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Self-consistent (non-)abelian statistics in 2+1D are classified by modular tensor categories (MTC).
In recent works, a simplified axiomatic approach to MTCs, based on fusion coefficients N ij

k and spins
si, was proposed. A numerical search based on these axioms led to a list of possible (non-)abelian
statistics, with rank up to N = 7. However, there is no guarantee that all solutions to the simplified
axioms are consistent and can be realised by bosonic physical systems. In this paper, we use simple-
current algebra to address this issue. We explicitly construct many-body wave functions, aiming to
realize the entries in the list (i.e. realize their fusion coefficients N ij

k and spins si). We find that all
entries can be constructed by simple-current algebra plus conjugation under time reversal symmetry.
This supports the conjecture that simple-current algebra is a general approach that allows us to
construct all (non-)abelian statistics in 2+1D. It also suggests that the simplified theory based on
(N ij

k , si) is a classifying theory at least for simple bosonic 2+1D topological orders (up to invertible
topological orders).

I. INTRODUCTION

We know that symmetry breaking orders1,2 are de-
scribed by group theory, which allows us to classify all dif-
ferent symmetry breaking orders. It is then natural to ask
what mathematical theory classifies topological orders3,4,
which are beyond symmetry breaking orders. One pro-
posal is to use the properties of topological excitations
(such as their (non-)abelian statistics) to classify topo-
logical orders. This has led to the proposal that d+ 1D
bosonic topological orders can be classified by unitary
(d + 1)-categories with one object.5,6 In particular, uni-
tary (2+1)-categories with one object are modular tensor
categories (MTC), leading to the proposal that 2+1D
bosonic topological orders are classified by MTCs.7–15

Such a classification is up to invertible topological orders,
which have no nontrivial topological excitations.5,16

A. Simplified axiomatic approach

The papers Ref. 12,15 have formulated a simplified ax-
iomatic approach to MTCs. This approach is based on
fusion coefficients N ij

k and spins si; it does not explicitly
involve more involved data such as R- and F -matrices.
The simplified axioms were used for a numerical search
of simple MTCs, which led to a list of possible bosonic
topological orders in 2+1D, with rank up to N = 7 (see
Tables I - IV).

For certain special types of topological orders, the clas-
sification can be described by simpler theories. For exam-
ple, topological orders with gappable edge for 2+1D in-
teracting bosonic systems can be classified by unitary fu-
sion categories (UFC).17,18 For 2+1D bosonic/fermionic
topological orders (with gappable or un-gappable edge)
that have only abelian statistics, we can use integer K-
matrices to classify them19 and use the following U(1)

Chern-Simons theory to describe them19–25

L =
KIJ

4π
aIµ∂νaJλǫ

µνλ. (1)

Such an effective theory can be realized by a multi-layer
fractional quantum Hall state:

∏

I;i<j

(zIi − zIj )
KII

∏

I<J;i,j

(zIi − zJj )
KIJ e−

1
4

∑
i,I |zI

i |2 . (2)

When the diagonal elements KII are all even, the K-
matrices classify 2+1D bosonic abelian topological or-
ders. When some diagonal elements KII are odd, the
K-matrices classify 2+1D fermionic abelian topological
orders.
The list produced in Ref. 12,15 gives solutions to the

simplified axioms for MTCs - as such it describes possible
self-consistent (non-)abelian statistics in 2+1D. However,
there is no guarantee that all solutions are indeed consis-
tent and can be realized by many-boson wavefunctions.

B. Simple-current algebra constructions

In this paper, we pursue a constructive (rather than ax-
iomatic) approach to bosonic topological orders in 2+1D.
We use simple-current algebra to construct and classify
such orders, and demonstrate that simple-current alge-
bras can produce all orders listed in Tables I - IV.
It is well-known that correlation functions in confor-

mal field theory (CFT) can be used to construct many-
body wave functions26–32 that realize topological orders
in 2+1D. In this paper we use these ideas to arrive at
many-boson wavefunctions for bosonic topological or-
ders. The main building blocks for our constructions are
a set of CFT simple currents

ψI , I = 1, · · · ,M . (3)
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We combine these with scalar field vertex operators to
define

cI = ψI e
i
∑

µ kI
µφ

µ

= ψI e
ikI ·φ (4)

and construct bosonic wave functions as

P ({zIi }) = lim
z∞→∞

〈V (z∞)
∏

i,I

cI(z
I
i )〉. (5)

We refer to section II for details and further explanation.
In this paper and in Ref. 29, we like to stress that it is

misleading to state that CFT as such classifies topological
orders. It is really simple-current algebra that can be
used to classify 2+1D topological orders. In this paper,
we show how to calculate the fusion coefficients N ij

k and
spins si of the topological excitations from simple-current
algebra. This allows us to recover all entries in the Tables
I - IV using simple-current algebra.
The consistency of the MTC axioms of Ref. 12,15 guar-

antees that all consistent orders are covered by lists such
as those of Tables I - IV. In that sense those lists are
an upper bound to the actual list of all consistent or-
ders. The orders coming out of simple-current algebra
constructions are consistent by construction - they thus
establish a lower bound to the list of all consistent orders.
In all cases considered in this paper, the two bounds
agree, allowing us to conclude that both the simplified
axiomatic approach and the simple-current algebra con-
structive approach give complete results.

II. CONSTRUCTING TOPOLOGICALLY

ORDERED STATE OF A GIVEN NON-ABELIAN

TYPE VIA A SIMPLE-CURRENT ALGEBRA

In this paper, we will use charged particles in multi-
layer system under magnetic field as a general and sys-
tematic way to realize 2+1D bosonic and fermionic topo-
logically ordered states. We will assume all the particles
are in the first Landau level. Thus the many-body wave
function has a form

Ψ({zIi }) = P ({zIi })e−
1
4

∑
i,I |zI

i |2 , (6)

where i labels different particles, I = 1, · · · ,M labels
different layers, and P ({zIi }) is a (anti-)symmetric poly-
nomial (under zIi ↔ zIj ), depending on the Bose or Fermi

statistics of the particles in the Ith layer. In this paper,
we are going to use such kind of systems to systemat-
ically realize non-abelian topological orders for bosons
and fermions.

A. Symmetric polynomial P ({zIi }) as a correlation

function in a simple-current algebra

Let us consider a CFT generated by simple currents
cI(z), I = 1, · · · ,M . By definition, simple currents are

operators with unit quantum dimension. The correla-
tion function of simple currents always has one confor-
mal block. If the simple currents cI(z) are also bosonic
with integer conformal dimension or fermionic with half-
integer conformal dimension, then we can use the corre-
lation function of the simple currents cI(z) to construct
the (anti-)symmetric polynomial P ({zIi })26–28,33

P ({zIi }) ∝ lim
z∞→∞

〈V (z∞)
∏

i,I

cI(z
I
i )〉 (7)

where V (z∞) represents a background to guarantee that
the correlation function be non-zero. In fact cI(z) is re-
lated to the annihilation operator for the bosons in the
Ith layer.
Such an approach allows us to use different simple-

current CFTs to construct/label different many-boson
wave function, which may correspond to different 2+1D
topologically ordered states. For example, the Laugh-
lin wave function P ({zi}) =

∏

i<j(zi − zj)
m can be con-

structed this way by choosing a Gaussian CFT and choos-
ing

c(z) = e i
√
mφ(z) (8)

as the simple-current operator. Here, the operator

e iaφ(z) has conformal dimension a2

2 and the following op-
erator product expansion (OPE)

e iaφ(z) e ibφ(w) =

(z − w)ab e i (a+b)φ(w) +O
(

(z − w)ab+1
)

. (9)

In fact

∏

i<j

(zi − zj)
m ∝ lim

z∞→∞
〈e− iN

√
mφ(z∞)

N
∏

i=1

e i
√
mφ(zi)〉.

(10)

To construct the abelian topologically ordered states
described by the K-matrix wave function (2), we can
start with a Gaussian model described by φµ fields that
have the following OPE

e i lµφ
µ(z) e i l

′
µφ

µ(w) = (z − w)lµG
µν l′ν e i (lµ+l′µ)φ

µ(w) + · · ·
(11)

We see that e ikµφ
µ(z) has a conformal dimension

1

2
k · k ≡ 1

2

∑

µν

kµG
µνkν , (12)

where the inner product · is defined via Gµν . The metric
Gµν plays a crucial role, as a given choice of Gµν leads
to a specific set of momenta kµ giving vertex operators
with integral conformal dimension (or half-integral for
fermionic theories), thereby setting the operator content

of the theory. If we choose cI = e ik
I ·φ ≡ e i

∑
µ kI

µφ
µ

,
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TABLE I: A list of 35 bosonic topological orders in 2+1D with rank N = 1, 2, 3, 4 and with max(N ij
k ) ≤ 3. All N ≤ 4

orders have max(N ij
k ) = 1. The entries in blue are composite topological orders that can be obtained by stacking lower rank

topological orders. The first column is the rank N and the central charge c (mod 8). The second column is the topological

entanglement entropy Stop = log2 D, D =
√∑

i d
2
i . The quantum dimensions of the topological excitations in the third column

are expressed in terms of ζmn = sin[π(m+1)/(n+2)]
sin[π/(n+2)]

. The fourth column are the spins of the corresponding topological excitations.

