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Self-consistent (non-)abelian statistics in 241D are classified by modular tensor categories (MTC).
In recent works, a simplified axiomatic approach to MTCs, based on fusion coefficients N,” and spins
si, was proposed. A numerical search based on these axioms led to a list of possible (non-)abelian
statistics, with rank up to N = 7. However, there is no guarantee that all solutions to the simplified
axioms are consistent and can be realised by bosonic physical systems. In this paper, we use simple-
current algebra to address this issue. We explicitly construct many-body wave functions, aiming to
realize the entries in the list (i.e. realize their fusion coefficients N,” and spins s;). We find that all
entries can be constructed by simple-current algebra plus conjugation under time reversal symmetry.
This supports the conjecture that simple-current algebra is a general approach that allows us to
construct all (non-)abelian statistics in 2+1D. It also suggests that the simplified theory based on
(N, i) is a classifying theory at least for simple bosonic 2+1D topological orders (up to invertible

topological orders).

I. INTRODUCTION

We know that symmetry breaking orders? are de-
scribed by group theory, which allows us to classify all dif-
ferent symmetry breaking orders. It is then natural to ask
what mathematical theory classifies topological orders®?,
which are beyond symmetry breaking orders. One pro-
posal is to use the properties of topological excitations
(such as their (non-)abelian statistics) to classify topo-
logical orders. This has led to the proposal that d + 1D
bosonic topological orders can be classified by unitary
(d + 1)-categories with one object.%% In particular, uni-
tary (2+1)-categories with one object are modular tensor
categories (MTC), leading to the proposal that 2+1D
bosonic topological orders are classified by MTCs.” 1
Such a classification is up to invertible topological orders,
which have no nontrivial topological excitations.? 16

A. Simplified axiomatic approach

The papers Ref. 12,15 have formulated a simplified ax-
iomatic approach to MTCs. This approach is based on
fusion coefficients N,? and spins s;; it does not explicitly
involve more involved data such as R- and F-matrices.
The simplified axioms were used for a numerical search
of simple MTCs, which led to a list of possible bosonic
topological orders in 241D, with rank up to N = 7 (see
Tables I - IV).

For certain special types of topological orders, the clas-
sification can be described by simpler theories. For exam-
ple, topological orders with gappable edge for 241D in-
teracting bosonic systems can be classified by unitary fu-
sion categories (UFC).'7!8 For 241D bosonic/fermionic
topological orders (with gappable or un-gappable edge)
that have only abelian statistics, we can use integer K-
matrices to classify them!® and use the following U(1)

Chern-Simons theory to describe them!? 2
K
L= T;]afuayaﬂe“”’\. (1)

Such an effective theory can be realized by a multi-layer
fractional quantum Hall state:

H (ZZI - Z;)K” H (ZZI — Z;—I)K” 67% i |Z¢I|2' (2)

Ii<yj I<Jsi,g

When the diagonal elements Kj; are all even, the K-
matrices classify 2+1D bosonic abelian topological or-
ders. When some diagonal elements Kj; are odd, the
K-matrices classify 2+1D fermionic abelian topological
orders.

The list produced in Ref. 12,15 gives solutions to the
simplified axioms for MTCs - as such it describes possible
self-consistent (non-)abelian statistics in 2-+1D. However,
there is no guarantee that all solutions are indeed consis-
tent and can be realized by many-boson wavefunctions.

B. Simple-current algebra constructions

In this paper, we pursue a constructive (rather than ax-
iomatic) approach to bosonic topological orders in 2+1D.
We use simple-current algebra to construct and classify
such orders, and demonstrate that simple-current alge-
bras can produce all orders listed in Tables I - TV.

It is well-known that correlation functions in confor-
mal field theory (CFT) can be used to construct many-
body wave functions?® 32 that realize topological orders
in 241D. In this paper we use these ideas to arrive at
many-boson wavefunctions for bosonic topological or-
ders. The main building blocks for our constructions are
a set of CFT simple currents

v, I=1,--- M. (3)



We combine these with scalar field vertex operators to
define

. I n Sl
cp = pret Zutu?" =y etk ® (4)
and construct bosonic wave functions as

P({z{}) = lim_(V(zeo) [ er(z)))- (5)
il

Zoo —00

We refer to section II for details and further explanation.

In this paper and in Ref. 29, we like to stress that it is
misleading to state that CFT as such classifies topological
orders. It is really simple-current algebra that can be
used to classify 2+1D topological orders. In this paper,
we show how to calculate the fusion coefficients N,” and
spins s; of the topological excitations from simple-current
algebra. This allows us to recover all entries in the Tables
I - IV using simple-current algebra.

The consistency of the MTC axioms of Ref. 12,15 guar-
antees that all consistent orders are covered by lists such
as those of Tables I - IV. In that sense those lists are
an upper bound to the actual list of all consistent or-
ders. The orders coming out of simple-current algebra
constructions are consistent by construction - they thus
establish a lower bound to the list of all consistent orders.
In all cases considered in this paper, the two bounds
agree, allowing us to conclude that both the simplified
axiomatic approach and the simple-current algebra con-
structive approach give complete results.

II. CONSTRUCTING TOPOLOGICALLY
ORDERED STATE OF A GIVEN NON-ABELIAN
TYPE VIA A SIMPLE-CURRENT ALGEBRA

In this paper, we will use charged particles in multi-
layer system under magnetic field as a general and sys-
tematic way to realize 241D bosonic and fermionic topo-
logically ordered states. We will assume all the particles
are in the first Landau level. Thus the many-body wave
function has a form

V({=/}) = P({z[})e T Zur lH17 (6)

where ¢ labels different particles, I = 1,---, M labels
different layers, and P({z!}) is a (anti-)symmetric poly-
nomial (under 2/ < 271 ), depending on the Bose or Fermi
statistics of the particles in the I*" layer. In this paper,
we are going to use such kind of systems to systemat-
ically realize non-abelian topological orders for bosons
and fermions.

A. Symmetric polynomial P({z/}) as a correlation
function in a simple-current algebra

Let us consider a CFT generated by simple currents
cr(z), I =1,---, M. By definition, simple currents are

operators with unit quantum dimension. The correla-
tion function of simple currents always has one confor-
mal block. If the simple currents c;(z) are also bosonic
with integer conformal dimension or fermionic with half-
integer conformal dimension, then we can use the corre-
lation function of the simple currents c¢;(z) to construct
the (anti-)symmetric polynomial P({z]})2628:33

PeID o tim (V) [[erGh) (@)

i1

where V(24 ) represents a background to guarantee that
the correlation function be non-zero. In fact ¢z(z) is re-
lated to the annihilation operator for the bosons in the
I*h layer.

Such an approach allows us to use different simple-
current CFTs to construct/label different many-boson
wave function, which may correspond to different 2+1D
topologically ordered states. For example, the Laugh-
lin wave function P({z;}) = [[,_,;(2: — 2;)™ can be con-
structed this way by choosing a Gaussian CFT and choos-
ing

o(z) = e VMo (8)

as the simple-current operator.
2
a

2

Here, the operator
¢'*?(*) has conformal dimension %- and the following op-

erator product expansion (OPE)
0106(2) gibd(w) _
(Z _ w)abei(a-i-b)d:(w) + O((Z _ w)ab-i—l). (9)

In fact

N
H(Zz —z;)™ x Ziign@(e_‘N\/ﬁd’(zw) H elx/ﬁ¢(zz')>.
<y i=1

(10)

To construct the abelian topologically ordered states
described by the K-matrix wave function (2), we can
start with a Gaussian model described by ¢* fields that
have the following OPE

Q" (2) il 8" (W) — (5 _ )Gl o1 U)o (w)

(11)

We see that e'##9" (%) has a conformal dimension
Ly k:—le G"k (12)
2 2 p " v

where the inner product - is defined via G*”. The metric
G" plays a crucial role, as a given choice of G* leads
to a specific set of momenta k, giving vertex operators
with integral conformal dimension (or half-integral for
fermionic theories), thereby setting the operator content

of the theory. If we choose ¢; = eikl ¢ = o2, kfﬁ“,



TABLE I: A list of 35 bosonic topological orders in 241D with rank N = 1,2,3,4 and with maX(N,ij) <3 AlNK<A4

orders have max(N, ]:] ) = 1. The entries in blue are composite topological orders that can be obtained by stacking lower rank
topological orders. The first column is the rank N and the central charge ¢ (mod 8). The second column is the topological
entanglement entropy Stop = log, D, D = /), d?. The quantum dimensions of the topological excitations in the third column

are expressed in terms of (' = % The fourth column are the spins of the corresponding topological excitations.

By ‘“type (Xi, k) we indicate a correspondence to affine Kac-Moody current algebra le at level k, and (X;, k)1 indicate
q
simple-current reductions of Kac-Moody current algebra.

