] (see also the further developments [119–121])

in that here the evolution produced by the quantum circuit is really timelike; such a

Wick rotated picture has been advocated in [122] (see also the sketch in [123]). An

explicit calculation of the entanglement entropy of subregions of an expanding universe

for free field theory was made in [124].

These previous analogies between FRW cosmology and the RG were motivated by

hopes of learning something about quantum gravity and cosmology, while in the bulk

of this paper, we are using this idea in the other direction.

The restriction to log(G) < cLd−1, when interpreted as a statement about an en-

tropy, is temptingly reminiscent of the black hole entropy bound. One way to attempt

to make a connection is to consider collapsing a shell of matter to form a black hole

in a space which already supports such a highly entangled state. Now because the

system is gapped and because the curvature is weak at the event horizon, one might

imagine that the highly entangled ground state survives (at least away from the sin-

gularity). Further assuming that the entanglement entropy of the matter across the

horizon contributes to the black hole entropy, we may be able to violate the Bekenstein

area bound if we had a gapped phase that violated the area law. If so, the coupling to

gravity would forbid violations of the area law in gapped ground states. Notice that the

indistinguishability of the groundstates is important to ensure that the state outside

the horizon is not perturbed by the gravitational collapse. At present, however, this

argument is speculative.

Nevertheless, the coupling to gravity does provide constraints on the behavior of

any putative topological field theory. Consider a topological quantum field theory Q.

Its Euclidean path integral ZQ on Σd × S1 (Σd is some closed d-manifold) computes

tr
(
e−βHQ(Σd)

)
where HQ(Σd) is the Hamiltonian of the topological theory on space Σd

and β is the length of the S1 factor. Since in the topological limit the gap to excitations

is infinite, the trace reduces to counting the number of ground states of HQ(Σd), that

is

ZQ[Σd × S1] = G(HQ(Σd)). (10.12)
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Without invoking the topological nature of Q we must allow ZQ to depend on

the metric gΣ
ij on Σd, but with the assumption that Q is topological we can rule out

interesting dependence on gΣ. Let g be the metric of spacetime; assuming Q couples

minimally to gravity we have

ZQ[g + δg] = Z[g] exp

(
1

2

∫
Σd×S1

dd+1x
√
gδgµνT

µν
Q

)
(10.13)

where T µνQ is the stress tensor of Q. But TQ = 0 since Q is topological, so ZQ[g] is

independent of small deformations of g. Note also that the coupling to TQ is a small

perturbation, so the stability of the phase guarantees that the gap does not collapse.

This together implies that ZQ[Σd × S1] is independent of the size of Σd and hence so

is the ground state degeneracy.

This argument does not rule out systems with ground state degeneracy depending

on the “size” of the space, but it does imply that they must couple to gravity differently.

For example, suppose we realized a phase with G ∼ ecL in d = 3 in the lab by

constructing an array of coupled localized objects, e.g., a lattice of cold atoms. Now

suppose that a gravitational wave passes through the system. What happens is that

the distance between the different potential wells, say, is changed, but the number of

wells is not modified. Hence the coupling to gravity modulates the couplings between

different localized objects, but does not change the “size” (number of localized objects)

of the system. Said differently, there is extra data in the path integral ZQ on which the

ground state degeneracy does depend and which is not sensitive to weak gravitational

perturbations (because the phase is stable).

10.3 Lorentz invariant entanglement Hamiltonian

As a final application of the field theory construction, we may explicitly verify the

claimed properties of the maximum entropy locally consistent state σA. For simplicity

we analyze the case where region A is a half-space, but we expect that the lessons

generalize to all regions because of the gap.

As shown in [125–129], the entanglement Hamiltonian for a half-space in any

Lorentz invariant quantum field theory can be related to a generator of boosts Mxt. To

be precise, suppose A is a half-space given by A = {~x|x ≥ 0, x⊥ ∈ Rd−1}. Associated

to region A we have the causal development C(A) which is given by all (t, x, x⊥) with

(x, x⊥) ∈ A and |t| < x. The causal development or “Rindler wedge” C(A) is mapped

into itself by the flow generated by the boost generator

Mxt =

∫
A

dd−1x⊥dx xT00, (10.14)
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where T00 is the energy density. Then by constructing a path integral for ρA in which

the Euclidean angle in the x− t plane is used as time, [129] showed that

ρA =
e−2πMxt

tr (e−2πMxt)
. (10.15)

In other words, the entanglement Hamiltonian − log(ρA) is local.