By ‘type (Xl, k)’ we indicate a correspondence to affine Kac-Moody current algebra X
(1)
l at level k, and (Xl, k) 1

q
indicate

simple-current reductions of Kac-Moody current algebra.

NB
c Stop d1, d2, · · · s1, s2, · · · type NB

c Stop d1, d2, · · · s1, s2, · · · type

1B0 0 1 0

2B1 0.5 1, 1 0, 1
4

U(1)1, (A1, 1) 2B−1 0.5 1, 1 0,− 1
4

(E7, 1)

2B14/5 0.9276 1, ζ13 0, 2
5

(G2, 1), (A1, 3) 1
2

2B−14/5 0.9276 1, ζ13 0,− 2
5

(F4, 1), (A2, 2) 1
3

3B2 0.7924 1, 1, 1 0, 1
3
, 1
3

(A2, 1), (A1, 4) 1
4

3B−2 0.7924 1, 1, 1 0,− 1
3
,− 1

3
(E6, 1)

3B1/2 1 1, 1, ζ12 0, 1
2
, 1
16

(B8, 1) 3B−1/2 1 1, 1, ζ12 0, 1
2
,− 1

16
(B7, 1), (E8, 2)

3B3/2 1 1, 1, ζ12 0, 1
2
, 3
16

(A1, 2) 3B−3/2 1 1, 1, ζ12 0, 1
2
,− 3

16
(B6, 1)

3B5/2 1 1, 1, ζ12 0, 1
2
, 5
16

(B2, 1) 3B−5/2 1 1, 1, ζ12 0, 1
2
,− 5

16
(B5, 1)

3B7/2 1 1, 1, ζ12 0, 1
2
, 7
16

(B3, 1) 3B−7/2 1 1, 1, ζ12 0, 1
2
,− 7

16
(B4, 1)

3B8/7 1.6082 1, ζ15 , ζ
2
5 0,− 1

7
, 2
7

(A1, 5) 1
2

3B−8/7 1.6082 1, ζ15 , ζ
2
5 0, 1

7
,− 2

7
(A4, 2) 1

5

4B,a
0 1 1, 1, 1, 1 0, 0, 0, 1

2
(D8, 1) 4B,b

0 1 1, 1, 1, 1 0, 0, 1
4
,− 1

4

4B1 1 1, 1, 1, 1 0, 1
8
, 1
8
, 1
2

U(1)2 4B−1 1 1, 1, 1, 1 0,− 1
8
,− 1

8
, 1
2

(D7, 1)

4B2 1 1, 1, 1, 1 0, 1
4
, 1
4
, 1
2

4B−2 1 1, 1, 1, 1 0,− 1
4
,− 1

4
, 1
2

(D6, 1)

4B3 1 1, 1, 1, 1 0, 3
8
, 3
8
, 1
2

(A3, 1) 4B−3 1 1, 1, 1, 1 0,− 3
8
,− 3

8
, 1
2

(D5, 1)

4B4 1 1, 1, 1, 1 0, 1
2
, 1
2
, 1
2

(D4, 1), (A2, 3) 1
9

4B,c
0 1.8552 1, ζ13 , ζ

1
3 , ζ

1
3ζ

1
3 0, 2

5
,− 2

5
, 0

4B9/5 1.4276 1, 1, ζ13 , ζ
1
3 0,− 1

4
, 3
20
, 2
5

(A1, 3) 4B−9/5 1.4276 1, 1, ζ13 , ζ
1
3 0, 1

4
,− 3

20
,− 2

5

4B19/5 1.4276 1, 1, ζ13 , ζ
1
3 0, 1

4
,− 7

20
, 2
5

4B−19/5 1.4276 1, 1, ζ13 , ζ
1
3 0,− 1

4
, 7
20
,− 2

5
(C3, 1)

4B12/5 1.8552 1, ζ13 , ζ
1
3 , ζ

1
3ζ

1
3 0,− 2

5
,− 2

5
, 1
5

(A1, 8) 1
4

4B−12/5 1.8552 1, ζ13 , ζ
1
3 , ζ

1
3ζ

1
3 0, 2

5
, 2
5
,− 1

5

4B10/3 2.1328 1, ζ17 , ζ
2
7 , ζ

3
7 0, 1

3
, 2
9
,− 1

3
(A1, 7) 1

2
4B−10/3 2.1328 1, ζ17 , ζ

2
7 , ζ

3
7 0,− 1

3
,− 2

9
, 1
3

(G2, 2), (A6, 2) 1
7

where kI = (kI1 , k
I
2 , · · · ) and φ = (φ1, φ2, · · · ), we find

that

P ({zIi }) =
∏

I;i<j

(zIi − zIj )
KII

∏

I<J;i,j

(zIi − zJj )
KIJ

∝ lim
z∞→∞

〈V (z∞)
∏

i,I

cI(z
I
i )〉, (13)

if the kI satisfy

KIJ = kI · kJ . (14)

In order to obtain an (anti-)symmetric polynomial
P ({zIi }), we see that KIJ must be integer.
Now, we are ready to construct topologically ordered

states of a given non-abelian type. Let us consider a
simple-current CFT generated by a set of simple currents

ψI , I = 1, · · · ,M . (15)

We assume that the ψI have finite orders described by
an integer matrix n = (nJI):

∏

J

(ψJ )
nJI = 1, ∀ I. (16)

Now we choose

cI = ψI e
i
∑

µ kI
µφ

µ

= ψI e
ikI ·φ (17)

to construct the wave function as

P ({zIi }) = lim
z∞→∞

〈V (z∞)
∏

i,I

cI(z
I
i )〉. (18)

But in this case, in order to obtain an (anti-)symmetric
polynomial P ({zIi }),

KIJ ≡ kI · kJ =
∑

µν

kIµG
µνkJν (19)

may not be integer. In fact, introducing

c~a =
∏

I

caI

I = e i
∑

I,µ aIk
I
µφ

µ ∏

I

ψaI

I (20)

and noticing that c~a and c~b must be mutually local for

any integer vectors ~a and ~b, we find that kIµ must satisfy

∑

IJµν

aIkIµG
µνkJν b

J − hsc~a − hsc~b + hsc
~a+~b

=
∑

IJ

aIKIJb
J − hsc~a − hsc~b + hsc

~a+~b
∈ N (21)
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for any positive integer vector ~a and ~b (i.e. aI ∈ N and
bI ∈ N). Here N = {0, 1, 2, · · · } and hsc~a is the conformal
dimension of ψ~a ≡ ∏

I ψ
aI

I . Since the hsc~a are rational
numbers, in general, KIJ are also rational numbers. We
see that, starting from a simple-current CFT, we can
construct all the 2+1D topological orders of a given non-
abelian type, by finding all the K-matrices that satisfy
the conditions (21).
If we further require that

∑

IJ

aIKIJa
J − 2hsc~a + hsc2~a = even, (22)

for all ~a, then we will obtain the bosonic 2+1D topo-
logical orders of a given non-abelian type. If we require
that

∑

IJ

aIKIJa
J − 2hsc~a + hsc2~a = odd, (23)

for some ~a, then we will obtain the fermionic 2+1D topo-
logical orders of a given non-abelian type.

B. Topological excitations from simple-current

algebra

In the above, we have used the simple-current CFT
generated by the simple currents cI(z) to obtain the
ground state wave function of a 2+1D topological order.
In this section, we are going to discuss how to obtain the
topological excitations from the simple-current CFT.
First, we like to introduce the notion of simple-current

primary field. Acting with cI(z) on to the ground state
|0〉 generates the adjoint representation of the simple-
current algebra. The simple-current algebra has other ir-
reducible representations, which can be obtained by the
action of cI(z) on the ground state |η〉 = η|0〉 of a twisted
sector. Thus the different irreducible representations of
the simple-current algebra are labeled by η (where η = 1
corresponds the adjoint representation). The operator
η(z) that corresponds to the twisted ground state |η〉 un-
der the operator-state correspondence is called a primary
field of the simple-current algebra.
The primary fields η(z) are local with respect to all the

simple currents cI(z):

cI(z)η(w) ∼ (z − w)αcI ,η [cIη](w) + . . . (24)

where αcI ,η are integers. Each simple-current primary
field (or each irreducible representation of the simple-
current algebra) corresponds to a type of topological ex-
citation in the corresponding topological order.
So to use CFT to study 2+1D topological order, we

need to first identify the simple currents to produce the
many-body wavefunction of the topological order. We
then need to find the irreducible representations (or the
primary fields) of the simple-current algebra to obtain
the topological excitations and their properties (such as
the quantum dimensions, the spins, etc ).