NE Stop di,da, - S1,82,° - type NE Stop di,da,--- 81,82, - type
15 0 1 0
28 1 05 1,1 0,1 U1, (A1,1) 28, 1 05 1,1 0,—1 (F7,1)
20,5 | 0.9276 1,¢ 0,2 (G2, 1), (A1,3); || 2514/5 | 0.9276 1,¢ 0,—2 (Fi,1), (A2,2),
32 10.7924 1,1,1 0,2, % (A2, 1), (A1,4)% 38, 10.7924 1,1,1 0,—%,—= (Es, 1)
3p | 1 11,6 0,5, 15 (Bs, 1) 3%, 1 11,6 0,3,—75 | (Br,1), (Es,2)
3| 1 L1,¢G 0,3, = (A1,2) 3%, 1 1L,1,G 0,3,-2 (Bs, 1)
35p | 1 1,1,¢ 0,4, = (B2,1) 3%, 1 1,1,¢ 0,3, -5 (Bs,1)
37B/2 1 1717<21 0’%’1_76 (B371) 3—7/2 1 1717C21 07%7_1_76 (B471)
357 |1.6082|  1,¢3,¢3 0,—1,2 (A1,5)1 38g,7 |1.6082| 1,¢3,¢2 0,%,-2 (A4,2)1
45 1 1,1,1,1 0,0,0, 2 (Dg, 1) 450 1 1,1,1,1 0,0,%,-1
4{3 1 1717171 07%7%7% U(1)2 4§1 1 1717171 Ov_év—é7% (D771)
48 1 1,1,1,1 0,4,4,2 45, 1 1,1,1,1 0,1 -11 (Ds, 1)
4?})3 1 1717171 07%7%7% (A371) 453 1 1717171 07 27—%7% (D571)
4f 1 1717171 07%7%7% (D471)7 (A273)é 40 “ 1.8552 17(3174.3174-%4-% 07%7_%70
495 |1.4276 | 1,1,¢3,¢5 | 0,—%, 35, 2 (A1, 3) 45, 114276 | 1,1,¢3,¢3 |0,3, -5, -2
A5 | 14276 | 1,1,¢3,¢G | 0,4, — %, 2 48514276 | 1,1,63,¢3 | 0,—1, L, 2 (Cs,1)
4% 5 |1.8552 | 1,¢3,¢3, ¢3¢ |0,—2, -2, L (A1,8)1 48,5 | 18552 |1,¢3,G3,G3¢3 | 0,2, 2, —%
4131)/3 2.1328 17(%7(?7{’? 07%7%7_% (A177)% 4[€10/3 2.1328 17{%7(37(? 07_%7_57% (G272)7 (A672)%
where k! = (ki kl,.-.) and ¢ = (¢',¢%,---), we find  Now we choose
tha.t . 1 .
cr = Pret Zuknd" = ikl e (17)
Iy I _ I\Kir I _ J\Kig .
P({z}) = H (zi z]) H (zi Zj ) to construct the wave function as
I1;i<j I1<Jsi,g
: P({z[})= lim (V ). 18
x lim_(V(za) [T er(z1)). (13) (teih) = i (Vo) [Jerz)- (8)
Zoo —00 o i
) P But in this case, in order to obtain an (anti-)symmetric
if the k' satisfy polynomial P({z!}),
1 J
Kry=k" -k’ (14) Kiy=k' k' =Y k.G"E] (19)
. . . . 2
In order to obtain an (anti-)symmetric polynomial
P({z!}), we see that K;; must be integer. may not be integer. In fact, introducing
Now, we are ready to construct topologically ordered ) I
. . . L _ k,, "
states of a given non-abelian type. Let us consider a Ca = HC?I = el Xk HWJU (20)
simple-current CF'T generated by a set of simple currents I I

vr,

We assume that the 7 have finite orders described by
an integer matrix n = (n,):

I=1,---,M. (15)

[[@nH™r =1, vI

J

(16)

and noticing that cz and c; must be mutually local for
any integer vectors @ and I;, we find that k{t must satisfy
I1. I ypvyJypJ _ psc _ gsc sc
> kLG — B — B+ B
IJpv

=Y ' Kb — by — B+ 1 e N
1J

(21)



for any positive integer vector @ and b (i.e. ar € N and
br € N). Here N = {0,1,2,---} and A} is the conformal
dimension of 1z = [[;¥]". Since the h¥ are rational
numbers, in general, K;; are also rational numbers. We
see that, starting from a simple-current CFT, we can
construct all the 2+1D topological orders of a given non-
abelian type, by finding all the K-matrices that satisfy
the conditions (21).
If we further require that

Z a' Krja? — 20 4+ h3% = even, (22)

IJ

for all @, then we will obtain the bosonic 2+1D topo-
logical orders of a given non-abelian type. If we require
that

> a'Kpja? =20 + b3 = odd, (23)
IJ

for some @, then we will obtain the fermionic 241D topo-
logical orders of a given non-abelian type.

B. Topological excitations from simple-current
algebra

In the above, we have used the simple-current CFT
generated by the simple currents cy(z) to obtain the
ground state wave function of a 241D topological order.
In this section, we are going to discuss how to obtain the
topological excitations from the simple-current CFT.

First, we like to introduce the notion of simple-current
primary field. Acting with ¢;(z) on to the ground state
|0) generates the adjoint representation of the simple-
current algebra. The simple-current algebra has other ir-
reducible representations, which can be obtained by the
action of ¢y (z) on the ground state |n) = 7|0) of a twisted
sector. Thus the different irreducible representations of
the simple-current algebra are labeled by 1 (where n =1
corresponds the adjoint representation). The operator
1(z) that corresponds to the twisted ground state |n) un-
der the operator-state correspondence is called a primary
field of the simple-current algebra.

The primary fields 7(z) are local with respect to all the
simple currents cy(z):

(24)

er(2n(w) ~ (z = w)*sr e (w) + ...

where ag, , are integers. Each simple-current primary
field (or each irreducible representation of the simple-
current algebra) corresponds to a type of topological ex-
citation in the corresponding topological order.

So to use CFT to study 241D topological order, we
need to first identify the simple currents to produce the
many-body wavefunction of the topological order. We
then need to find the irreducible representations (or the
primary fields) of the simple-current algebra to obtain
the topological excitations and their properties (such as
the quantum dimensions, the spins, etc ).

In general, the simple currents ¢;(z) have the form

cr(z)

where 1; are simple currents with finite order (see
eqn. (16)). Let us introduce
cp = H cl}I .
I

L= Hw?r
I

Also, let us use o,, @ = 1,2,---, to denote the primary
fields of the simple-current CEF'T generated by simple cur-
rents ¢, and use o b O denote the product of o, and

vy o o:F Are descendent fields of the primary field o, and
have hlgher conformal dimensions

h _‘>th

a,b —

:wleik}'(ﬁ :’(/]Ieizukll“(’bu (25)

(26)

(27)

where A3 is the conformal dimension of o, and h%. op
the conformal dimension of o ;. The OPE of O oif Wlth
1z has for its leading term

1

)hsc+hsc 7hsc aih

— Onars (28)
The simple-current primary field 7 for the original sim-
ple currents ¢y is given by

Nage = 0gqe'l® = gget 2ulid” (29)
The corresponding descendent fields are given by
N gos = 0 5e't e PE bikh (30)

for all different integer vectors b. Each of those operators
should be mutually local with respect to c¢z. This requires
1™ to satisfy

Z CLIK]]bJ + Z IkIG,uula hsc hSC
IJpv

hic,a+5 €z
(31)

for any integer vectors @ and b.

To understand the above construction in more detail,
let us count the number of cy-simple-current primary
fields n (which is equal to the number of topological types
of the topological excitations in the corresponding topo-
logical order). First a ¢/-primary field 7 corresponds to
a pair: a tYj-simple-current primary field o, and a vec-
tor 1®. So the c¢;-primary fields are labeled by («,1%).
We have used 74,1~ to denote those c;-primary fields. ¢
must satisfy eqn. (31). In fact, it is enough to find ratio-
nal vectors I* that satisfy

> kLGS — by — B + B €2, V.
IJpv

(32)

For each «, we may have many solutions [ which satisfy
the above equation. But two solutions I{ and IS are
regarded as the same if they are related by

19 =13 => k'nija;, aj€Z.
1

(33)

)



TABLE II: A list of 10 bosonic rank N = 5 topological orders in 241D with max(N,’) < 3. The orders 5?18/7 have max(N,”) =
2, all other N = 5 topological orders have N]ij =0,1.

NB Stop di,da,--- 81,82, - type

58 |1.1609| 1,1,1,1,1 0,44, -1 -1

58 |1.1609 1,1,1,1,1 0,2,2,-2 -2 (A4, 1)

55 11,7924 | 1,1,¢4,¢H,2 0,0,5,—8,5 | (A1,4), (U(1)s/Z2),
550 117924 | 1,1,¢H, ¢, 2 0,0,—%,2,% [55“@45’”]%
55 11,7924 1,1,¢4, ¢, 2 0,0,-1,2 -1 (Ca,1), (A5,2)1
550 | 17924 | 1,1,¢h,¢h,2 0,01, -2 -1 555 @451
Ble/in | 25573 | 1,65,63,¢3,¢6 |0 —fr, 7o 1 —ax | (Fa,2), (A1,9)y
521611 25573 | 1,65,¢3,G3, G0 | 0= —Fro 71 | (Es,3), (4s,2);
51B8/7 2.5716 | 1,¢3,¢3, (To, Gl 0,—3,—%,%,32 (A1,12)%, (A2,4)%
58157 | 25716 | 1,¢, &3, ¢far Cla | 0,77, -7, —3 (A3,3)1

Counting the pairs (oq,1%) of inequivalent solutions will
give us the number of cj-simple-current primary fields
and the number of topological types.