Since the entanglement Hamiltonian 2πMxt is local, it follows that σA = ρA. Thus

the maximum entropy locally consistent state explicitly has the form argued for in §8
and in particular has the property of [Infinite Bulk Gap]. We may then pursue the

kind of general local thermodynamic arguments given in §8. Alternatively, we may

explicitly compute the spectrum of Mxt in simple cases and verify that the entropy

obeys an area law.

11 Discussion and speculation

In this paper we have argued for an area law for gapped phases, and we have shown

how to produce tensor network representations of interesting phases. We introduced

the idea of an s source RG fixed point. Assuming all gapped phases are s source

fixed points, we argued that only phases with ground state degeneracy scaling like

G(L) ∼ ecL
d−1

or faster could violate the area law. We also used ideas about local

reconstruction of quantum states to argue for the bound S(ρA) ≤ O(|∂A|)+log(G(HA))

which gave another proof of the claim that a stable hamiltonian requires G(L) ∼ ecL
d−1

or greater to violate the area law. Combining the two approaches, we showed that even

with G(L) ∼ ecL
d−1

, we could not support the suggested logarithmic violation of the

area law. More extreme violations of the area law were ruled out with weak spectral

assumptions about the low temperature thermal free energy.

Some of our results are rigorous, including the proof of the area law for topolog-

ical quantum liquids, the MERA construction, and the bound S(ρA) ≤ O(|∂A|) +

log(G(HA)) for ground states of frustration free Hamiltonians. Nevertheless, our over-

all argument for the area law rests on non-trivial physical assumptions and is not

rigorous. On the other hand, we see no immediate obstacle to making much of the

general argument more rigorous. More interesting, in our opinion, is our claim that if

a phase does violate the area law, then it must be a rather strange beast. For example,

if it is an s source fixed point and obeys the free energy condition, it seems that the

phase must violate our reconstruction arguments in §8. If a frustration free gapped

phase violates the area law, then it must have a very large ground state degeneracy.

If the phase is not an s source fixed point, then it is peculiarly disconnected from its

peers at smaller and larger scales. So while it would be very interesting to exhibit such
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a peculiar beast, we hope to have convinced the reader that the area law holds for a

huge class of systems including essentially all models of current physical relevance.

There are numerous directions for future work. We have not tried to optimize the

analytic parts of the arguments to achieve the best possible bounds, so it should possible

to do better than our simple estimates, e.g., in the MERA construction. Making

progress on the question of recursive localizability or otherwise exhibiting a poly(L)

bond dimension MERA would be very interesting. Providing further arguments for the

s source framework (or counterexamples) is highly desirable. The inclusion of symmetry

in the analysis is a logical next step. Another possible direction would be to explore

the consequences of the s source framework for defects, e.g., interfaces between phases.

It would also be interesting to study the precise quantitative relationship between the

gap and the entanglement entropy. Finally, of particular interest is the extension of

our results to gapless systems.

A very natural speculation is that conventional conformal field theory (CFT) fixed

points with gapless degrees of freedom match our definition of s = 1 fixed points. One

may object that we have only studied gapped phases in this work, but this objection

has significantly less force than one might imagine. Various kinds of topological states

in d > 1 have just as much entanglement in their ground state as CFTs, so the amount

and structure of entanglement is not obviously at issue. Furthermore, long range

correlations can easily be included in the MERA network, so this too does not seem

to be a real objection. We also only require the state to global accuracy L−q; this is

consistent if very high dimension operators are truncated from the spectrum (because

they only contribute very rapidly decaying power law corrections which are well within

our error threshold). The field theory constructions are also very promising. Non-

local tensor networks that exactly represent gapless phases have been exhibited [130]

and [114] has argued that even ground states of gapless regulated field theories can

be approximated by states with limited Schmidt rank. It is also amusing to note that

the structure of correlations in strongly coupled large N gauge theories described by

holographic duals is not so different from a gapped phase, e.g., short-ranged mutual

information to leading order in N . Taken together, this evidence suggests that the

conjecture that conventional field theory fixed points are also s = 1 RG fixed points

is quite reasonable. Of course, even if this conjecture is true, it remains to construct

the required quasi-local unitary. We plan to address these points in a forthcoming

companion paper.
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A What is a phase?