In general, the simple currents cI(z) have the form

cI(z) = ψI e
ikI ·φ = ψI e

i
∑

µ kI
µφ

µ

(25)

where ψI are simple currents with finite order (see
eqn. (16)). Let us introduce

ψ~b ≡
∏

I

ψbI
I , c~b ≡

∏

I

cbII . (26)

Also, let us use σα, α = 1, 2, · · · , to denote the primary
fields of the simple-current CFT generated by simple cur-
rents ψI , and use σα;~b to denote the product of σα and

ψ~b. σα;~b are descendent fields of the primary field σα and

have higher conformal dimensions

hsc
α,~b

≥ hscα , (27)

where hscα is the conformal dimension of σα and hsc
α,~b

is

the conformal dimension of σα;~b. The OPE of σα;~b with

ψ~a has for its leading term

ψ~a(z)σα;~b(w) ∼
1

(z − w)
hsc
~a
+hsc

α,~b
−hsc

α,~a+~b

σα;~a+~b. (28)

The simple-current primary field η for the original sim-
ple currents cI is given by

ηα,lα = σα e
i lα·φ = σα e

i
∑

µ lαµφµ

. (29)

The corresponding descendent fields are given by

ηα,lα;~b = σα,~b e
i lα·φ e i

∑
I bIk

I ·φ (30)

for all different integer vectors ~b. Each of those operators
should be mutually local with respect to c~a. This requires
lα to satisfy
∑

IJ

aIKIJb
J +

∑

IJµν

aIkIµG
µν lαν − hsc~a − hsc

α,~b
+ hsc

α,~a+~b
∈ Z,

(31)

for any integer vectors ~a and ~b.
To understand the above construction in more detail,

let us count the number of cI -simple-current primary
fields η (which is equal to the number of topological types
of the topological excitations in the corresponding topo-
logical order). First a cI -primary field η corresponds to
a pair: a ψI -simple-current primary field σα and a vec-
tor lα. So the cI -primary fields are labeled by (α, lα).
We have used ηα,lα to denote those cI -primary fields. lα

must satisfy eqn. (31). In fact, it is enough to find ratio-
nal vectors lα that satisfy

∑

IJµν

aIkIµG
µν lαν − hsc~a − hscα + hscα,~a ∈ Z, ∀~a. (32)

For each α, we may have many solutions lα which satisfy
the above equation. But two solutions lα1 and lα2 are
regarded as the same if they are related by

lα1 − lα2 =
∑

IJ

kInIJaJ , aJ ∈ Z. (33)
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TABLE II: A list of 10 bosonic rank N = 5 topological orders in 2+1D with max(N ij
k ) ≤ 3. The orders 5B±18/7 have max(N ij

k ) =

2, all other N = 5 topological orders have N ij
k = 0, 1.

NB
c Stop d1, d2, · · · s1, s2, · · · type

5B0 1.1609 1, 1, 1, 1, 1 0, 1
5
, 1
5
,− 1

5
,− 1

5

5B4 1.1609 1, 1, 1, 1, 1 0, 2
5
, 2
5
,− 2

5
,− 2

5
(A4, 1)

5B,a
2 1.7924 1, 1, ζ14 , ζ

1
4 , 2 0, 0, 1

8
,− 3

8
, 1
3

(A1, 4), (U(1)3/Z2) 1
2

5B,b
2 1.7924 1, 1, ζ14 , ζ

1
4 , 2 0, 0,− 1

8
, 3
8
, 1
3

[5B,a
2 ⊗ 4B,b

0 ] 1
4

5B,a
−2 1.7924 1, 1, ζ14 , ζ

1
4 , 2 0, 0,− 1

8
, 3
8
,− 1

3
(C4, 1), (A3, 2) 1

2

5B,b
−2 1.7924 1, 1, ζ14 , ζ

1
4 , 2 0, 0, 1

8
,− 3

8
,− 1

3
[5B,a

−2 ⊗ 4B,b
0 ] 1

4

5B16/11 2.5573 1, ζ19 , ζ
2
9 , ζ

3
9 , ζ

4
9 0,− 2

11
, 2
11
, 1
11
,− 5

11
(F4, 2), (A1, 9) 1

2

5B−16/11 2.5573 1, ζ19 , ζ
2
9 , ζ

3
9 , ζ

4
9 0, 2

11
,− 2

11
,− 1

11
, 5
11

(E8, 3), (A8, 2) 1
9

5B18/7 2.5716 1, ζ25 , ζ
2
5 , ζ

2
12, ζ

4
12 0,− 1

7
,− 1

7
, 1
7
, 3
7

(A1, 12) 1
4
, (A2, 4) 1

3

5B−18/7 2.5716 1, ζ25 , ζ
2
5 , ζ

2
12, ζ

4
12 0, 1

7
, 1
7
,− 1

7
,− 3

7
(A3, 3) 1

4

Counting the pairs (σα, l
α) of inequivalent solutions will

give us the number of cI -simple-current primary fields
and the number of topological types.

III. 2+1D TOPOLOGICAL ORDER FROM

CHIRAL
U(1)M

Z2
ORBIFOLD CFT

In this section, we will give an example of using simple-
current algebra to construct a wavefunction that realizes
a 2+1D topological order. In the process, we will give a

brief review on the U(1)M
Z2

orbifold CFT, following Ref. 34.

A. Virasoro algebra

Here, we will view a CFT as a 1+1D gapless sys-
tem with unit velocity v = 1 on a 1D ring of size 2π.
The total Hilbert space V of the CFT can always be
viewed as a sum of (irreducible) representations of the
Virasoro algebra. The Virasoro algebra is generated by
the energy-momentum tensor T (z), whose Fourier com-
ponents T (z) =

∑

n z
−n−2Ln satisfy

[Lm, Ln] = (m− n)Lm+n +
c

12
(m3 −m)δm+n,0. (34)

The character of a representation of the Virasoro algebra
is defined as

χVir
c,h(q) = Tr(qL0− c

24 ), (35)

where L0 = H is the Hamiltonian of the CFT on the
ring. So the character encodes the energy spectrum of
the CFT on the ring. The irreducible representations of
the Virasoro algebra are labeled by (c, h), where h is the
energy of the lowest energy state in the representation. h
is also the conformal dimension of the Virasoro primary
field associated to the representation. The character of

the corresponding irreducible representation has the gen-
eral form

χVir
c,h(q) =

q
1−c
24

η(q)
[qh − qh1 + qh2 − . . .], (36)

where

η(q) = q
1
24

∞
∏

n=1

(1− qn) (37)

and the terms −qh1 +qh2+ . . . represent subtractions due
to null states in the Verma module with highest weight
h.

B. U(1) current algebra

The U(1) current algebra (which is a simple-current
algebra) is generated by j = i∂φ. (j is a simple current.)

In other words, the space VU(1)
1 of the adjoint represen-

tation of the U(1) current algebra is generated by j(z)
acting on the ground state |0〉. The corresponding pri-
mary field for the adjoint representation is the identity

operator 1. This is why we use VU(1)
1 to denote the ad-

joint representation. The adjoint representation VU(1)
1

has a character χ
U(1)
1 (q) = 1/η(q). However, the adjoint

irreducible representation of the U(1) current algebra is
not an irreducible representation of the Virasoro algebra.
Instead, it is formed by many irreducible representations
VVir
c=1,n2 of the Virasoro algebra generated by the energy

momentum tensor T (z) ∝ j2(z). It turns out that

VU(1)
1 =

⊕

n≥0

VVir
c=1,n2 (38)
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TABLE III: A list of 50 bosonic rank N = 6 topological orders in 2+1D with max(N ij
k ) ≤ 2.

NB
c Stop D2 d1, d2, · · · s1, s2, · · · NB

c ⊗ ÑB
c̃ type

6B1 1.2924 6 1, 1, 1, 1, 1, 1 0, 1
12
, 1
12
,− 1

4
, 1
3
, 1
3

2B−1 ⊗ 3B2 U(1)3

6B−1 1.2924 6 1, 1, 1, 1, 1, 1 0,− 1
12
,− 1

12
, 1
4
,− 1

3
,− 1

3
2B1 ⊗ 3B−2

6B3 1.2924 6 1, 1, 1, 1, 1, 1 0, 1
4
, 1
3
, 1
3
,− 5

12
,− 5

12
2B1 ⊗ 3B2

6B−3 1.2924 6 1, 1, 1, 1, 1, 1 0,− 1
4
,− 1

3
,− 1

3
, 5
12
, 5
12

2B−1 ⊗ 3B−2 (A5, 1)