III. 241D TOPOLOGICAL ORDER FROM

CHIRAL %;M ORBIFOLD CFT

In this section, we will give an example of using simple-
current algebra to construct a wavefunction that realizes
a 241D topological order. In the process, we will give a

brief review on the 22 orbifold CFT, following Ref. 34.

A. Virasoro algebra

Here, we will view a CFT as a 1+1D gapless sys-
tem with unit velocity v 1 on a 1D ring of size 2.
The total Hilbert space V of the CFT can always be
viewed as a sum of (irreducible) representations of the
Virasoro algebra. The Virasoro algebra is generated by
the energy-momentum tensor 7'(z), whose Fourier com-
ponents T'(z) = >, 2~ " 2L, satisfy

3

—n)Lpgn + £ (m

[Lim, Ly] = (m 12(

— m)5m+n70. (34)
The character of a representation of the Virasoro algebra
is defined as

Xen(q) = Tr(gh™ 1), (35)
where Ly = H is the Hamiltonian of the CFT on the
ring. So the character encodes the energy spectrum of
the CFT on the ring. The irreducible representations of
the Virasoro algebra are labeled by (c, h), where h is the
energy of the lowest energy state in the representation. h
is also the conformal dimension of the Virasoro primary
field associated to the representation. The character of

the corresponding irreducible representation has the gen-
eral form

[d" —¢" +q" — ..

1, (36)

where

(37)

— iﬁ1_q

and the terms —q"' +¢"2 +. .. represent subtractions due

to null states in the Verma module with highest weight
h.

B. U(1) current algebra

The U(1) current algebra (which is a simple-current
algebra) is generated by j = i0¢. (j is a simple current.)
In other words, the space VIU ™ of the adjoint represen-
tation of the U(1) current algebra is generated by j(z)
acting on the ground state |0). The corresponding pri-
mary field for the adjoint representation is the identity
) to denote the ad—

The adjoint representation V1

operator 1. This is why we use Vl
joint representation.

has a character x?(l)(q) = 1/n(q). However, the adjoint
irreducible representation of the U(1) current algebra is
not an irreducible representation of the Virasoro algebra.
Instead, it is formed by many irreducible representations
VV”I 2 Of the Virasoro algebra generated by the energy

momentum tensor T(z) o j2(z). It turns out that

1)269

n>0

1 e (38)



TABLE III: A list of 50 bosonic rank N = 6 topological orders in 2+1D with max(N,’) < 2.

Siop | D? di,do, - NB @ NP type
1.2924| 6 1,1,1,1,1,1 , 28, @ 3% U(1)s
1.2924| 6 1,1,1,1,1,1 0,—-%,—5.4, -5, -1 28 © 35,
1.2924| 6 1,1,1,1,1,1 0,1.33,- -5 28 @ 3%
1.2924| 6 1,1,1,1,1,1 0,1, — 3. — 3 1515 28, ® 3%, (As,1)
1.5 8 1,1,1,1,(3, ¢4 0,1, -1 1 1 3 2f ©3%, ),

1.5 8 1,1,1,1,¢4,¢3 0,4,-2,1 1L 3 2f ©3%;),

1.5 8 1,1,1,1,¢3,¢3 1111 2f ®37),

1.5 8 1,1,1,1,¢4,¢3 2f ©35; ),

15 8 1,1,1,1,43,¢3 2f ® 35,

1.5 8 1,1,1,1,¢3, ¢4 0,1, -1,1, = 2f ©3%, ),

1.5 8 1,1,1,1,¢3,¢3 0,3, -+ 12 T 27 ® 35,

1.5 8 1,1,1,1,¢4,¢a 0,4,-2, 3, -2 L 2B @3k,
1.7200 | 10.854 1,1,1,¢3,¢3, ¢ 0,—3,—3,7%, % 2 2045 © 3%,
1.7200 | 10.854 1,1,1,¢3, 63,6 03,4, - %, —%, -2 | 2,93
1.7200 | 10.854 1,1,1,¢3,¢3,¢ 0,—3,—% 1,1 —2 | 28,45 ®3%, (As,2)
1.7200 | 10.854 1,1,1,¢3,¢3.¢a 0,4,4,— 4.2 2@4 ® 3%
1.9276 | 14.472 IRNeNeNeNeTe: 0,3, = 23 254 ® 35, (E7,2)
1.9276 | 14.472 1,1,(3,¢3,¢3,83¢3 0,2, %, 2?_4 ®3%),
1.9276 | 14.472 1,1,¢3, ¢, ¢, ¢cach 0,4, —&, 2@2@3?7/2
1.9276 | 14.472 1,1,¢3, ¢, ¢4, ¢aca 0,4, -2, -+, 2?% ® 3%,
1.9276 | 14.472 1,1,¢3, ¢, ¢, ¢cach 0,4, -2, &, 2% ® 3%,
1.9276 | 14.472 1,1,¢6,¢3,¢8, ¢ 0,3 — 115 2% ®3L51/2
1.9276 | 14.472 IRNCNeNeNeTe; 1112537 2% ® 3%,
1.9276 | 14.472 1,1,65,C5,Ch.GC3 0,1 2??4 ® 352
1.9276 | 14.472 1,1,¢3, G, ¢, ¢cdcd 0,1 25,45 ®3%; ),
1.9276 | 14.472 IRNeNeNeNeTe: 0,1, 28,45 ®3%, ),
1.9276 | 14.472 1,1,¢65,¢3,8, ¢ i r 1. 23 25,45 ® 37
1.9276 | 14.472 1,1,¢4, ¢3¢, ¢a¢a 0,3 =3 25,45 ® 38/
1.9276 | 14.472 IRNeNeNeNeTe: 0,1 =3 25,45 ® 35/
1.9276 | 14.472 1,1,65,63,63,6363 0,1 2, 25,45 ® 37
1.9276 | 14.472 1,1,¢3, ¢, ¢, ¢cach 0,1, —2 25,45 ®35, ),
1.9276 | 14.472 INNeNeNe NeTe 0,1, - 28, 235, ,
2.1082 | 18.591 1,1,¢8, ¢, ¢3,¢2 0,—1, a, 25,35,
2.1082 | 18.591 1,1, G, 2. ¢ 0,1 =, 2f ®3%,, (Cs,1)
2.1082 | 18.591 1,1,¢68,¢3,¢2,¢2 0,1, 2 2F®3§ (A1,5)
2.1082 | 18.591 1,1,¢4,¢E 2, ¢3 1, 28, ® 35,
2.1609 | 20 1,1,2,2,v5,V5 :, ,(U(l)s/Zg)%
2.1609| 20 1,1,2,2,v/5,V5 [6{?’“@4{?*]%
2.1609 | 20 1,1,2,2,v5,V5 (B2,2)
2.1609 | 20 1,1,2,2,v5,V5 6" ® 4511
2.5359 | 33.632 1,83, ¢ 3 cict, cack 2% ®3%,;
2.5359 | 33.632 1,¢h, ¢, G2, ched che 2%,,/5 © 38,
2.5359 | 33.632 1,3, ¢, C3, ¢3¢, 3¢ 2% ® 357
2.5359 | 33.632 1,¢h, ¢, 2, et el 27,4/ © 3850
2.9132 | 56.746 1,¢i, ¢, G, Gy G (A1,11)1
2.9132 | 56.746 17C1117C517Cf17ﬁ117<fl 3 (A10:2)ﬁ
3.1107 | 74.617 1,¢2,¢3, ¢Ts, (e, (o 5'9°9)3 "3 (A1716)%
3.1107 | 74.617 1,63, ¢3, (T6, (e, CTo —5 3 (A2,6),
3.3263 | 100.61 | 1, 3521 34v21 34V21 50v21 THvoL 1
3.3263 | 100.61 | 1, 35Y2L 34v21 34v21 5021 T4yaL 1 (G2,3)




TABLE IV: A list of 24 bosonic rank N = 7 topological orders in 2+1D with max(N,ij) < 1. Since N = 7 is a prime number,
all those 24 topological orders are primitive.