In this appendix we briefly discuss some of the properties we expect of decent quantum

phases of matter (clearly this will be a somewhat personal perspective; for a somewhat

complementary discussion, see [131]). The starting point is typically what we call a

Hamiltonian motif which is a function that maps a set G of graphs (or more generally

a cell complex) to a set H of Hamiltonians defined on those graphs. The set of graphs

often has some restrictions, e.g., to d-dimensional graphs, to trivalent graphs, to planar

graphs, or to graphs with an even number of sites (e.g., in spin-1/2 systems). Cru-

cially, the set of admissible graphs must include a sequence of graphs with size going

to infinity to define a thermodynamic limit. For the present paper we always restrict

to local graphs which can be understood as living in d dimensions. The word motif

is appropriate because typically the way the function works is to assign terms to the

Hamiltonian based on local features or patterns in the graph, e.g. a term for every ver-

tex, link, or plaquette. So when we speak of a phase of matter we are really considering

an equivalence class of Hamiltonian motifs where two motifs are equivalent if they give

the same global properties. In particular, a gapped phase refers at least to a family of

Hamiltonians defined on systems of various sizes all having a system-size-independent

gap (or lower bound on the gap).

However, not just any function from graphs to Hamiltonians can be a representative

of a gapped phase of matter. A Hamiltonian motif must obey certain rules to represent

a gapped phase. We do not attempt to give a completely rigorous definition of a gapped

phase, but instead enumerate the most important rules that a gapped phase must obey.

Indeed, there is some subtlety here. For example, the ground state manifold of Haah’s

code at size L cannot typically be adiabatically connected to the ground state manifold

of Haah’s code at size L+ 1, so by some definitions these two systems are in different

phases. However, because they descend from the same Hamiltonian motif and because

they share many properties, one might like to think of them as representing the same

phase. It is not clear to us which view-point is superior.
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[Stability]: A phase of matter has the property of stability with respect to small

changes in the Hamiltonian motif. We may assign slightly different Hamiltonians to a

given graph without encountering any change in the global properties of the system.

Indeed, there should be an open set in local Hamiltonian space around the Hamiltonian

on any graph within which the global properties are unchanged. In the case of gapped

phases, one convenient way to encode this criterion is to demand that there be a family

H(η) of gapped Hamiltonians interpolating between the initial and final Hamiltonians.

Then ground states of the initial Hamiltonian may be mapped to ground states of the

final Hamiltonian using a quasi-local unitary.

[Local indistinguishability]: Stability of the Hamiltonian implies that the number of

ground states cannot depend on small local perturbations. This leads one to the idea of

local indistinguishability. Truly stable gapped quantum phases must have the property

that all ground states are approximately locally indistinguishable. This ensures that no

local perturbation can split the ground state manifold except possibly by an amount

exponentially small in system size. We will always assume that ground states are

locally indistinguishable unless otherwise specified.

[Insensitivity to Boundary Conditions]: Related to the idea of local indistinguisha-

bility is the idea of insensitivity to boundary conditions. Given some region A in a d

dimensional graph G and given two gapped Hamiltonians H1 and H2 representing the

same phase which differ only far away from A, it should be the case that the state of A

is approximately the same in any ground state of either Hamiltonian. Note, however,

that this notion is subtle. For example, in an integer quantum Hall state on a torus,

inserting flux through the cycles of the torus, which is a global operation, does lead to

a non-trivial Berry phase, so we are not claiming that boundary conditions are totally

irrelevant, far from it. Still, we will assume that local data is indeed insensitive to

boundary conditions. Because this final assumption is not so straightforward as local

indistinguishability and stability (since it requires the notion of a phase), we spend a

little time discussing it.

The starting point for any discussion of insensitivity to boundary conditions should

begin with the decay of correlations. In any gapped phase of matter it can be proven

that all connected correlations decay exponentially. In other words, although the sys-

tem may have long-range entanglement, correlations of local operators always fall off

rapidly with distance. As a necessary tool to prove the decay of correlations, one should

also mention the Lieb-Robinson bound [110, 111] which states that causal influences

propagate with a finite velocity up to exponentially decaying tails. Causality, in the

form of the Lieb-Robinson bound, is another important primitive in the discussion

about insensitivity to boundary conditions.

Now suppose we have two Hamiltonians H1 and H2 differing only far from region
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A such that there is a gapped Hamiltonian path H(η) from H1 to H2 also differing

only far from A. Then by constructing the quasi-adiabatic generator K(η) and its

associated quasi-local unitary, we can map ground states of H1 to ground states of H2.