6B1/2 1.5 8 1, 1, 1, 1, ζ12 , ζ
1
2 0, 1

4
,− 1

4
, 1
2
,− 1

16
, 3
16

2B1 ⊗ 3B−1/2

6B−1/2 1.5 8 1, 1, 1, 1, ζ12 , ζ
1
2 0, 1

4
,− 1

4
, 1
2
, 1
16
,− 3

16
2B1 ⊗ 3B−3/2

6B3
2

1.5 8 1, 1, 1, 1, ζ12 , ζ
1
2 0, 1

4
,− 1

4
, 1
2
, 1
16
, 5
16

2B1 ⊗ 3B1/2

6B−3/2 1.5 8 1, 1, 1, 1, ζ12 , ζ
1
2 0, 1

4
,− 1

4
, 1
2
,− 1

16
,− 5

16
2B1 ⊗ 3B−5/2

6B5/2 1.5 8 1, 1, 1, 1, ζ12 , ζ
1
2 0, 1

4
,− 1

4
, 1
2
, 3
16
, 7
16

2B1 ⊗ 3B3/2
6B−5/2 1.5 8 1, 1, 1, 1, ζ12 , ζ

1
2 0, 1

4
,− 1

4
, 1
2
,− 3

16
,− 7

16
2B1 ⊗ 3B−7/2

6B7/2 1.5 8 1, 1, 1, 1, ζ12 , ζ
1
2 0, 1

4
,− 1

4
, 1
2
, 5
16
,− 7

16
2B1 ⊗ 3B5/2

6B−7/2 1.5 8 1, 1, 1, 1, ζ12 , ζ
1
2 0, 1

4
,− 1

4
, 1
2
,− 5

16
, 7
16

2B1 ⊗ 3B7/2
6B4/5 1.7200 10.854 1, 1, 1, ζ13 , ζ

1
3 , ζ

1
3 0,− 1

3
,− 1

3
, 1
15
, 1
15
, 2
5

2B14/5 ⊗ 3B−2

6B−4/5 1.7200 10.854 1, 1, 1, ζ13 , ζ
1
3 , ζ

1
3 0, 1

3
, 1
3
,− 1

15
,− 1

15
,− 2

5
2B−14/5 ⊗ 3B2

6B16/5 1.7200 10.854 1, 1, 1, ζ13 , ζ
1
3 , ζ

1
3 0,− 1

3
,− 1

3
, 4
15
, 4
15
,− 2

5
2B−14/5 ⊗ 3B−2 (A2, 2)

6B−16/5 1.7200 10.854 1, 1, 1, ζ13 , ζ
1
3 , ζ

1
3 0, 1

3
, 1
3
,− 4

15
,− 4

15
, 2
5

2B14
5
⊗ 3B2

6B−27/10 1.9276 14.472 1, 1, ζ12 , ζ
1
3 , ζ

1
3 , ζ

1
2ζ

1
3 0, 1

2
, 5
16
,− 1

10
, 2
5
,− 23

80
2B14

5
⊗ 3B5/2 (E7, 2)

6B−17/10 1.9276 14.472 1, 1, ζ12 , ζ
1
3 , ζ

1
3 , ζ

1
2ζ

1
3 0, 1

2
, 7
16
,− 1

10
, 2
5
,− 13

80
2B14

5
⊗ 3B7/2

6B−7/10 1.9276 14.472 1, 1, ζ12 , ζ
1
3 , ζ

1
3 , ζ

1
2ζ

1
3 0, 1

2
,− 7

16
,− 1

10
, 2
5
,− 3

80
2B14

5
⊗ 3B−7/2

6B3/10 1.9276 14.472 1, 1, ζ12 , ζ
1
3 , ζ

1
3 , ζ

1
2ζ

1
3 0, 1

2
,− 5

16
,− 1

10
, 2
5
, 7
80

2B14
5
⊗ 3B−5/2

6B13/10 1.9276 14.472 1, 1, ζ12 , ζ
1
3 , ζ

1
3 , ζ

1
2ζ

1
3 0, 1

2
,− 3

16
,− 1

10
, 2
5
, 17
80

2B14
5
⊗ 3B−3/2

6B23/10 1.9276 14.472 1, 1, ζ12 , ζ
1
3 , ζ

1
3 , ζ

1
2ζ

1
3 0, 1

2
,− 1

16
,− 1

10
, 2
5
, 27
80

2B14
5
⊗ 3B−1/2

6B33/10 1.9276 14.472 1, 1, ζ12 , ζ
1
3 , ζ

1
3 , ζ

1
2ζ

1
3 0, 1

2
, 1
16
,− 1

10
, 2
5
, 37
80

2B14
5
⊗ 3B1/2

6B−37/10 1.9276 14.472 1, 1, ζ12 , ζ
1
3 , ζ

1
3 , ζ

1
2ζ

1
3 0, 1

2
, 3
16
,− 1

10
, 2
5
,− 33

80
2B14

5
⊗ 3B3/2

6B27/10 1.9276 14.472 1, 1, ζ12 , ζ
1
3 , ζ

1
3 , ζ

1
2ζ

1
3 0, 1

2
,− 5

16
, 1
10
,− 2

5
, 23
80

2B−14/5 ⊗ 3B−5/2

6B17/10 1.9276 14.472 1, 1, ζ12 , ζ
1
3 , ζ

1
3 , ζ

1
2ζ

1
3 0, 1

2
,− 7

16
, 1
10
,− 2

5
, 13
80

2B−14/5 ⊗ 3B−7/2

6B7/10 1.9276 14.472 1, 1, ζ12 , ζ
1
3 , ζ

1
3 , ζ

1
2ζ

1
3 0, 1

2
, 7
16
, 1
10
,− 2

5
, 3
80

2B−14/5 ⊗ 3B7/2
6B−3/10 1.9276 14.472 1, 1, ζ12 , ζ

1
3 , ζ

1
3 , ζ

1
2ζ

1
3 0, 1

2
, 5
16
, 1
10
,− 2

5
,− 7

80
2B−14/5 ⊗ 3B5/2

6B−13/10 1.9276 14.472 1, 1, ζ12 , ζ
1
3 , ζ

1
3 , ζ

1
2ζ

1
3 0, 1

2
, 3
16
, 1
10
,− 2

5
,− 17

80
2B−14/5 ⊗ 3B3/2

6B−23/10 1.9276 14.472 1, 1, ζ12 , ζ
1
3 , ζ

1
3 , ζ

1
2ζ

1
3 0, 1

2
, 1
16
, 1
10
,− 2

5
,− 27

80
2B−14/5 ⊗ 3B1/2

6B−33/10 1.9276 14.472 1, 1, ζ12 , ζ
1
3 , ζ

1
3 , ζ

1
2ζ

1
3 0, 1

2
,− 1

16
, 1
10
,− 2

5
,− 37

80
2B−14/5 ⊗ 3B−1/2

6B37/10 1.9276 14.472 1, 1, ζ12 , ζ
1
3 , ζ

1
3 , ζ

1
2ζ

1
3 0, 1

2
,− 3

16
, 1
10
,− 2

5
, 33
80

2B−14/5 ⊗ 3B−3/2

6B1/7 2.1082 18.591 1, 1, ζ15 , ζ
1
5 , ζ

2
5 , ζ

2
5 0,− 1

4
,− 1

7
,− 11

28
, 1
28
, 2
7

2B−1 ⊗ 3B8/7
6B−1/7 2.1082 18.591 1, 1, ζ15 , ζ

1
5 , ζ

2
5 , ζ

2
5 0, 1

4
, 1
7
, 11
28
,− 1

28
,− 2

7
2B1 ⊗ 3B−8/7 (C5, 1)

6B15/7 2.1082 18.591 1, 1, ζ15 , ζ
1
5 , ζ

2
5 , ζ

2
5 0, 1

4
, 3
28
,− 1

7
, 2
7
,− 13

28
2B1 ⊗ 3B8

7
(A1, 5)

6B−15/7 2.1082 18.591 1, 1, ζ15 , ζ
1
5 , ζ

2
5 , ζ

2
5 0,− 1

4
,− 3

28
, 1
7
,− 2

7
, 13
28

2B−1 ⊗ 3B−8/7

6B,a
0 2.1609 20 1, 1, 2, 2,

√
5,
√
5 0, 0, 1

5
,− 1

5
, 0, 1

2
(D5, 2) 1

2
, (U(1)5/Z2) 1

2

6B,b
0 2.1609 20 1, 1, 2, 2,

√
5,
√
5 0, 0, 1

5
,− 1

5
, 1
4
,− 1

4
[6B,a

0 ⊗ 4B,b
0 ] 1

4

6B,b
4 2.1609 20 1, 1, 2, 2,

√
5,
√
5 0, 0, 2

5
,− 2

5
, 1
4
,− 1

4
(B2, 2)