NP | Swp | D? di,da, - 51,82, type
72 [1.4036] 7 1,1,1,1,1,1,1 01,122 33

780 11.4036| 7 1,1,1,1,1,1,1 0,—%,—%,—%,-2,3,2 (Ag, 1)
Toya 2385727313 1,1,(6,G5,G8,C3,C8 0,3, 5,5, 1 5 (A41,6)
Tihs |2.3857|27.313 |  1,1,¢4,¢6,63,¢8,C8 0,3, 5, 5,2, —1,-2 [75/4@9415]%
78054 | 2385727313 | 1,1,44,¢5. 8, C6. 6 0,3, 8% 2.1 -2 -2 [71133/4@94{3]i
78,4 |23857 27313 | 1,1,¢d,¢4, 3.3, ¢ 0,388,115 | P04l
78,4 |2:3857 |27.313 | 1,1,¢5,¢6,¢3.¢G8,¢8 |03, -5, — 5.1 — 1~ [7511/4@94{9]i
7,4 |2.3857 | 27.313 | 1,1,(5,¢6,¢6.G5.C8 0,5, — o~ 1 — 1 s [7137/4@94{3]%
70, |23857|27.313|  1,1,46,G5,¢8,C8,C8 0,3,-2,-2,4, -1 L [71?3/4@415]%
Ty |2.3857 (27313  1,1,6,G5,¢8, G5, ¢8 0,5, —95, — 35,5 — 1+ 55 [715"/4<g>4{3]i

=l -

79, |2.3857(27.313| 1,1,45,¢6,¢5,¢3,¢0 L BBl 1L (Ce, 1)

THa [2:3857 (27313 1,1,¢8,¢8.G8.G8.GE 0,3, ~ 551 13 | [THa®47]
Tihs |2.3857 (27313  1,1,¢§,¢6,¢8,¢5.Co 0,3, -3~ 3,315 [71131/4@94{3]i
7815423857 27313 | 1,1,44,¢5,¢8,C8, C8 0,3, ~ 55 —35 1~ 55 | [Ti5a @ 47]2
TP/4 (2385727313 | 1,1,G3,68,G8,G8, 8 0.5~ —55: 11— 33 | ["P13a @473
78,4 | 23857 |27.313 | 1,1,(5,¢8,¢8,¢8,C8 0,3 55 51— —3 | (Do ®47]1
7P, |2.3857 27313 | 1,1,¢8,¢8,G8.GR. GE 04,2, 2.4, -4 - [71?5/4@415]%
Tha 2385727313 1,1,(6,G5,G8,C3,C8 0,355 115 | [[T1a®47]1
720 24036 28 1,1,2,2,2, V7, V7 0,0,%,2,-3,1 -3 U1)7/Z2),
75 24036 | 28 1,1,2,2,2, V7, V7 0,0,2,2,-2, -1 2 [75"7b®43b1%
750 24036 28 1,1,2,2,2, V7,7 0,0,—%,-2,2, 1.3 |(B32), (Dr.2);
755 124036 | 28 1,1,2,2,2,V7,V7 0,0,—%,-2,3,1 -2 [7?”;@45*]%
Teys |3:219486.750 | L, (s, (s, Cias s GTan (s | 0, =5, 5,0, 2, 5, —3 (A1,13)3
P45 |3.2194 86.750 | 1, (15, (s, CTs, (s, (a0 CE3 | 0,2,—2,0,-2, -3, 2 (A12,2) 1.
since The non-trivial representation V,g (D2 5f the extended
- 1 q"2 —q("+1)2 v U(1)py current algebra 'corresponds to the extended-
X1 (g) = () = Z Q) = Zxczlmﬁ- U(1)p primary fields e‘k‘b/‘/m, k=20,---,2M — 1,
n>0 n>0 which are local with respect to the generating fields 4.

(39) The corresponding character is given by
The corresponding Virasoro primary fields are 1,7, j4 =
Jt—2j0% + 3(9j)%,---. UM () = 1 Z (k4+2mM)? /M (41)
The non-trivial representation V,g M) of the U (1) cur- Xk ~ n(q) .
rent algebra corresponds to the U(1) primary field e'#?®
with conformal dimension h = %2 The corresponding
representations have the following fusion property

me”Z

Under the modular transformation S, the characters

Ul)m
Xk (¢) transforms as
U —inkk’ U
S - Xi (1) m (Q) N Z e kk /2A4Xkl(1)M (Q) (42)
C. Extended U(l)m current algebra k'€Zanm
The extended U(1)ys current algebra VIU (MM of level  The irreducible representations have the following fusion

M (which is another simple-current algebra) is generated — property

by the spin-M fields 1, = e!VZM® and ¢p_ = e~ 1V2Me,

Note that the OPE .9 _ ~ 1+ j. So the extended UQ) U(1) U(1) ,

U(1)p current algebra is also generated by j, ¢4, 1. Vi eV M =Vt kK€ Zom. (43)



D. %-orbifold simple-current algebra

UMm
The %—orbifold simple-current algebra V; 2 is
generated by the spin-M simple current ¢ = cos(vV2M ¢).

UM nm
Note that V, “> is the Zy invariant part of VU(I ,

where Z5 acts as

Zy:p— —o. (44)

U1
Vi (M contains VYV generated by energy momentum
UM m
tensor T~ j2 which is Z, invariant. Thus V; “*  also
UMM

contains V¥, and T acts within V; “? also
which contains Vv_irl a2y € N. But the
(=)™|%) under the

V{](l)M

contains VlU @)

states in Vv‘rl 2 transform as [¢) —
U(I)M

ZQ. So Vl

only contains VV‘rl n? for n even:

VlU(l) _ @

n>0,n even

VI e (45)

C

U)pm
In particular, j, acts within V; “?
Now let us consider irreducible representations of the
(Zl)M -orbifold simple-current algebra. We note that the
Z5 action on the irreducible representations of the ex-
tended U (1) current algebra is given by

R

Fork =1,---,M—1, the Z5 acts within VU(l)MGBVg]Slf.
The Z5 even part of VU(1 DV, Mlzzlg forms an irreducible
U (1)M

representation of -orbifold simple-current algebra,
U m

denoted as V¢kz2 . The corresponding primary field is

given by ¢ = cos(k¢/v2M). We know that the quan-

tum dimension of the representation Vg,il)M

U)pm
is equal to 2.

is equal to 1.

Thus the quantum dimension for Vy
The Z5 odd part of V,ij(l)
irreducible representation of the

The 75 acts within VlU(l)M

VlU (MM forms an irreducible representation of
U m
gebra, denoted as V; 2 The corresponding primary

field is the identity 1. The Z, odd part of VU DM also
(1)M

& V2 1)M does not form an
%{;M algebra.

The Z5 even part of
—U(le)M al-

forms an irreducible representation of the algebra,
UM m
denoted as V; “> The corresponding primary field is

the current operator j. We also have two new irreducible
representations of the % algebra from the twisted

sector that twists the current j. The corresponding rep-
UM m Um

resentations are denoted as Valz2 and, VTIZ2 . The
corresponding primary fields are denoted as o' and 7.

UMW) pm
TABLE V: The irreducible representations V, 2 of the
%—orbifold simple current algebra. The second column
gives the conformal dimensions h, of the corresponding pri-

mary fields. The third column are the quantum dimensions
do of the representations.
label « ha da
1 0 1
j 1 1
oy M/4 1 i=1,2
o 1/16 VM i=1,2
' 9/16 VM i=1,2
¢ K*/AM 2 |k=1,--- , M —1

We have the following fusion relations for the irreducible
representations

U)pm U)pm UM pr
VA4 VA4 z
V] 2 ® Va'l 2 - 1 2 5
UM UM UM
Zy Zy _ Z3
v, eV, =V, (47)

Note that the irreducible representations correspond to
the topological excitations. The fusion relations for the
irreducible representations give rise to the fusion rela-
tions of the topological excitations.
Similarly, the Z5 acts within V][é UM The Z, even part

of VU(l)M forms an irreducible representation of (1)M

U)pm

algebra, denoted as V 2
M

field is ¢}, = cos(y/M/2¢). The Z5 odd part of V¥
U(l)M

. The corresponding primary

also forms an irreducible representation of
U)pm

denoted as V,,“> . The corresponding primary field is
M

2, = sin(y/M/29).
representations of the algebra from the twisted

sector that twist j: j — —j. The corresponding rep-
UMD nm UM

resentations are denoted as VUZZ2 and, VTQZ2 . The
corresponding primary fields are denoted as o2 and 72.
We have the following fusion relations

algebra,

We also have two new irreducible
U(1)m
Z2

U)pm U)pm UM pr
VA4 z
V] 2 ® VG,Q - VTQ 2 5
UM UM UM
Zy Zy _ Z3
v, eVLT =V, (48)

The above are all the irreducible representations of the
%-orbifold simple-current algebra. Table V summa-
rize the result. Ref. 34 computed the full fusion rules
of those irreducible representations. The fusion rules
and conformal dimensions of the corresponding primary
fields are obtained by studying the modular transforma-
tion properties of the characters.

It turns out that the Uy(1)/Zy orbifold is the U(1)4
Gaussian theory, the Us(1)/Zy orbifold is two copies



of the Ising CFT, and the Us(1)/Zy orbifold is the 74
parafermion CFT of Zamolodchikov and Fateev.3?

E. U(1)m topological orders

The U(1)p simple-current algebra is generated by a
single simple-current operator ¢ = eiV2M¢ (plus its her-
mitian conjugate) with conformal dimension h = M. The
correlation function of v gives rise to a bosonic Laughlin
wavefunction

[1Gi =20 = (WE)g(z)(zs) ) (49)

i<j

as discussed in Section IT A. The simple-current primary
fields oo = ¢ V2w ?, o = 1,---,2M — 1, produce wave-
functions that contain excitations with non-trivial topo-
logical type

H(§ - z)” H(Zz — )M = (0a (U (z1)h(22) - )

(50)

We see a one-to-one correspondence between the simple-
current primary fields and the topological excitations.

The above picture is valid even when M is half-integer.
In this case the correlation function of i gives rise to a
fermionic Laughlin wavefunction, and the simple-current
primary fields o, = elﬁ(ﬁ, a=1,---,2M —1, give rise
to the topological excitations in the fermionic Laughlin
state.

F. U(1)m/Z2-orbifold topological orders

The U(1)y/Zs-orbifold simple-current algebra is gen-
erated by a single simple-current operator v =
cos(vV2M ¢) with conformal dimension h = M. We note
that 1% ~ 1 (i.e. the OPE of two 1’s produces the iden-
tity operator 1 as the leading term).