Since ∂ηH is only non-zero far from A, it follows that the quasi-local unitary generated

by K(η) has an effect on A which is smaller than any power of the separation between

A and the region where ∂ηH(η) is non-zero.

This result is nice, but it relied on the existence of a gap. We want an even stronger

notion of insensitivity to boundary conditions. For example, we might introduce a

boundary to the system which hosts gapless edge states, but we would still expect

that regions far from the boundary are in approximately the same state as before the

boundary was introduced. There is thus a notion of a local gap which protects regions

even from the effects of gapless degrees of freedom provided those degrees of freedom

are localized far from the region of interest.

We can try to make this idea of a local gap sharper using the generator of quasi-local

evolution defined as

− iK(η) =

∫ ∞
−∞

dtF (t)eiH(η)t∂ηH(η)e−iH(η)t. (A.1)

Suppose that all members of the family H(η) have gapless edge states near some

boundary, but we demand that H(η) is only changing far from these edge states. As

usual, we choose the filter function F such that its Fourier transform vanishes for

energies less than ∆. Then if we had a bulk gap, we could take ∆ to be the gap,

but the presence of gapless edge states makes that impossible. On the other hand, if

the matrix elements of K(η) between states of energy less than ∆ are exponentially

small, e.g. because such low energy states are localized far away from where ∂ηH(η) is

non-zero, then we still approximately map ground states to ground states. This is one

example of what we mean by a local gap and insensitivity to boundary conditions.

As the strongest notion of insensitivity to boundary conditions, we might demand

that even if we delete entirely some part of the system, the state of distant regions

remains approximately the same. This situation can be viewed as an extreme version

of the gapless edge state situation where we take an entire region of size R through a

phase transition into a trivial gapped phase (product state ground state). The gap of

the entire system will typically go to zero as R−p, but we still expect that the state

of distant regions will be little modified. However, it should be noted that the ground

state manifold can change in this process. New ground states with splitting at most

e−R
α

can come down into the ground state manifold during the phase transition. We

expect all these new ground states to be locally indistinguishable far from the region

which experienced the phase transition.
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In some cases, this expectation of strong insensitivity to boundary conditions can

be explicitly verified. Suppose we wish to take a large region A through a phase

transition into a trivial phase. Let us further suppose that there is a Hamiltonian

H(η) which interpolates between the initial and final Hamiltonians and which is gapped

throughout the phase transition. Only a non-local (but still few body) Hamiltonian

could possibly maintain a gap throughout the phase transition, but if the non-locality

can be approximately confined within A, then we may still prove a strong result.

Evolving for a finite time with the quasi-adiabatic generator K(η) still generates a

unitary which maps ground states to ground states, but now this unitary will be non-

local within regionA. However, outside of regionA the unitary will again be quasi-local,

so if ∂ηH(η) is confined near region A, then we can prove that the state of regions far

from A are approximately preserved by the evolution.

One obstruction to the existence of such a gapped non-local Hamiltonian interpo-

lating between two gapped local Hamiltonians is if the initial and final ground state

degeneracies are different. This is expected to be a concern if we are effectively chang-

ing the topology or changing the system size in an s > 1 fixed point with ground state

degeneracy which depends on system size. In the examples we understand, e.g., the

layer construction and Haah’s code, the boundary conditions far away are indeed prov-

ably irrelevant. In the layer construction this is trivial while in Haah’s code it follows

because the Hamiltonian consists of commuting projectors.

There may be other obstructions and we do not give a general prescription for find-

ing such a non-local Hamiltonian. However, one idea is to force all pairs of local oper-

ators to have their correction expectation values, e.g. Hnon-local ∼
∑

x,y,α,β(Ox,αOy,β −
〈Ox,αOy,β〉)2.

An example where the limited non-local approach does work is in the gluing together

of two disks of integer quantum Hall fluid. The difficult step is to exhibit a non-local

gapped Hamiltonian whose ground state is a d = 1 Fermi gas. Consider fermions

at half-filling on a one dimensional lattice of length L. It is convenient to work in

momentum space with states labelled by k ∈ [−π, π). The desired Hamiltonian can be

constructed by demanding a single particle energy spectrum ε(k) which is given by

ε(k) =

{
∆/2, k ∈ [−π,−π/2) ∪ [π/2, π)

−∆/2, k ∈ [−π/2, π/2)
. (A.2)

Then the free fermion ground state with states k ∈ [−π/2, π/2] filled is an exact ground

state and the Hamiltonian is gapped. The real space hopping amplitudes which produce

such a single particle spectrum may be found by Fourier transform and decay as one

over distance. We can further modify this Hamiltonian to adiabatically continue it to

a local insulating Hamiltonian thus producing a gapped path from a product state to
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the fermion gas ground state.