6B,a
4 2.1609 20 1, 1, 2, 2,

√
5,
√
5 0, 0, 2

5
,− 2

5
, 0, 1

2
[6B,b

4 ⊗ 4B,b
0 ] 1

4

6B58/35 2.5359 33.632 1, ζ13 , ζ
1
5 , ζ

2
5 , ζ

1
3ζ

1
5 , ζ

1
3ζ

2
5 0, 2

5
, 1
7
,− 2

7
,− 16

35
, 4
35

2B14
5
⊗ 3B−8/7

6B−58/35 2.5359 33.632 1, ζ13 , ζ
1
5 , ζ

2
5 , ζ

1
3ζ

1
5 , ζ

1
3ζ

2
5 0,− 2

5
,− 1

7
, 2
7
, 16
35
,− 4

35
2B−14/5 ⊗ 3B8/7

6B138/35 2.5359 33.632 1, ζ13 , ζ
1
5 , ζ

2
5 , ζ

1
3ζ

1
5 , ζ

1
3ζ

2
5 0, 2

5
,− 1

7
, 2
7
, 9
35
,− 11

35
2B14

5
⊗ 3B8/7

6B−138/35 2.5359 33.632 1, ζ13 , ζ
1
5 , ζ

2
5 , ζ

1
3ζ

1
5 , ζ

1
3ζ

2
5 0,− 2

5
, 1
7
,− 2

7
,− 9

35
, 11
35

2B−14/5 ⊗ 3B−8/7

6B46/13 2.9132 56.746 1, ζ111, ζ
2
11, ζ

3
11, ζ

4
11, ζ

5
11 0, 4

13
, 2
13
,− 6

13
, 6
13
,− 1

13
(A1, 11) 1

2

6B−46/13 2.9132 56.746 1, ζ111, ζ
2
11, ζ

3
11, ζ

4
11, ζ

5
11 0,− 4

13
,− 2

13
, 6
13
,− 6

13
, 1
13

(A10, 2) 1
11

6B8/3 3.1107 74.617 1, ζ37 , ζ
3
7 , ζ

2
16, ζ

4
16, ζ

6
16 0, 1

9
, 1
9
, 1
9
, 1
3
,− 1

3
(A1, 16) 1

4

6B−8/3 3.1107 74.617 1, ζ37 , ζ
3
7 , ζ

2
16, ζ

4
16, ζ

6
16 0,− 1

9
,− 1

9
,− 1

9
,− 1

3
, 1
3

(A2, 6) 1
9

6B2 3.3263 100.61 1, 3+
√

21
2

, 3+
√

21
2

, 3+
√

21
2

, 5+
√
21

2
, 7+

√
21

2
0,− 1

7
,− 2

7
, 3
7
, 0, 1

3

6B−2 3.3263 100.61 1, 3+
√

21
2

, 3+
√

21
2

, 3+
√

21
2

, 5+
√
21

2
, 7+

√
21

2
0, 1

7
, 2
7
,− 3

7
, 0,− 1

3
(G2, 3)
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TABLE IV: A list of 24 bosonic rank N = 7 topological orders in 2+1D with max(N ij
k ) ≤ 1. Since N = 7 is a prime number,

all those 24 topological orders are primitive.

NB
c Stop D2 d1, d2, · · · s1, s2, · · · type

7B,a
2 1.4036 7 1, 1, 1, 1, 1, 1, 1 0, 1

7
, 1
7
, 2
7
, 2
7
,− 3

7
,− 3

7

7B,a
−2 1.4036 7 1, 1, 1, 1, 1, 1, 1 0,− 1

7
,− 1

7
,− 2

7
,− 2

7
, 3
7
, 3
7

(A6, 1)

7B9/4 2.3857 27.313 1, 1, ζ16 , ζ
1
6 , ζ

2
6 , ζ

2
6 , ζ

3
6 0, 1

2
, 3
32
, 3
32
, 1
4
,− 1

4
, 15
32

(A1, 6)

7B13/4 2.3857 27.313 1, 1, ζ16 , ζ
1
6 , ζ

2
6 , ζ

2
6 , ζ

3
6 0, 1

2
, 7
32
, 7
32
, 1
4
,− 1

4
,− 13

32
[7B9/4 ⊗ 4B1 ] 1

4

7B−15/4 2.3857 27.313 1, 1, ζ16 , ζ
1
6 , ζ

2
6 , ζ

2
6 , ζ

3
6 0, 1

2
, 11
32
, 11
32
, 1
4
,− 1

4
,− 9

32
[7B13/4 ⊗ 4B1 ] 1

4

7B−11/4 2.3857 27.313 1, 1, ζ16 , ζ
1
6 , ζ

2
6 , ζ

2
6 , ζ

3
6 0, 1

2
, 15
32
, 15
32
, 1
4
,− 1

4
,− 5

32
[7B−15/4 ⊗ 4B1 ] 1

4

7B−7/4 2.3857 27.313 1, 1, ζ16 , ζ
1
6 , ζ

2
6 , ζ

2
6 , ζ

3
6 0, 1

2
,− 13

32
,− 13

32
, 1
4
,− 1

4
,− 1

32
[7B−11/4 ⊗ 4B1 ] 1

4

7B−3/4 2.3857 27.313 1, 1, ζ16 , ζ
1
6 , ζ

2
6 , ζ

2
6 , ζ

3
6 0, 1

2
,− 9

32
,− 9

32
, 1
4
,− 1

4
, 3
32

[7B−7/4 ⊗ 4B1 ] 1
4

7B1/4 2.3857 27.313 1, 1, ζ16 , ζ
1
6 , ζ

2
6 , ζ

2
6 , ζ

3
6 0, 1

2
,− 5

32
,− 5

32
, 1
4
,− 1

4
, 7
32

[7B−3/4 ⊗ 4B1 ] 1
4

7B5/4 2.3857 27.313 1, 1, ζ16 , ζ
1
6 , ζ

2
6 , ζ

2
6 , ζ

3
6 0, 1

2
,− 1

32
,− 1

32
, 1
4
,− 1

4
, 11
32

[7B1/4 ⊗ 4B1 ] 1
4

7B7/4 2.3857 27.313 1, 1, ζ16 , ζ
1
6 , ζ

2
6 , ζ

2
6 , ζ

3
6 0, 1

2
, 13
32
, 13
32
, 1
4
,− 1

4
, 1
32

(C6, 1)

7B11/4 2.3857 27.313 1, 1, ζ16 , ζ
1
6 , ζ

2
6 , ζ

2
6 , ζ

3
6 0, 1

2
,− 15

32
,− 15

32
, 1
4
,− 1

4
, 5
32

[7B7/4 ⊗ 4B1 ] 1
4

7B15/4 2.3857 27.313 1, 1, ζ16 , ζ
1
6 , ζ

2
6 , ζ

2
6 , ζ

3
6 0, 1

2
,− 11

32
,− 11

32
, 1
4
,− 1

4
, 9
32

[7B11/4 ⊗ 4B1 ] 1
4

7B−13/4 2.3857 27.313 1, 1, ζ16 , ζ
1
6 , ζ

2
6 , ζ

2
6 , ζ

3
6 0, 1

2
,− 7

32
,− 7

32
, 1
4
,− 1

4
, 13
32

[7B15/4 ⊗ 4B1 ] 1
4

7B−9/4 2.3857 27.313 1, 1, ζ16 , ζ
1
6 , ζ

2
6 , ζ

2
6 , ζ

3
6 0, 1

2
,− 3

32
,− 3

32
, 1
4
,− 1

4
,− 15

32
[7B−13/4 ⊗ 4B1 ] 1

4

7B−5/4 2.3857 27.313 1, 1, ζ16 , ζ
1
6 , ζ

2
6 , ζ

2
6 , ζ

3
6 0, 1

2
, 1
32
, 1
32
, 1
4
,− 1

4
,− 11

32
[7B−9/4 ⊗ 4B1 ] 1

4

7B−1/4 2.3857 27.313 1, 1, ζ16 , ζ
1
6 , ζ

2
6 , ζ

2
6 , ζ

3
6 0, 1

2
, 5
32
, 5
32
, 1
4
,− 1

4
,− 7

32
[7B−5/4 ⊗ 4B1 ] 1

4

7B3/4 2.3857 27.313 1, 1, ζ16 , ζ
1
6 , ζ

2
6 , ζ

2
6 , ζ

3
6 0, 1

2
, 9
32
, 9
32
, 1
4
,− 1

4
,− 3

32
[7B−1/4 ⊗ 4B1 ] 1

4

7B,b
2 2.4036 28 1, 1, 2, 2, 2,

√
7,
√
7 0, 0, 1

7
, 2
7
,− 3

7
, 1
8
,− 3

8
(U(1)7/Z2) 1

2

7B,c
2 2.4036 28 1, 1, 2, 2, 2,

√
7,
√
7 0, 0, 1

7
, 2
7
,− 3

7
,− 1

8
, 3
8

[7B,b
2 ⊗ 4B,b

0 ] 1
4

7B,b
−2 2.4036 28 1, 1, 2, 2, 2,

√
7,
√
7 0, 0,− 1

7
,− 2

7
, 3
7
,− 1

8
, 3
8

(B3, 2), (D7, 2) 1
2

7B,c
−2 2.4036 28 1, 1, 2, 2, 2,

√
7,
√
7 0, 0,− 1

7
,− 2

7
, 3
7
, 1
8
,− 3

8
[7B,b

−2 ⊗ 4B,b
0 ] 1

4

7B8/5 3.2194 86.750 1, ζ113, ζ
2
13, ζ

3
13, ζ

4
13, ζ

5
13, ζ

6
13 0,− 1

5
, 2
15
, 0, 2

5
, 1
3
,− 1

5
(A1, 13) 1

2

7B−8/5 3.2194 86.750 1, ζ113, ζ
2
13, ζ

3
13, ζ

4
13, ζ

5
13, ζ

6
13 0, 1

5
,− 2

15
, 0,− 2

5
,− 1

3
, 1
5

(A12, 2) 1
13

since

χ
U(1)
1 (q) =

1

η(q)
=
∑

n≥0

qn
2 − q(n+1)2

η(q)
=
∑

n≥0

χVir
c=1,n2 .