The correlation function of ’s

U({ah o lim (Ve [[e)  61)

is single-valued (no branch cut) since the conformal di-
mension of 1 is integer and the OPE of ¢’s only produces
operators with integer conformal dimensions. Also, since
1 has an integer conformal dimension and is bosonic,
the correlation function ¥({z;}) is a symmetric func-
tion, which gives rise to a quantum Hall many-boson
wavefunction W({z;})e~4 2 1#I” with a bosonic topolog-
ical order. The edge excitations of such a quantum Hall
state are described by the U(l)M -orbifold CFT, the CFT
that produces the bulk Wave functlon as calculated in
Ref. 25,29,33,36.

However, the above construction has a problem: the
correlation of ¥’s (i.e. U({z;})) has poles as z; — z;. But

this is only a technical problem that can be fixed. We
may put the wave function on a lattice or add additional
factors, such as [ |z; — 2;|?*, to make the wave function
finite.

We may also combine the . -orbifold simple-
current algebra with a Gaussian model, as described in
Section II, to produce a many-body wave function with-
out poles. We can choose the Gaussian model to have
two fields ¢ = (¢!, $?) and choose G*” to be

2M 1
o- (311). o

We choose the three simple currents as

UM)m
A

= el =e? 3 =el?, (53)

which corresponds to choosing kfb as

1

I _

Ko=10
1

S = O
—
ot
W~
N~—

I

The 2M*™ order zero in the correlation function of i’
cancels the 2M " order pole in the correlation function of
the ¥(z;). So the correlation functions of ¢;, I = 1,2, 3,
are single-valued and finite, which gives rise to a triple-
layer bosonic wavefunction:

P({zi,wi,ui}) = (55)

(c1(z1)e1(22) -+ ca(wr)ea(wa) - - - cz(ur)ea(uz) - - ).

To understand the topological excitations in such a
triple-layer state, we note that c;-primary fields have the
form

(¢, 6%), (56)

where 1% satisfies eqn. (32). Since A%, — hi’ — hy are
integers for all @, we find that the [* satisfy alkl]LG“l’lﬁ‘ €

Z or

2M 1 o

10 (;1) =

2M 1) \?
The above requires I to be integer vectors, and all the
different I™ are equivalent. So we can choose [¢ =

We would like to remark that if we did not include

the simple current cs for the third layer, ¢’ would cor-
respond to a non-trivial primary field which would lead
to extra topological types. With the simple current cs,
ei?" will be a descendent field of the simple current al-
gebra, and will not correspond to a new type of topo-
logical excitation. We also like to remark that there is

no particle number conservation, for each layer or for all
the layers. If we did have particle number conservation

i«
Nale = 0 € ¢7 ¢ =

0 mod 1
Omod1|. (57)
0 mod 1



for each layer, the constructed state may spontaneous
break such particle-number-conservation symmetry and
contain gapless Goldstone modes.

We note that G*” has negative eigenvalues and the
corresponding purely chiral CF'T is not unitary. This can
be fixed by treating the part of G* with negative eigen-
values as anti-holomorphic (i.e. producing correlations
that depend on z*). We may also remove the poles using
purely chiral unitary CFT that describes the Fg quantum
Hall state, i.e. using eight scalar fields ¢%, i = 1,---,8
and choosing

21000000
12100000
01210000
00121000
G_00012101’ (58)
00001210
00000120
000O01O002
to form nine simple-current operators
Y s a1
¢ =e? liz1,...8, €9 = pe'? . (59)

This can remove the pole for the M = 1 case. To re-
move the pole for other cases with larger M, we can
add several copies of Fg quantum Hall states. The new
simple-current algebra has the same topological excita-
tions as the %ZM—orbifold simple-current algebra, and
has the same central charge mod 8. In this paper, we
will use Gaussian theory with G*” that may have nega-
tive eigenvalues to remove the poles. We can also choose
the Gaussian theory to be several copies of Eg states to
remove the poles.

We see that the topological excitations in our triple-
layer bosonic wave function are in one-to-one correspon-
dence with the primary fields (or the irreducible represen-
tations) of the U(1)s/Zs-orbifold simple-current alge-
bra. The chiral central charge of our triple-layer bosonic
state is ¢ = 1 (1 from the U(1)ps/Z2 simple-current and
14 (1) from the Gaussian CFT). The U(1)as/Z2 order
is of type NP = (7+ M)P.

G. Reduction to smaller N

We now establish that for M odd, the topological order
U(1)ar/Z2 can be reduced as

M=4p+3:

(N,¢) = (T+ M,1) = (N,¢) = (M o).
M=4p+1:

(Ne) = (T+M,1) = (V,e) = (o). (60)

This reduction is similar in spirit to the reduction
(A1,k) = (A1,k)L which we discuss in section IV B.
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In the Tables II-IV we marked these reduced orders as
(U()u/Z2);.

We first consider the case M = 3. We already re-
marked that this order, with N = 10 primaries, precisely
agrees with the Z4 parafermions. The dictionary reads
(see section IV B 1 for notation)

Qﬁé—)q/)l’ j_)q/JQa ¢§—>¢37
Ul—><1>}, 7! —><I>%, 02—><I>%, 7'2—><I>:1,,,
¢1— @3, ¢ — @5 (61)

Following standard practice (see section IV B) we can
now combine these fields with a single scalar field so as
to produce the current algebra for SU(2)4 at ¢ = 2. As
explained in section IV this current algebra gives rise to
k + 1 =5 primary sectors. For example, the sector with
s =3, d=(; comprises the ficlds

(alei%‘b, T2ei%¢, Tlei%‘b, a%iﬁqﬁ). (62)
We thus establish that the order NP = 523 "“ in Table II
is generated by the CFT (U(1)3/Z2)3.

This construction of the order (U(1)3/Z2)y is an ex-
ample of a simple-current reduction of the product of
two topological orders. The building blocks are the or-
ders (U(1)3/Z2), with N = 10, ¢ = 1, and U(1)4, with
N’ =8, ¢ = 1. In the product theory we can define the
bosonic simple currents

s 1 s 2 : 3
1, ¢ie'vi?  je'vi? ¢2e'vi? . (63)

Of the N x N’ = 80 fields in the product theory, 20 are
local with respect to all bosonic simple currents. These
fields organize into 5 orbits and make up a reduced order
of rank N x N’/16 = 5 and central charge c+¢ = 2. In
formula

(UM)s/Z2)s =[U(1)3/Z2 @ U(1)a] 1. (64)

Turning to M = 5, we can follow a similar logic, but
with an important twist: the scalar field now comes with
metric G = —1, implying that it contributes ¢ = —1 to
the total central charge, and that a vertex operator e'??
has conformal dimension s = —“—22. In section IV B we
see similar minus signs in the construction of (Al,k)%
for kK = 4p + 1. We can define a set of bosonic currents
according to
1

L dletVE?, jelVa?, g2elVi® . (65)
With respect to these currents, the following field com-
binations are primary and mutually inequivalent

i1 i1 2 3
1 jv ¢25 (blelﬁqbv Ulelﬁd)v 0.161754—77 (66)

with s = 0,0,2,-1,0,% and d = 1,1,2,2,V5,V/5. We
thus recover the 6(])3 "* topological order in Table III. The
pattern for general odd M is similar and leads to the
result given in (60).



IV. 241D TOPOLOGICAL ORDERS FROM
KAC-MOODY CURRENT ALGEBRA

A rich class of simple-current algebras in CFT is pro-

vided by the affine Kac-Moody algebras X l(l) at positive
integer level k. To each choice (X, k) corresponds a uni-
tary CFT (the level-k WZW model on the associated
group manifold) whose current algebra consists of cur-
rents J4(z), with A = 1,2,..., D an adjoint index of the
Lie algebra X;. The central charge of this CFT is
= kD (67)

k+g
with D the dimension of X; and g the dual Coxeter num-
ber. We provide some details in Appendix A, where we
have also tabulated (D, g) for the simple Lie algebras Xj.

Starting from topological orders of Kac-Moody type,
one may look for additional bosonic simple currents and
use these to extend the bosonic simple-current algebra.
In some special cases, the CFT (X, k) contains Kac-
Moody primaries that are bosonic simple currents, and
the extended current algebra leads to a novel type of
topological order with reduced rank N. These orders are
closely related to exceptional modular invariant partition
functions (MIPF) based on these same simple currents®’.
Examples are the orders (Al,k)i for k = 4,8,... and
(Aa, k)é for k = 3,6,..., which we present below.

A more general, but often simpler, case involves the
addition of one or several scalar fields (or U(1) factors)
and the use of simple currents of the form

Crel = Y1Vt (68)

where the 1 are simple currents in the (X;, k) CFT and
the Vi are scalar field vertex operators . Examples are
reductions of type (A,,k)_1_ (see section IVB, IV C)

n+1

C(Xl, k)

and the reductions
(69)
(70)

Ty: NB =[NP @45
Tz : NB - [NB 4P

1
1
1
1

discussed in sections IV C4, IV B 4 below. Here 45’17 and

48 are the bosonic topological orders in table I. 4(])3 b s
the double-semion topological order and 4% is v = 1/4
bosonic Laughline state.