We use the various physical properties just reviewed throughout the paper. For

example, we assume some ability to place phases on different types of geometries. If

the phase can be represented as a Hamiltonian motif which only assigns terms to links

on a graph, then we can place such a phase on any type of geometry. More generally, at

least some freedom is required to proceed with our results, e.g. we need tori and open

regions of various sizes. We also use the ideas of stability, local indistinguishability,

and insensitivity to boundary conditions repeatedly. An important statement following

from insensitivity to boundary conditions is that the entanglement entropy S(R) of a

region of linear size R is independent of L for R� L. However, when we give theorems

we endeavor to state the mathematically precise assumptions.

B Adiabatic perturbation theory

Suppose we have a Hamiltonian H(t) which depends on time. Let the instantaneous

energy eigenstates and energies be given as

H(t)|n, t〉 = En(t)|n, t〉. (B.1)

We start evolving at t = 0 from |ψ(0)〉 =
∑

n cn(0)|n, 0〉 and expand the time dependent

state as

|ψ(t)〉 =
∑
n

cn(t)e−i
∫ t
0 En(t′)dt′ |n, t〉. (B.2)

|ψ(t)〉 obeys the Schrodinger equation i∂t|ψ(t)〉 = H(t)|ψ(t)〉 which we want to convert

into an equation for the cn.

Taking the time derivative of |ψ(t)〉 we obtain three terms:

i∂t|ψ(t)〉 =
∑
n

(
En(t)cne

−i
∫ t
0 En(t′)dt′ |n, t〉

)
+

∑
n

(
(i∂tcn)e−i

∫ t
0 En(t′)dt′ |n, t〉+ cne

−i
∫ t
0 En(t′)dt′i∂t|n, t〉

)
. (B.3)

The first term containing En cancels with H(t)|ψ(t)〉, so we have

0 =
∑
n

(
i∂tcne

−i
∫ t
0 En(t′)dt′ |n, t〉+ cne

−i
∫ t
0 En(t′)dt′i∂t|n, t〉

)
. (B.4)

We take a derivative of the eigenvalue equation for |n, t〉 to find an equation for

∂t|n, t〉. First, since 〈n, t|n, t〉 = 1 it follows that 〈n, t|∂t|n, t〉 = 0. Then we obtain for

∂t|n, t〉 the equation

i∂t|n, t〉 = −i(H − En)−1(∂tH)|n, t〉 (B.5)
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where it is understood that the singular term in the inverse is omitted. Expanding the

time derivative of |ψ(t)〉 in the |n, t〉 basis we find (with some relabelling of n and m)

(i∂tcn)e−i
∫ t
0 En(t′)dt′ =

∑
m 6=n

ie−i
∫ t
0 Em(t′)dt′

En − Em
〈n, t|∂tH|m, t〉. (B.6)

We can simply this equation to

∂tcn =
∑
m6=n

e−i
∫ t
0 (Em(t′)−En(t′))dt′

En − Em
〈n, t|∂tH|m, t〉. (B.7)

See [132,133] for a recent general analysis of this formula and [134] for rigorous results;

our needs are simpler.

Suppose we have a single unique ground state separated at all times by a gap of at

least ∆ from the rest of the spectrum. We wish to estimate the probability to remain in

the ground state using perturbation theory assuming that ∂tH(t) is a smooth function

which vanishes for t outside [0, τ ]. We have

c0(τ)− c0(0) =

∫ τ

0

dt
∑
m6=0

e−i
∫ t
0 (Em(t′)−E0(t′))dt′

E0 − Em
〈0, t|∂tH|m, t〉, (B.8)

and upon taking absolute values and using the triangle inequality we obtain

|c0(τ)− c0(0)| ≤
∑
m 6=0

∣∣∣∣∣
∫ τ

0

dt
e−i

∫ t
0 (Em(t′)−E0(t′))dt′

E0 − Em
〈0, t|∂tH|m, t〉

∣∣∣∣∣ . (B.9)

This expression is a sum of Fourier transforms of the matrix elements of ∂tH times a

function of the energy differences.