(39)

The corresponding Virasoro primary fields are 1, j, j4 =
j4 − 2j∂2j + 3

2 (∂j)
2, · · · .

The non-trivial representation VU(1)
k of the U(1) cur-

rent algebra corresponds to the U(1) primary field e ikφ

with conformal dimension h = k2

2 . The corresponding
representations have the following fusion property

VU(1)
k ⊗ VU(1)

k′ = VU(1)
k+k′ , k, k′ ∈ R. (40)

C. Extended U(1)M current algebra

The extended U(1)M current algebra VU(1)M
1 of level

M (which is another simple-current algebra) is generated

by the spin-M fields ψ+ = e i
√
2Mφ and ψ− = e− i

√
2Mφ.

Note that the OPE ψ+ψ− ∼ 1 + j. So the extended
U(1)M current algebra is also generated by j, ψ+, ψ−.

The non-trivial representation VU(1)M
k of the extended

U(1)M current algebra corresponds to the extended-

U(1)M primary fields e ikφ/
√
2M , k = 0, · · · , 2M − 1,

which are local with respect to the generating fields ψ±.
The corresponding character is given by

χ
U(1)M
k (q) =

1

η(q)

∑

m∈Z

q(k+2mM)2/M . (41)

Under the modular transformation S, the characters

χ
U(1)M
k (q) transforms as

S : χ
U(1)M
k (q) →

∑

k′∈Z2M

e− iπkk′/2Mχ
U(1)M
k′ (q). (42)

The irreducible representations have the following fusion
property

VU(1)M
k ⊗ VU(1)M

k′ = VU(1)M
k+k′ , k, k′ ∈ Z2M . (43)
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D.
U(1)M

Z2
-orbifold simple-current algebra

The U(1)M
Z2

-orbifold simple-current algebra V
U(1)M

Z2
1 is

generated by the spin-M simple current ψ = cos(
√
2Mφ).

Note that V
U(1)M

Z2
1 is the Z2 invariant part of VU(1)M

1 ,
where Z2 acts as

Z2 : φ→ −φ. (44)

VU(1)M
1 contains VVir

1 generated by energy momentum

tensor T ∼ j2 which is Z2 invariant. Thus V
U(1)M

Z2
1 also

contains VVir
1 , and T acts within V

U(1)M
Z2

1 . VU(1)M
1 also

contains VU(1)
1 which contains VVir

c=1,n2 , n ∈ N. But the

states in VVir
c=1,n2 transform as |ψ〉 → (−)n|ψ〉 under the

Z2. So V
U(1)M

Z2
1 only contains VVir

c=1,n2 for n even:

VU(1)
1 =

⊕

n≥0,n even

VVir
c=1,n2 (45)

In particular, j4 acts within V
U(1)M

Z2
1 .

Now let us consider irreducible representations of the
U(1)M

Z2
-orbifold simple-current algebra. We note that the

Z2 action on the irreducible representations of the ex-
tended U(1)M current algebra is given by

VU(1)M
k → VU(1)M

−k = VU(1)M
2M−k . (46)

For k = 1, · · · ,M−1, the Z2 acts within VU(1)M
k ⊕VU(1)M

2M−k .

The Z2 even part of VU(1)M
k ⊕VU(1)M

2M−k forms an irreducible

representation of U(1)M
Z2

-orbifold simple-current algebra,

denoted as V
U(1)M

Z2

φk
. The corresponding primary field is

given by φk = cos(kφ/
√
2M). We know that the quan-

tum dimension of the representation VU(1)M
±k is equal to 1.

Thus the quantum dimension for V
U(1)M

Z2

φk
is equal to 2.

The Z2 odd part of VU(1)M
k ⊕ VU(1)M

2M−k does not form an

irreducible representation of the U(1)M
Z2

algebra.

The Z2 acts within VU(1)M
1 . The Z2 even part of

VU(1)M
1 forms an irreducible representation of U(1)M

Z2
al-

gebra, denoted as V
U(1)M

Z2
1 . The corresponding primary

field is the identity 1. The Z2 odd part of VU(1)M
1 also

forms an irreducible representation of the U(1)M
Z2

algebra,

denoted as V
U(1)M

Z2

j . The corresponding primary field is
the current operator j. We also have two new irreducible

representations of the U(1)M
Z2

algebra from the twisted
sector that twists the current j. The corresponding rep-

resentations are denoted as V
U(1)M

Z2

σ1 and, V
U(1)M

Z2

τ1 . The

corresponding primary fields are denoted as σ1 and τ1.

TABLE V: The irreducible representations V
U(1)M

Z2
α of the

U(1)M
Z2

-orbifold simple current algebra. The second column
gives the conformal dimensions hα of the corresponding pri-
mary fields. The third column are the quantum dimensions
dα of the representations.

label α hα dα

1 0 1

j 1 1

φi
M M/4 1 i = 1, 2

σi 1/16
√
M i = 1, 2

τ i 9/16
√
M i = 1, 2

φk k2/4M 2 k = 1, · · · ,M − 1

We have the following fusion relations for the irreducible
representations

V
U(1)M

Z2

j ⊗ V
U(1)M

Z2

σ1 = V
U(1)M

Z2

τ1 ,

V
U(1)M

Z2

j ⊗ V
U(1)M

Z2

τ1 = V
U(1)M

Z2

σ1 . (47)

Note that the irreducible representations correspond to
the topological excitations. The fusion relations for the
irreducible representations give rise to the fusion rela-
tions of the topological excitations.

Similarly, the Z2 acts within VU(1)M
M . The Z2 even part

of VU(1)M
M forms an irreducible representation of U(1)M

Z2

algebra, denoted as V
U(1)M

Z2

φ1
M

. The corresponding primary

field is φ1M = cos(
√

M/2φ). The Z2 odd part of VU(1)M
M

also forms an irreducible representation of U(1)M
Z2

algebra,

denoted as V
U(1)M

Z2

φ2
M

. The corresponding primary field is

φ2M = sin(
√

M/2φ). We also have two new irreducible

representations of the U(1)M
Z2

algebra from the twisted
sector that twist j: j → −j. The corresponding rep-

resentations are denoted as V
U(1)M

Z2

σ2 and, V
U(1)M

Z2

τ2 . The

corresponding primary fields are denoted as σ2 and τ2.
We have the following fusion relations

V
U(1)M

Z2

j ⊗ V
U(1)M

Z2

σ2 = V
U(1)M

Z2

τ2 ,

V
U(1)M

Z2

j ⊗ V
U(1)M

Z2

τ2 = V
U(1)M

Z2

σ2 . (48)

The above are all the irreducible representations of the
U(1)M

Z2
-orbifold simple-current algebra. Table V summa-

rize the result. Ref. 34 computed the full fusion rules
of those irreducible representations. The fusion rules
and conformal dimensions of the corresponding primary
fields are obtained by studying the modular transforma-
tion properties of the characters.
It turns out that the U1(1)/Z2 orbifold is the U(1)4

Gaussian theory, the U2(1)/Z2 orbifold is two copies
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of the Ising CFT, and the U3(1)/Z2 orbifold is the Z4

parafermion CFT of Zamolodchikov and Fateev.35

E. U(1)M topological orders

The U(1)M simple-current algebra is generated by a

single simple-current operator ψ = e i
√
2Mφ (plus its her-

mitian conjugate) with conformal dimension h =M . The
correlation function of ψ gives rise to a bosonic Laughlin
wavefunction

∏

i<j

(zi − zj)
2M = 〈ψ(z1)ψ(z2)ψ(z3) · · ·〉 (49)

as discussed in Section IIA. The simple-current primary

fields σα = e
i α√

2M
φ
, α = 1, · · · , 2M − 1, produce wave-

functions that contain excitations with non-trivial topo-
logical type

∏

i

(ξ − zi)
α
∏

i<j

(zi − zj)
2M = 〈σα(ξ)ψ(z1)ψ(z2) · · ·〉

(50)

We see a one-to-one correspondence between the simple-
current primary fields and the topological excitations.
The above picture is valid even whenM is half-integer.

In this case the correlation function of ψ gives rise to a
fermionic Laughlin wavefunction, and the simple-current

primary fields σα = e
i α√

2M
φ
, α = 1, · · · , 2M−1, give rise

to the topological excitations in the fermionic Laughlin
state.