We note that both the operations 75 and Ty do not
change the number N of topological types neither the
quantum dimensions d;. The operation T5 also does not
change the central charge c. In contrast, the operation Ty
changes the central charge by +1. Both the operations
do change the spins s;. We also like to point out that the
operation T is a Zo operation, while the operation Ty is
a Zg operation.

Yet more general are cases where the additional
bosonic simple currents contains factors in different non-
Abelian orders. One example is the case

[(C4,1) x (A1, 1) x (A, 1)] (71)

1
4
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which turns out to be equivalent to a CFT coset con-
struction and gives rise to the ¢ = % minimal model of
the Virasoro algebra, of rank NV = 10 (see section IV C5).

In these constructions, it is sometimes convenient to
first pass from the (X;,k) CFT to the (generalised)
parafermion CFT?® obtained by modding out U(1)!, and
then use the parafermions ¢, which are simple currents,
as building blocks in the construction of an (extended)
bosonic simple-current algebra.

We remark that the simple-current reductions that we
study here correspond to the condensation of bosonic
topological excitations?® 3.

We have observed that we can construct all topological
orders collected in tables I-IV from orders based on Kac-
Moody current algebra (X, k) and U(1) factors if we use

e conjugation by time reversal symmetry, sending

c — —C, d; — di, S — —Sq,

e stacking of topological orders,

e simple-current reductions of (combinations of)
topological orders.

The conformal blocks of the bosonic simple currents
¢r(z;) will, in general contain both zeros and poles in the
differences (z; —z;). To define a many-body bosonic wave
function, one needs to cancel the poles. This can be done
by including additional scalar fields, in such a way that
essential topological data (central charge and quantum
dimensions and spins of all excitations) are not affected.
We make this step explicit in the examples of U(1)s/Z2
and (A1, k) in sections ITT and TV A, and will assume that
a similar step is always possible in other cases. With
that, we arrive at bosonic many-body wave-functions for
all cases listed in Tables I-IV.

A. SU(2)r current algebra

The case (A1, k), commonly denoted as SU(2);, gives
a CFT of central charge ¢ = k3_4]-€2

The weight and root lattices (see appendix A) have the
following structure. Writing the fundamental weight as
A = %el, the single positive root is a; = 2A; and the
Weyl group has two elements: the identity and the re-
flection wq : Ay — —A;. A general (integral, dominant)
weight is A = [Ay, | € N, so the irreducible representa-
tions are labeled by .

At level k there are k + 1 irreducible representations
(or primary fields) ®;, I = 0,--- , k, with conformal di-
mension (spin)

12 42
T Akt 2) (72)

The modular S-matrix is found to be

I+ 1)1 +1)) (73)

™

+ 2

Sll' X Sin[k



and the quantum dimensions are

sin[Z= (I + 1
dl:&:M:Qﬁ- (74)
Soo sm[k—+2]

The SU(2); Kac-Moody algebra is generated by three
simple-current operators jZ, j* with conformal dimen-
sion h = 1. In fact the SU(2); algebra can be gen-
erated by a single simple current j© plus its hermitian
conjugate. To obtain a many-body wave function with-
out poles from the correlator of simple currents, we can
combine the SU(2); Kac-Moody algebra with a Gaussian
model with two additional scalar fields ¢ = (¢!, ¢?) with

metric G*” given by
21
(1) o

and choose the simple-current operators as
Co = jJr ei¢71,

cs = el?1, (76)

',Zei(;517

c1 =] ¢71,
¢727

C3 :j761
cy = ¢!

We note that the 2nd order pole in the j*-j* correlator
is canceled by the 2nd order zero in the e'?* correlator.
The finite correlators of the ¢y give rise to a (fractional)
quantum Hall wavefunctions with 5 layers. We may also
view the quantum Hall wavefunction as a wave function
in 3 layers, where the particles in the first layer carry
spin-1.

For such choice of the Gaussian model, the Gaussian
model does not contribute to chiral central charge, does
not change the number of topological types, and does not
change the qauntum dimensions and spins of the topolog-
ical excitations. The edge excitations of the constructed
quantum Hall states are described by SU (2);, Kac-Moody
algebra.

We see that the NP = 28 topological order in Table I
is described by SU(2), k = 1 Kac-Moody algebra, and we
marked the entry as (Ay, 1). Similarly, we marked entries
(Ay, k) for orders NP given by (k + 1)3Bk/k+2’ k=2,...6
in the corresponding tables.

B. Reductions of SU(2), current algebra

A general affine Kac-Moody current algebra X l(l)
can be decomposed as a product of (generalised)
parafermions times a U(1)! scalar field factor3®. For the
case of SU(2);, this gives the familiar Z; parafermions
with central charge ¢, = 2%. The parafermions are
simple currents, but in general they are neither bosonic
nor fermonic.

In subsection IV B 1 we briefly review Zj parafermions
and their relation to SU(2)y current algebra.

Next we focus on orders (41, k)% for k odd, which con-

tain half the number of fields of (A1, k) and are realised
at central charge ¢ = ¢(A41, k) £ 1. Our notation follows
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Ref. 12. We show how these reduced orders arise through
a simple-current reduction.

In subsection IVB3 we present the orders (A1, k)1
which employ a bosonic simple current that is part
of the SU(2); spectrum for k& = 4,8,.... A subtle
point is the occurrence of ‘short orbits’ of the simple-
current action, which lead to multiplicities in the modu-
lar invariants®73?. The resolution of these multiplicities
leads to novel modular S-matrices, which are in general
not captured by Kac-Moody current algebra alone.

1. Zy parafermions and (A1, k) orders

The Z;, parafermion fields??

wla IZO,"',k—l, (77)
of conformal dimension hy = I(k,; I), satisfy the operator
algebra

V(2 (w) ~ (2 = w)* rys (78)
with s;; = —% mod 1. A general field in the
parafermion theory is written as ®! , [ =0,1,...,k and
m € Z, with conformal dimension

(1+2) m?
m=—— = — d 1. 79

= Akt o) 4k (79)

The index m is periodic with period 2k and m = [

mod 2. In addition we have the identification ®! =

@ﬁ;ﬁk. This leaves a total of @ fields. All fields

can be reached by acting with the parafermions ¢; = Y,
on the primaries 0; = @}, 1 = 0,1,... k. We also define
e (I)Qi
€ 5
Using a single scalar field ¢ we can write the bosonic
currents (I =0,1,...,k—1,j € 2Z)

crj = etk o = WreillVE+iVERe, (80)

which have integer conformal dimension. The currents
cr=1,j=0 and cy—p_1,j——1 have conformal dimension 1.
Together with 10¢ they generate a level-k affine Kac-
Moody algebra SU(2),. With respect to the bosonic chi-
ral algebra cy ; the following fields represent admissible
topological excitations

with j € Z. The excitations with [ =m = 0,1,...%k and
7 = 0 correspond to the highest weight states of the spin-I
representations of SU(2);. They constitute a set of k+ 1
inequivalent primaries of the bosonic current algebra.

2. The orders (A1, k)1 with k odd

1
2

In the SU(2)y theory, the field @y, is a simple current
with fusion rules

O ®, =Py, 1=0,1,...k. (82)



This simple current can be used for a number of simple
current reductions of the order (A1, k).

First assume that k is odd and of the form k = 4p +
3. We can form a product with U(1); ~ SU(2)1, and
consider the bosonic simple currents

§ 20 4 s (25+1) @

Oge' V27, Ppe' V2

, 5J ez (83)
The primary sectors with respect to these currents are

k—1

2 3

. 1=0,1,... jez (84)
They form the excitations of the reduced order (A, k)

at ¢ = 2215T+21 and N = (k+ 1)/2. In formula we have

1
2

(A1, k)1

L= [(ALk) @ Uy, k=3,7,... (85)

1,

4

For k of the form k& = 4p + 1 one needs instead a factor

U(1); ~ SU(2)7 with ¢ = —1 and non-trivial primary at
1

SZ_Z’

(A1, k)1 = [(A1, k) @ U(1)7] k=5,9,... (86)

1 1
2 1’

It is instructive to re-examine these same reductions
starting from Zj, parafermions ¢y, I = 0,...k — 1, and
the two scalar fields ¢, ¢'. For k = 3 and with respect to

the basis
2 1 1,
n=\20 m=lorle @

the metric becomes
) . (88)

G® — (

Writing Vi, for e'*? we can write bosonic currents

ol wIN
N Wl

cr gl = Y1V (89)

where kf, k are integers satisfying 2k{ +kZ = 2I mod 3.
The admissible topological excitations become

O Vi with 2k; + ke =m mod 3 . (90)

Note that ®1 = o1, ®} = ¢; and & = 05. The fields

®L Vi, form a single primary sector, with conformal di-
2

mension s = ¢ and quantum dimension d = (3, and we
recover the order (A3, 1)1 = 2B, .
5

For general k = 4p + 3, the 2-scalar metric becomes

Gk — (

The bosonic currents are

(91)

Enl [N
[
R
=
E.LT‘
\—/

CI)kI = 1/)]Vk.1 (92)
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with 2kf + kI =21 mod k and the primaries are

®! Vi, with 2k; + ks =m mod k, (93)

with [ =1,2,..., % and quantum dimensions d = C,IC.
In this notation, the underlying SU(2); x SU(2); cur-
rent algebra is formed by

Y1Vi1 0y, Ye-1V(—10) 3

together with the fields i0¢. Odd-l primaries under
SU(2)x are doublets under the SU(2);, while even-l pri-
maries are singlets.