To complete the analysis define δEn(t) = En(t)−En(0) and note that Em−E0 ≥ ∆

for all m. Then we may write

|c0(τ)−c0(0)| ≤
∑
m6=0

∣∣∣∣∫ τ

0

dt
e−i(Em−E0)t

∆

[
e−i

∫ t
0 (δEm(t′)−δE0(t′))dt′〈0, t|∂tH|m, t〉

]∣∣∣∣ . (B.10)

The function in brackets is smooth and has rapidly vanishing Fourier transform; call

the Fourier transform Hm(ω). Then we have the bound

|c0(τ)− c0(0)| ≤ 1

∆

∑
m 6=0

|Hm(Em − E0)|. (B.11)

Assuming Hm(ω) decays like Je−(ωτ)1−δ and assuming the number of non-vanishing

matrix elements of ∂tH between excited states and the ground state is not too large,

we find a bound like

|c0(τ)− c0(0)| ≤ J

∆
e−(∆τ)1−δ . (B.12)
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If we are considering a Hilbert space of bounded dimension then this bound follows

immediately, and if the Hilbert space dimension is large, then we need a bound on the

number of matrix elements going like poly(log(D)) for a Hilbert space of dimension D.

The probability for the groundstate to decay is Pdecay = 1 − |c0(τ)|/2 (with the

initial condition cn(0) = δn,0). The above bound implies that |c0(τ)| ≥ 1− J
∆
e−(∆τ)1−δ

and hence

Pdecay ≤ 2
J

∆
e−(∆τ)1−δ .

C Controlling the Renyi entropy

A unitary U acting on a Hilbert space V1 ⊗V2 of dimension D2 (assume for simplicity

that D1 = D2 = D) can only increase the Schmidt rank of a state by a factor of D2.

This may be proven by noting that U may always be decomposed as

U =
D2∑
i=1

O1iO2i (C.1)

since U is a vector in the space (V1 ⊗V∗1 )⊗ (V2 ⊗V∗2 ). If V1 and V2 are parts of larger

systems, V1E1 = V1 ⊗ VE1 and V2E2 = V2 ⊗ VE2 , then this bound remains true. In

fact, the bound may be saturated by applying a swap operator which exchanges 1 and

2 to an initial state in which 1 is maximally entangled with E1 and 2 is maximally

entangled with E2.

Applying this simple fact to the case where 1E1 = A and 2E2 = Ā with 1 and

2 small regions neighboring ∂A, the Schmidt rank of ρA can change by at most a

factor of min(D2
1,D2

2). Having approximated the sequence of quasi-local unitaries with

a sequence of circuits acting on `d ∼ logd(1+δ)(L) degrees of freedom at a time, the

total Schmidt rank of a region A in d > 1 can bounded by estimating the number

of such circuit chunks acting across ∂A. A simple counting argument shows that this

number is Nchunks ∼ |∂A|/`d−1 in d > 1. Since the Hilbert space of a block of size `d has

dimension of order ec`
d
, it follows that the state built from the sequence of circuits has

Schmidt rank across ∂A bounded by eNchunks`
d

= ec|∂A|` ∼ ec|∂A| log1+δ(L). This bound is

independent of d and provides a better bound than PEPS constructions. Recall that

the resulting state is also within ε ∼ L−q of the true ground state. Thus there is a

approximation to |ψL〉 with limited Schimdt rank for any region A.

However, this does not imply that |ψL〉 has limited Schmidt rank. Indeed, the

Schmidt rank is badly discontinuous. Furthermore, all Renyi entropies Sn with n < 1
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are only barely continuous. The Renyi entropy is defined as

Sn(ρA) =
1

1− n
log (tr(ρnA)) , (C.2)

where S1 = −tr(ρA log(ρA)) is the usual entanglement entropy. For n = 1 we have the

Fannes-Audenaert inequality [86,87]: if 1
2
‖ρ− σ‖1 = T ≤ 1 is the trace distance and if

ρ and σ are defined on a space with dimension D, then

|S1(ρ)− S1(σ)| ≤ T log(D − 1)− T log(T )− (1− T ) log(1− T ). (C.3)

The inequality is saturated for

ρ = diag(1, 0, ...︸︷︷︸
D−1

) (C.4)

and

σ = diag(1− T, T/(D − 1), ...︸ ︷︷ ︸
D−1

) (C.5)

with S1(ρ) = 0 and S1(σ) = T log(D − 1)− T log(T )− (1− T ) log(1− T ).