F. U(1)M/Z2-orbifold topological orders

The U(1)M/Z2-orbifold simple-current algebra is gen-
erated by a single simple-current operator ψ =
cos(

√
2Mφ) with conformal dimension h = M . We note

that ψ2 ∼ 1 (i.e. the OPE of two ψ’s produces the iden-
tity operator 1 as the leading term).
The correlation function of ψ’s

Ψ({zi}) ∝ lim
z∞→∞

〈V̂ (z∞)
∏

ψ(zi)〉 (51)

is single-valued (no branch cut) since the conformal di-
mension of ψ is integer and the OPE of ψ’s only produces
operators with integer conformal dimensions. Also, since
ψ has an integer conformal dimension and is bosonic,
the correlation function Ψ({zi}) is a symmetric func-
tion, which gives rise to a quantum Hall many-boson

wavefunction Ψ({zi})e−
1
4

∑ |zi|2 with a bosonic topolog-
ical order. The edge excitations of such a quantum Hall

state are described by the U(1)M
Z2

-orbifold CFT, the CFT
that produces the bulk wave function, as calculated in
Ref. 25,29,33,36.
However, the above construction has a problem: the

correlation of ψ’s (i.e. Ψ({zi})) has poles as zi → zj. But

this is only a technical problem that can be fixed. We
may put the wave function on a lattice or add additional
factors, such as

∏ |zi− zj|2M , to make the wave function
finite.
We may also combine the U(1)M

Z2
-orbifold simple-

current algebra with a Gaussian model, as described in
Section II, to produce a many-body wave function with-
out poles. We can choose the Gaussian model to have
two fields φ = (φ1, φ2) and choose Gµν to be

G =

(

2M 1

1 0

)

. (52)

We choose the three simple currents as

c1 = ψe iφ
1

, c2 = e iφ
2

, c3 = e iφ
1

, (53)

which corresponds to choosing kIµ as

kIµ =







1 0

0 1

1 0







Iµ

. (54)

The 2M th order zero in the correlation function of e iφ
1

cancels the 2M th order pole in the correlation function of
the ψ(zi). So the correlation functions of cI , I = 1, 2, 3,
are single-valued and finite, which gives rise to a triple-
layer bosonic wavefunction:

P ({zi, wi, ui}) = (55)

〈c1(z1)c1(z2) · · · c2(w1)c2(w2) · · · c3(u1)c2(u2) · · ·〉.

To understand the topological excitations in such a
triple-layer state, we note that cI -primary fields have the
form

ηα,lα = σα e
i lα·φ, φ = (φ1, φ2), (56)

where lα satisfies eqn. (32). Since hscα,~a − hsc~a − hscα are

integers for all ~a, we find that the lα satisfy aIkIµG
µν lαν ∈

Z or






2M 1

1 0

2M 1







(

lα1
lα2

)

=







0 mod 1

0 mod 1

0 mod 1






. (57)

The above requires lα to be integer vectors, and all the
different lα are equivalent. So we can choose lα = 0.
We would like to remark that if we did not include

the simple current c3 for the third layer, e iφ
1

would cor-
respond to a non-trivial primary field which would lead
to extra topological types. With the simple current c3,

e iφ
1

will be a descendent field of the simple current al-
gebra, and will not correspond to a new type of topo-
logical excitation. We also like to remark that there is
no particle number conservation, for each layer or for all
the layers. If we did have particle number conservation
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for each layer, the constructed state may spontaneous
break such particle-number-conservation symmetry and
contain gapless Goldstone modes.
We note that Gµν has negative eigenvalues and the

corresponding purely chiral CFT is not unitary. This can
be fixed by treating the part of Gµν with negative eigen-
values as anti-holomorphic (i.e. producing correlations
that depend on z∗). We may also remove the poles using
purely chiral unitary CFT that describes the E8 quantum
Hall state, i.e. using eight scalar fields φi, i = 1, · · · , 8
and choosing

G =























2 1 0 0 0 0 0 0

1 2 1 0 0 0 0 0

0 1 2 1 0 0 0 0

0 0 1 2 1 0 0 0

0 0 0 1 2 1 0 1

0 0 0 0 1 2 1 0

0 0 0 0 0 1 2 0

0 0 0 0 1 0 0 2























, (58)

to form nine simple-current operators

ci = e iφ
i |i=1,··· ,8, c9 = ψe iφ

1

. (59)

This can remove the pole for the M = 1 case. To re-
move the pole for other cases with larger M , we can
add several copies of E8 quantum Hall states. The new
simple-current algebra has the same topological excita-

tions as the U(1)M
Z2

-orbifold simple-current algebra, and
has the same central charge mod 8. In this paper, we
will use Gaussian theory with Gµν that may have nega-
tive eigenvalues to remove the poles. We can also choose
the Gaussian theory to be several copies of E8 states to
remove the poles.
We see that the topological excitations in our triple-

layer bosonic wave function are in one-to-one correspon-
dence with the primary fields (or the irreducible represen-
tations) of the U(1)M/Z2-orbifold simple-current alge-
bra. The chiral central charge of our triple-layer bosonic
state is c = 1 (1 from the U(1)M/Z2 simple-current and
1+ (−1) from the Gaussian CFT). The U(1)M/Z2 order
is of type NB

c = (7 +M)B1 .

G. Reduction to smaller N

We now establish that forM odd, the topological order
U(1)M/Z2 can be reduced as

M = 4p+ 3 :

(N, c) = (7 +M, 1) → (N, c) = (
7 +M

2
, 2),

M = 4p+ 1 :

(N, c) = (7 +M, 1) → (N, c) = (
7 +M

2
, 0). (60)

This reduction is similar in spirit to the reduction
(A1, k) → (A1, k) 1

2
which we discuss in section IVB.

In the Tables II-IV we marked these reduced orders as
(U(1)M/Z2) 1

2
.

We first consider the case M = 3. We already re-
marked that this order, with N = 10 primaries, precisely
agrees with the Z4 parafermions. The dictionary reads
(see section IVB1 for notation)

φ13 → ψ1, j → ψ2, φ23 → ψ3,

σ1 → Φ1
1, τ1 → Φ1

5, σ2 → Φ1
7, τ2 → Φ1

3,

φ1 → Φ2
2, φ2 → Φ2

4. (61)

Following standard practice (see section IVB) we can
now combine these fields with a single scalar field so as
to produce the current algebra for SU(2)4 at c = 2. As
explained in section IV this current algebra gives rise to
k + 1 = 5 primary sectors. For example, the sector with
s = 1

8 , d = ζ14 comprises the fields

(σ1 e
i 1√

8
φ
, τ2 e

i 3√
8
φ
, τ1 e

i 5√
8
φ
, σ2 e

i 7√
8
φ
). (62)

We thus establish that the order NB
c = 5B,a

2 in Table II
is generated by the CFT (U(1)3/Z2) 1

2
.

This construction of the order (U(1)3/Z2) 1
2
is an ex-

ample of a simple-current reduction of the product of
two topological orders. The building blocks are the or-
ders (U(1)3/Z2), with N = 10, c = 1, and U(1)4, with
N ′ = 8, c′ = 1. In the product theory we can define the
bosonic simple currents

1, φ13 e
i 1√

2
φ
, j e

i 2√
2
φ
, φ23 e

i 3√
2
φ
. (63)

Of the N ×N ′ = 80 fields in the product theory, 20 are
local with respect to all bosonic simple currents. These
fields organize into 5 orbits and make up a reduced order
of rank N ×N ′/16 = 5 and central charge c+ c′ = 2. In
formula

(U(1)3/Z2) 1
2
= [U(1)3/Z2 ⊗ U(1)4] 1

16
. (64)

Turning to M = 5, we can follow a similar logic, but
with an important twist: the scalar field now comes with
metric G = −1, implying that it contributes c = −1 to
the total central charge, and that a vertex operator e iaφ

has conformal dimension s = −a2

2 . In section IVB we
see similar minus signs in the construction of (A1, k) 1

2

for k = 4p + 1. We can define a set of bosonic currents
according to

1, φ15 e
i 1√

2
φ
, j e

i 2√
2
φ
, φ25 e

i 3√
2
φ
. (65)

With respect to these currents, the following field com-
binations are primary and mutually inequivalent

1, j, φ2, φ1 e
i 1√

2
φ
, σ1 e

i 1√
8
φ
, σ1 e

i 3√
8
φ
, (66)

with s = 0, 0, 15 ,− 1
5 , 0,

1
2 and d = 1, 1, 2, 2,

√
5,
√
5. We

thus recover the 6B,a
0 topological order in Table III. The

pattern for general odd M is similar and leads to the
result given in (60).
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IV. 2+1D TOPOLOGICAL ORDERS FROM

KAC-MOODY CURRENT ALGEBRA

A rich class of simple-current algebras in CFT is pro-

vided by the affine Kac-Moody algebras X
(1)
l at positive

integer level k. To each choice (Xl, k) corresponds a uni-
tary CFT (the level-k WZW model on the associated
group manifold) whose current algebra consists of cur-
rents JA(z), with A = 1, 2, . . . , D an adjoint index of the
Lie algebra Xl. The central charge of this CFT is

c(Xl, k) =
kD

k + g
(67)

with D the dimension of Xl and g the dual Coxeter num-
ber. We provide some details in Appendix A, where we
have also tabulated (D, g) for the simple Lie algebras Xl.
Starting from topological orders of Kac-Moody type,

one may look for additional bosonic simple currents and
use these to extend the bosonic simple-current algebra.
In some special cases, the CFT (Xl, k) contains Kac-
Moody primaries that are bosonic simple currents, and
the extended current algebra leads to a novel type of
topological order with reduced rank N . These orders are
closely related to exceptional modular invariant partition
functions (MIPF) based on these same simple currents37.
Examples are the orders (A1, k) 1

4
for k = 4, 8, . . . and

(A2, k) 1
9
for k = 3, 6, . . ., which we present below.