For k = 3 there is even more symmetry. The following
currents have conformal dimension equal to 1

Y1V 0y, Y1V 1y, 1V —1)s
aVi_1 0y, Y2Viu —1), ¥2Vio 1),
Ve —1), Va1, Vicr 2,

Vi —2), Vicr 1), V2 1) (95)

Vici 2y, Vi —2); (94)

Together with 10¢ these form the (14-dimensional) cur-

rent algebra of Ggl). The excitations, all of conformal
dimension s = %,

€1, o1Vi—1 0y, o1V 1), o1V(o 1),

o2V(1 0y, 02V(_1 1), 02V(o —1) (96)

form the 7-dimensional representation of G5. Thus, the
(G2, 1) simple current algebra can also produce the topo-
logical order 2%, .

For k =4p —1—51 the 2-scalar metric can be picked as

i 2 1
G =5 . (97)
k 2k

Note that the metric G'*) has determinant det G'*) =
—%, whereas det G#) = % This implies that for k& =
4p + 1 the 2-scalar sector adds 1+ (—1) = 0 to the total

central charge, in agreement with eq. (86). The currents
Vici2), Vi -2, (98)

have conformal dimension —1 and generate the algebra
SU(2)3.

3. The orders (A1, k)%, =4,8,...

For k = 4p the simple current ®; is bosonic and can
be added to the currents of the SU(2); Kac Moody al-
gebra. In this situation, there exists a modular invariant
partition function, labeled as D ko) which only features

the even-l primaries (see e.g. Ref. 44)

k—4

2

Din: Zi= Y, ha+xef +20xsl>-  (99)
1=0,2,...



Corresponding to this partition function is a bosonic
topological order with N = % + 2, which we denote as
(A1,k)z.

1

4

The quantum dimensions of the fields ®;, [ =
k—4

0,2,...%5= are simply ¢!. The theory features two fields

<I>(&1) and @f), which need to be ‘resolved’ in the modu-
2

2
lar S-matrix®”3%. The result is that the two fields share
the total quantum dimension (?, leading to twice a value

k
3G -

This construction for & = 4 reproduces the abelian
order at NP = 35, while for K = 8 we reproduce the
order at NP = 4{32/5 (we used ¢2 = (¢3)? and ¢F = 2¢3).

The case Dg at k = 12 gives 5{38/7 with

1 1
d=1, —sz, _C?Qa C%m Glz
2 2
1 1 1 3

S 07 7 ) 7 ) 7 ) 7 ( OO)
Using (2 = 1¢$, we find a perfect match with the entry
in the Table II.

Similarly, the entry at 65/3 in Table III is found to agree
with the order (A1,16)1. Note that ¢¢ = 3¢ = (s,

1
I
revealing a triple degeneracy in the primary sectors. This
hints at an alternative interpretation, which we obtain in

section IV C 3.

4. The Zg operation Tg for (A1, k), k=2,6,...

Inspecting the case k = 2,6, . . ., we find that the simple
current @ gives rise to yet another type of simple-current
reduction. In this case, an appropriate scalar field factor
is U(1)a, which is the order 42. Constructing the order

(A1, k) @ U(1)q]

. k=2.6,... (101)

Al

we arriveat N =k+1, c= k?’—fz + 1, whereas the starting

point (A1, k) corresponded to N =k +1, ¢ = kg_f2 This
reduction is thus an example of the operation Tg, which

we defined in more general terms in the equation (70).

C. Affine Kac-Moody algebras of higher rank

We can repeat the analysis for the SU(2) case for the

affine Kac-Moody extension X l(l) of all simple Lie alge-
bras. As is well known, these have been classified as four
regular series A;, By, C;, and Dy, I = 1,2,... plus five
exceptional algebras Fg, F7 and Eg, Fy and G5. This
leads to many more examples of bosonic orders of low
rank, which we have marked in the tables. Note that
CQ ~ BQ, DQ ~ Al X Al, D3 ~ Ag and . In the tables
we have displayed ¢ modulo 8 and conformal dimensions
s; modulo 1.
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A tentative list of simple-current primaries in the X l(l)
Kac-Moody current algebras has been given in®". As for
the SU(2)y case, these give rise to a variety of simple-
current reductions of the order (X, k).

For (A,,k) a reduction by a factor Z,; is possible
if g.c.d.(n + 1,k) = 1 (see Ref. 12), leading to orders

(A, k:)% Below we discuss the cases with n = 2 and

the general case with level £ = 2 and n even. We remark
that other reductions involving additional abelian factors

are possible, such as a reduction (As,2) 1 which leads to

the order 57",
A second class are reductions based on bosonic simple-
current primaries. Below we present the case of (A4s, k) .

1. (Az,k)% fOT’k‘:2,4,5,7,...

For k = 3p + 2 this reduction can concisely be written
as
(A2, k)1 = [(A2, k) @ (A2, 1)]

k=25... (102)

1 1
3 9’

For k = 2 this reduces the order (A43,2) = 6%75 to
(A2, 2)% - 2JE}14/5'
One can re-examine this reduction in terms of the

SU(3)2 parafermions and four scalar fields. For k = 3p+2
the scalar field metric reads, in a convenient basis

21 2 2
1112 2 3
GR = = (103)
k122442 44p
23 44p 6+2p
The currents
(0 0)
(I)(:tg :Fl)‘/(il 00 0)>
(0 0)
‘I)(m :|:2)V(0 F100)s
Y 14 104
(£1 +1) " (£1 F1 0 0)> (104)

together with two scalars i0¢, form an SU(3); current
algebra. In addition,

V(Il 0 £2 F1)» V(O F2 F1 £2) V(Il F2 £1 +1) (105)
together with the other two scalars form an SU(3);.

For k = 2 the lattice defined by the matrix G admits
a total of 8 ‘short’ integral vectors k7, with k2 - k¥ = 1,

.

as well as 24 ‘long’ integral vectors kX, with kX - kX = 2.

In fact, one recognizes in G(?) the metric of the SO(9)
weight lattice. Combining the integral vectors with a sin-
gle Ising fermion (which is the parafermion for SO(9);),
one can write a total of 24 + 8 + 4 = 36 bosonic cur-
rents, which form the SO(9); Kac-Moody current al-
gebra. Combining these same vectors with the SU(3)2
parafermions, which include three fields of conformal di-

mension § = %, leads to a total of 24 +3 x 8 +4 = 52



bosonic currents, which form the Kac-Moody algebra

for F4(1) at level 1. Combining these same vectors with
the SU(3)s parafermion spm fields, one can construct
26 fields of dimension s = 5, which form an irreducible
representation under F; and together constitute the sin-
gle non-trivial primary sector of the topological order
NB =28

= 4 14/5

For k = 3p + 1, the reduction becomes
(A27 )% = [(AQ; k) ® (AQ; 1)*]%a

We checked that for £ = 4 the quantum dimensions and
spins of this reduced order match with the entry NP =

5%/7 in Table II.

k=4,7,... (106)

2. (An,2) fm’ni2 4,.

For n = 2,6, ..., this reduction can be implemented as

= [(A”’2)®(¢1’¢2>]ni1’ n=2,6,...

(107)

(Anv 2)#

with the scalar field metric given by (91) with k = n+ 1.
The field content becomes

Oy ls o 1) Vi

where the [; are the Dynkin labels of the A,, representa-
tion carried by ¢, 1,,) and

(108)

la ...
n

=> il
j=1

This reduction adds +2 to the central charge. For n =
4,8, ..., one uses instead the metric (97) and the central
charge remains unchanged.

We observe that there is a duality between the orders
(A1,k)1 and (Ak-1,2)1, in the sense that they form a

pair (NB NB)) with identical quantum dimensions d;
and opposite spins s;. This duality is a manifestation of
the well-known level-rank duality between SU(2); and
SU (k).

Other manifestations of level-rank duality are the pair
(A1,4) and (A3,2)1 and the pair (A2,4): and (43,3)1,
both with rank N = 5. ‘

3. (Az,k)% fOTk:3,6,...

For k = 3p, the SU(3); primaries with weight (k0)
and (0k) are bosonic simple currents. They lead to an
exceptional modular invariant, labeled Dy in the clas-
sification of Ref. 45. These exceptional invariants only
include fields with triality zero, [y + 2l = 0 mod 3.

For k = 3 the partition function is

Z3 = |x(00) + X(30) + X(03)|2 + 3|X(11)|2' (110)
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The corresponding order has 4 fields: the identity and 3

fields originating from ¢(11), with d; =1, s; = % The

value d; = 1 arises via equal distribution of the quantum
dimension d[¢(11)] = 3. We recognize the entry NP =
45,

For k=6, c= 1—36, the modular invariant reads

Z =|X(00) + X(60) + X(06)|2
+ X1 + X + X(14)|2

+ |X@33) + X30) + X03)” + 3|x(22)- (111)

The weight (2 2), with s = ;, comes in with multiplicity
3 and quantum dimension 3¢3 - after resolution into 3
primaries this leads to the values d; = ¢3. The data for
the other sectors are

(00), (60), (06):s=0, d=1

1n ln4—7r
(33), (30), (03):s=—%, d= W—gw
7 7
(0, 4, (s =g, a= R g,
T (112)

all in agreement with the data for the entry GB8 /3¢
For general k = 3p, the rank of the order (As, k)
N = (k? + 3k)/18 + 3.