Given the same two states ρ and σ, an elementary exercise gives Sn(ρ) = 0 and

Sn(σ) =
1

1− n
log
(
(1− T )n + (D − 1)1−nT n

)
. (C.6)

To have Sn(σ) of order ε, we must take T ∼ ε1/nD− 1−n
n which is much smaller than the

T ∼ ε
log(D)

needed for n = 1. Since D grows exponentially with system size, we need

states to be exponentially close to bound the Renyi entropy for n < 1, and hence the

Renyi entropy is effectively discontinuous.

We still conjecture that the Renyi entropy of s = 1 fixed points |ψL〉 obeys an area

law in keeping with the analysis of [114], but our results here are insufficient to prove

this. We have shown that there is an approximate state with Renyi entropy which can

at most modestly violate the area law.

D Dilute array of non-abelian anyons

Suppose we have an array of N non-abelian anyons a in d = 2 dimensions with quantum

dimension da > 1. Associated with these anyons is a non-local fusion space V of

dimension dim(V) ∼ dNa . If we distribute the anyons roughly equidistant from each

other (with pinning potentials, say), then the spacing between anyons will be roughly

n−1/2 where n = N
L2 is the anyon density. Since the underlying topological phase is
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gapped with correlation length ξ, the states in V are locally coupled with strength

Ja ∼ e−n
−1/2/ξ. The total spectral width of the anyon Hamiltonian is then of order

NJa and hence if n−1/2 increases as Lα then the all dNa states are essentially only

exponentially split.

Given a finite region of size R, the number of anyons contained within it is nR2,

so unless n approaches a constant in the thermodynamic limit L→∞, the number of

anyons in a finite region approaches zero. Then even if we imagine sitting in a highly

entangled state in V , the extra entanglement in a region of size R will be negligible

as L → ∞. This conclusion is slightly delicate since the states in V are not strictly

labeled by local data, but if no anyons are present in a region, then the state of the

system will be the same as in the ground state which obeys the area law.

Thus while this is an interesting case (and clearly permits highly entangled states

to be formed, e.g., as in a topological quantum computation), there are states in V
which are lightly entangled. In any event, the setup violates our assumptions.

E Topological entanglement entropy is RG invari-

ant

In this appendix we use the s-sourcery to give an argument that the topological entan-

glement entropy (TEE) is a well-defined property of an s = 1 fixed point, that is, it is

preserved under the s = 1 RG step we have defined. This argument is complementary

to an argument for universality given in [84,135] and provides a check on our methods.

The TEE can be defined [84,135] as γ in

2γ ≡ SAB + SBC − SB − SABC

with regions A,B,C as in the figure. We assume A,B,C have linear size much larger

than `, the range of the quasilocal unitary (small disks in Fig. 9). We will restrict the

discussion to d = 2, but believe that the argument extends to the generalization to

arbitrary dimensions given in [136].

The s = 1 RG step acts on a copy of the system tensored with a collection of

decoupled ancillas; the subspace labelled A includes both the system Hilbert space

associated to region A and the accompanying ancillas which will be intercalated by the

RG step. We need to show that a quasilocal unitary of range `, acting on the system at

size L times these ancillas preserves the combination γ, up to corrections polynomial

in 1/L.
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Figure 9: A,B,C label regions used in the

definition of the topological entanglement

entropy. The ancillas which are unentan-

gled before the action of the quasilocal uni-

tary are not pictured. The grey disks repre-

sent regions of linear size ˆ̀, on which a sin-

gle layer of the staggered circuit representa-

tions of the quasilocal unitary has support,

as in Fig. 6.

For any region R, the change in its

entanglement entropy produced by such

a quasilocal unitary can be approximated

as

∆SR =

∫
∂R

dσs(σ) +
∑

corners,α

c(θα) (E.1)

where s is a smooth geometric function

localized to the boundary of R, and c(θα)

is the contribution from a corner of ∂R

which makes an angle θα. This formula is

similar in spirit to the formula of [136] for

the whole entanglement entropy for re-

gions of topological quantum liquids. The

precise ∆SR is a Riemann-sum approxi-

mation to such an integral, with error de-

termined by ˆ̀.

To accomplish this, approximate the

quasilocal unitary by a staggered circuit

as in §9.2 and in particular Fig. 6 (the

support of one layer of the circuit is de-

picted by the gray disks in Fig. 9). The

error in the entanglement entropy from

this circuit approximation is usefully bounded by using the Fannes-Audenaert inequal-

ity again; a useful approximation requires ε ∼ L−q as before. The contributions to the

change in entanglement entropy of any region R from each layer of the circuit comes

only from disks which intersect the boundary. Away from corners of the region (red

disks in Fig. 9), these contributions can be represented by a derivative expansion in `

times local geometric functionals of the shape of the boundary, as in [136]:

s(σ) = a0 + a2`κ
2 + a3`∂σκ+ ...

where κ is the extrinsic curvature of the boundary and the ellipsis represents terms

suppressed by more powers of `. Terms in this expansion which are odd under ex-

changing the inside and outside of region R vanish because the whole system is in a

pure state [136].

Corners, where the shape of the boundary is not smooth, even at the scale `, must

be treated specially. The only property of the corner contribution c(θ) we require is

that it depends only on the angle between the edges which enter and exit the corner

disk (θ = π is no corner).
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Adding up the contributions in the form (E.1) to ∆γ, the area-law contributions

proportional to a0L
1 cancel by design, leaving behind terms proportional to `

L
. (This

step of the argument is identical to that of [136], with ` here playing the role of the

correlation length there.) The corner contributions also directly cancel in pairs. In the

thermodynamic limit, therefore, we find ∆γ = 0.

F Commmuting projector Hamiltonians

Here we review prior work on commuting projector Hamiltonians as a simple illustration

of the frustration free setting. Many workers have extensively developed this machinery

(see e.g. [104–106,137,138]).

Suppose H =
∑

x Px is a sum of commuting projectors with Px|g〉 = 0 for all locally

indistinguishable ground states |g〉. It has already been proven that the ground states

of such Hamiltonians obey the area law. Our aim is to use this case to illustrate our

alternative approach. However, let us first establish the area law using an argument

similar to that in [15].

Consider the ground state projector Pg which can be obtained thermodynamically

as

Pg = lim
β→0

e−βH . (F.1)

Because H is a sum of commuting projectors, the thermal state of H is a quantum

Markov chain for all β [138]. For our purposes this means that the conditional mutual

information, I(A : C|B) = S(AB) + S(BC) − S(B) − S(ABC), vanishes whenever

B isolates A from C. Since the Markov property holds for all β, it also holds for

the normalized ground state projector. Furthermore, provided we work locally, local

indistinguishability implies that the conditional mutual information in the ground state

projector is the same as in any particular ground state.

Hence we have that I(A : C|B) = 0 whenever B isolates A from C in every ground

state. Let A be any simply connected region of linear size R, let B be a strip of width

W bordering A, and let C be the rest of the system. Then we have

0 = I(A : C|B) = S(AB) + S(BC)− S(B)− S(ABC), (F.2)

but because the state of ABC is pure we have S(ABC) = 0, S(AB) = S(C), S(BC) =

S(A), and S(B) = S(AB). Then we also find that

0 = S(C) + S(A)− S(AC), (F.3)

which states that the mutual information I(A,C) vanishes. Thus we have

S(A) = S(AC)− S(C) = S(B)− S(AB) ≤ 2S(B)− S(A) (F.4)
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by the Araki-Lieb inequality [139], S(AB) ≥ |S(A) − S(B)|. Since the size of B is

bounded by Rd−1W and since the mutual information vanishes once W is greater than

the range of the Hamiltonian, we immediately find

S(A) ≤ WRd−1 (F.5)

which is the area law.

The Markov property also implies that we can reconstruct states of subregions using

only local data [104, 105]. In terms of our previous variables, σA = ρA for quantum

Markov chains. Furthermore, σA is given by

σA =
Pg,A
G(HA)

, (F.6)

where Pg,A is the ground state projector for HA, the Hamiltonian truncated to region A.

(The formula for SA used in §7.2 is a consequence of this relation.) Because commuting

projector Hamiltonians cannot support protected edge states, there is another commut-

ing projector Hamiltonian ȞA which has a full gap except for locally indistinguishable

ground states. These two Hamiltonians differ only in boundary terms localized near A.

The ground state degeneracy of HA is then bounded by the ground state degeneracy

of ȞA plus an area law piece. The ground state degeneracy of ȞA is something we can

relate to s using the RG framework, so we have precisely the situation discussed in the

section 8.
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