118
9

4. The Z2 operation Ts

Inspecting the table II of rank-5 orders, we observe
that 5?2“ derive directly from Kac-Moody current alge-

bra, but 55’;’ do not. We remark that the orders 55’;’

arise through a simple-current reduction of the product
Ba _ . B,b

of 575" with 4y,

B,b B,a . 4B.b
57y =[54y @4y ] (113)

1
4
This is a special case of the operation 75 defined in
eqn. (69). Similar doublets under the action of Ty are

(65, 65"), (67,617"), and (723, 7Y5).

5. More general reductions

We already mentioned that simple-current reductions
of products of non-abelian orders are possible. While
these are not needed to reproduce the N < 7 orders that
we list in this paper, they are needed to cover such cases
as minimal models of the Virasoro or W,, algebras, which
are understood via a coset construction?®46. The idea is
that a coset G/H is viewed as G x H~! and that the
corresponding order can be obtained as a simple-current



reduction of the product of orders G and H*. As a con-
crete example, consider the coset
SU(2)3 X SU(2)1
SU(2)4 ’

(114)

which describes the ¢ = % unitary minimal model of the
Virasoro algebra, of rank N = 10. Inspecting Table II,
we see that the role of (A4,1)* can be played by (Cy, 1).
We therefore consider the product

(Cy,1) @ (A1,3) @ (A1, 1) (115)

and pick as additional bosonic simple current the field

i®
(I)(0001) x P3 x e V2. (116)
Of the 5 x 4 x 2 = 40 fields in the product theory, 20
are primary with respect to the extended simple-current
algebra, and these organize into orbits of length 2. We
thus recover the NV = 10 primary sectors of the minimal
model.

V. SUMMARY

In this paper, we use simple-current algebra to con-
struct many-body wave functions for 241D bosonic topo-
logical orders. We found that simple-current algebra can
produce all the simple topological orders. This supports
the conjecture that all the (non-)abelian statistics de-
scribed by MTC can be realized by bosonic systems. It
also suggests that, in a certain sense, simple-current al-
gebra can be classified by MTC.

The simple-current reduction is an important tool in
our constructions. Such reductions correspond to the
condensation of bosonic topological excitations.?? 43 So
the simple-current reduction is also a tool to study the
condensation of bosonic topological excitations and the
induced topological phase transition between the original
topological order and the reduced topological order.
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Appendix A: CFT of Kac-Moody current algebra

The starting point for the construction of a CFT based
on Kac-Moody current algebra is a simple Lie algebra X;
plus a positive integer k (which is called the level of the
Kac-Moody current algebra). In this appendix we briefly
review the connection between CFT and Kac-Moody cur-
rent algebra and specify some of the data needed to iden-
tify key properties of the CFT.

1. Root and weight lattices of finite dimensional
Lie algebras

In the structure theory of simple Lie algebras, it is
common to choose a Cartan-Weyl basis {h’, e, }, where
the h',; i =1,...,1, form a basis of the Cartan sub-algebra

‘H, and the e, are ladder operators for the roots a =
(al7 R 7al),

(R eq] = a'eq. (A1)
The Killing form
K% = Tr(ad(J%)ad(J?)), (A2)
leads to an inner product in the root space H*
(A3)

(a,B) = ZKijaiﬂjv ZKinjk = 0.
ij J

Integral linear combinations of the roots a form the
so-called root-lattice associated with X;. For a choice of
simple roots «;, which form a basis of the root lattice,
one defines the Cartan matrix is

(O‘i’ o‘j)

(O‘jvo‘j)

Ay =2 . (A4)

Dual to the root lattice is the weight lattice, which
plays a crucial role in a systematic description of the
irreducible representations of X;. Its elements A can be
characterised by the Dynkin labels

(A, Oél')

(i)

I, =2 (A5)

The weight is then written as a linear combination of
fundamental weights A = ", [;A;, where the fundamen-
tal weights have inner product

(Ai, Aj) = Gy (AG)

with

(A7)



2. Primaries of Kac-Moody current algebra

The CFT associated with Lie algebra X; and level £ is
characterised by a larger symmetry algebra, which is the
so-called affine Kac-Moody extension or current algebra
Xl(l) of X; at level k. The central charge of this CFT can
be expressed as

kD

where D is the dimension of X; and g is the dual Coxeter
number. In table VI we list these data for the simple Lie
algebras Xj.

The primary sectors of the current algebra CFT are
labeled by particular weights A - the so-called dominant
integral weights. Their Dynkin labels satisfy {; > 0 and

(A9)

where a} is the comark (or dual Kac label) to the root
aj47.

The conformal dimension (spin) of the primary sector
labeled by A is given by

(A, A +2p)

2(k+g) (A10)

SA =

where p =Y. A; is the sum of the fundamental weights.
The S-matrix is given by

. _27mi
Sanr x E sign(w)e” k+g
weW

(w(A+p),A +p)

(A11)

where the summation is over the Weyl group of X;. Via

the relation

_ Soi
Soo

d; (A12)

this S-matrix fixes the quantum dimensions d;.

We refer to Ref. 44 for further details. Here, for the
sake of illustration, we present such details for the rank-2
algebras Ay (or su(3)), Bz (or so(5)) and G.

3. The rank 2 simple Lie algebras
a. The algebra As

For this Lie algebra the weight-lattice metric Gj;; is

given by
) . (A13)

Q

Il
N
ol b
I Lol
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TABLE VI: Dimension D and dual Coxeter number g of the
simple Lie algebras Xj.

algebra D g
A 1>1 1(1+2) 1+1
B l>212+1) 20-1
C >3 120+1) 1+1
Dy 1>41020-1) 20—2

FEs 78 12
Er 133 18
by 248 30
Fy 52 9
G» 14 4

With respect to an othonormal basis e;, the fundamental
weights can be written as

2 1 1
AZ\/je7 Ao = —e| + —eo, Al4
1 3©2 2 NG 1 NG 2 (A14)
and the positive roots are
ap = —Ay +2Ay, o =2A1 — Ay,
ajz = A1 + Ay, (A15)

which we write as (—12), (2 — 1) and (11), respectively.
The Weyl group has 6 elements, the orbit of p = (1 1) is

sign(w) = +1:
sign(w) = —1:

(11), (1 —2), (=21)
(2 —1), (=12), (=1 —1). (A16)

Dominant integral weights at level k satisty 11 4+ o < k,
their number is Ny = (k + 1)(k + 2)/2. The conformal
and quantum dimensions for the primary ({1 l2) are given
by

13413+ lilo + 311 + 312

S l2) =

3(k +3) :
sin[w(liﬂ:gl)] sin[w(éfgl)] sin[”(hﬂgw)]
d(ll la) — - p T 7w T o . (A17)
Sln[k—+3] 81n[k—+3] Sln[m]
The central charges are ¢ = kg—_i’fg for the SU(3), CFT and
cp = 6:—;;} for the corresponding parafermions.

b. The algebra B>

For this Lie algebra the weight-lattice metric B;; is

given by
1
G- ( ) | (A18)
2

N Do



With respect to an othonormal basis e;, the fundamental
weights can be written as

A = %el + %eg Ao = eq. (A19)
The simple roots are
1=—A1 +2A3, az = —2A1 + 2A,. (A20)
The four positive roots are
—A1 4+ 279, —2A1 +2A5, A4, 2A, . (A21)

The Weyl group has 8 elements, the orbit of p = (1 1) is

sign(w)=+1: (11), (2 —3), (-1 =1),(-23)
sign(w) = —1: (=13), (-23), (1 —3),(2 —3).
(A22)

Dominant integral weights at level k satisfy I} 4+ o < k.
Their number is N = (k+1)(k+2)/2 and the conformal

dimensions are given by

202 + 13 + 214l + 61 + 415
A(k + 3)

S(h l2) = (A23)

The central charges are ¢ = ;% for the SO(5), CFT and

cr = 2523 for the corresponding parafermions.

k+3

c. The algebra G2
The weight-lattice metric G;; is given by

2 1
G = .
<1 §>

(A24)
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With respect to an othonormal basis e;, the fundamental
weights can be written as

1 1
A =V2es, Ay=—e; +—eo, A25
1 2 2 NG 1 NG 2 ( )
and the simple roots are
[ —A1 + 2A2, g — 2A1 - 3A2. (A26)

The six positive roots are

— Ay +2A, 2A; — 3As,
A1, Ao, Ay — Ao, —Aq +3As . (A27)

The Weyl group has 12 elements. The orbit of p = (1 1)
is

w=+1: (11), (=25), (=34),
(-1 =1), 2 =5), (3 —4)
w=-1: (2 —1), (=14), (-35),

(—21), (1 —4), 3 =5).  (A28)
Dominant integral weights at level k satisfy 20 + o < k.
Their conformal dimensions are given by

312 + 12 + 31115 + 91y + 5l
3(k +4)

S(ll 12) = (A29)

The central charges are ¢ = ,%’Z for the (G2)i

WZW model and ¢, = 43k —2 for the corresponding
parafermions.
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