A more general, but often simpler, case involves the
addition of one or several scalar fields (or U(1) factors)
and the use of simple currents of the form

cI,kI = ψIVkI (68)

where the ψI are simple currents in the (Xl, k) CFT and
the Vkl are scalar field vertex operators . Examples are
reductions of type (An, k) 1

n+1
(see section IVB, IVC)

and the reductions

T2 : NB
c → [NB

c ⊗ 4B,b
0 ] 1

4
(69)

T8 : NB
c → [NB

c ⊗ 4B1 ] 14 (70)

discussed in sections IVC4, IVB 4 below. Here 4B,b
0 and

4B1 are the bosonic topological orders in table I. 4B,b
0 is

the double-semion topological order and 4B1 is ν = 1/4
bosonic Laughline state.
We note that both the operations T2 and T8 do not

change the number N of topological types neither the
quantum dimensions di. The operation T2 also does not
change the central charge c. In contrast, the operation T8
changes the central charge by +1. Both the operations
do change the spins si. We also like to point out that the
operation T2 is a Z2 operation, while the operation T8 is
a Z8 operation.
Yet more general are cases where the additional

bosonic simple currents contains factors in different non-
Abelian orders. One example is the case

[(C4, 1)× (A1, 1)× (A3, 1)] 1
4

(71)

which turns out to be equivalent to a CFT coset con-
struction and gives rise to the c = 4

5 minimal model of
the Virasoro algebra, of rank N = 10 (see section IVC5).
In these constructions, it is sometimes convenient to

first pass from the (Xl, k) CFT to the (generalised)
parafermion CFT38 obtained by modding out U(1)l, and
then use the parafermions ψΛ, which are simple currents,
as building blocks in the construction of an (extended)
bosonic simple-current algebra.
We remark that the simple-current reductions that we

study here correspond to the condensation of bosonic
topological excitations39–43.
We have observed that we can construct all topological

orders collected in tables I-IV from orders based on Kac-
Moody current algebra (Xl, k) and U(1) factors if we use

• conjugation by time reversal symmetry, sending

c→ −c, di → di, si → −si,

• stacking of topological orders,

• simple-current reductions of (combinations of)
topological orders.

The conformal blocks of the bosonic simple currents
cI(zi) will, in general contain both zeros and poles in the
differences (zi−zj). To define a many-body bosonic wave
function, one needs to cancel the poles. This can be done
by including additional scalar fields, in such a way that
essential topological data (central charge and quantum
dimensions and spins of all excitations) are not affected.
We make this step explicit in the examples of U(1)M/Z2

and (A1, k) in sections III and IVA, and will assume that
a similar step is always possible in other cases. With
that, we arrive at bosonic many-body wave-functions for
all cases listed in Tables I-IV.

A. SU(2)k current algebra

The case (A1, k), commonly denoted as SU(2)k, gives
a CFT of central charge c = 3k

k+2 .

The weight and root lattices (see appendix A) have the
following structure. Writing the fundamental weight as
Λ1 = 1

2e1, the single positive root is α1 = 2Λ1 and the
Weyl group has two elements: the identity and the re-
flection w1 : Λ1 → −Λ1. A general (integral, dominant)
weight is Λ = lΛ1, l ∈ N, so the irreducible representa-
tions are labeled by l.
At level k there are k + 1 irreducible representations

(or primary fields) Φl, l = 0, · · · , k, with conformal di-
mension (spin)

sl =
l2 + 2l

4(k + 2)
. (72)

The modular S-matrix is found to be

Sll′ ∝ sin[
π

k + 2
(l + 1)(l′ + 1)] (73)
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and the quantum dimensions are

dl =
S0l

S00
=

sin[ π
k+2 (l + 1)]

sin[ π
k+2 ]

= ζlk . (74)

The SU(2)1 Kac-Moody algebra is generated by three
simple-current operators jz, j± with conformal dimen-
sion h = 1. In fact the SU(2)1 algebra can be gen-
erated by a single simple current j+ plus its hermitian
conjugate. To obtain a many-body wave function with-
out poles from the correlator of simple currents, we can
combine the SU(2)1 Kac-Moody algebra with a Gaussian
model with two additional scalar fields φ = (φ1, φ2) with
metric Gµν given by

G =

(

2 1

1 0

)

, (75)

and choose the simple-current operators as

c1 = jz e iφ1 , c2 = j+ e iφ1 , c3 = j− e iφ1 ,

c4 = e iφ2 , c5 = e iφ1 . (76)

We note that the 2nd order pole in the jz-jz correlator
is canceled by the 2nd order zero in the e iφ1 correlator.
The finite correlators of the cI give rise to a (fractional)
quantum Hall wavefunctions with 5 layers. We may also
view the quantum Hall wavefunction as a wave function
in 3 layers, where the particles in the first layer carry
spin-1.
For such choice of the Gaussian model, the Gaussian

model does not contribute to chiral central charge, does
not change the number of topological types, and does not
change the qauntum dimensions and spins of the topolog-
ical excitations. The edge excitations of the constructed
quantum Hall states are described by SU(2)k Kac-Moody
algebra.
We see that the NB

c = 2B1 topological order in Table I
is described by SU(2), k = 1 Kac-Moody algebra, and we
marked the entry as (A1, 1). Similarly, we marked entries
(A1, k) for orders N

B
c given by (k+1)B3k/k+2, k = 2, . . . 6

in the corresponding tables.

B. Reductions of SU(2)k current algebra

A general affine Kac-Moody current algebra X
(1)
l

can be decomposed as a product of (generalised)
parafermions times a U(1)l scalar field factor38. For the
case of SU(2)k this gives the familiar Zk parafermions
with central charge ck = 2k−1

k+2 . The parafermions are
simple currents, but in general they are neither bosonic
nor fermonic.
In subsection IVB1 we briefly review Zk parafermions

and their relation to SU(2)k current algebra.
Next we focus on orders (A1, k) 1

2
for k odd, which con-

tain half the number of fields of (A1, k) and are realised
at central charge c = c(A1, k) ± 1. Our notation follows

Ref. 12. We show how these reduced orders arise through
a simple-current reduction.
In subsection IVB3 we present the orders (A1, k) 1

4

which employ a bosonic simple current that is part
of the SU(2)k spectrum for k = 4, 8, . . .. A subtle
point is the occurrence of ‘short orbits’ of the simple-
current action, which lead to multiplicities in the modu-
lar invariants37,39. The resolution of these multiplicities
leads to novel modular S-matrices, which are in general
not captured by Kac-Moody current algebra alone.

1. Zk parafermions and (A1, k) orders

The Zk parafermion fields35

ψI , I = 0, · · · , k − 1, (77)

of conformal dimension hI = I(k−I)
k , satisfy the operator

algebra

ψI(z)ψJ(w) ∼ (z − w)sIJψI+J (78)

with sIJ ≡ − 2IJ
k mod 1. A general field in the

parafermion theory is written as Φl
m, l = 0, 1, . . . , k and

m ∈ Z, with conformal dimension

sl,m ≡ l(l+ 2)

4(k + 2)
− m2

4k
mod 1. (79)

The index m is periodic with period 2k and m ≡ l
mod 2. In addition we have the identification Φl

m =

Φk−l
m+k. This leaves a total of k(k+1)

2 fields. All fields

can be reached by acting with the parafermions ψi = Φ0
2i

on the primaries σi = Φi
i, i = 0, 1, . . . k. We also define

ǫi = Φ2i
0 .

Using a single scalar field φ we can write the bosonic
currents (I = 0, 1, . . . , k − 1, j ∈ Z)

cI,j = ψI e
ikI,jφ = ψI e

i [I
√

2
k
+j

√
2k]φ, (80)

which have integer conformal dimension. The currents
cI=1,j=0 and cI=k−1,j=−1 have conformal dimension 1.
Together with i∂φ they generate a level-k affine Kac-
Moody algebra SU(2)k. With respect to the bosonic chi-
ral algebra cI,j the following fields represent admissible
topological excitations

Φl
m e i [m

√
1
2k+j

√
2k]φ (81)

with j ∈ Z. The excitations with l = m = 0, 1, . . . k and
j = 0 correspond to the highest weight states of the spin-l
representations of SU(2)k. They constitute a set of k+1
inequivalent primaries of the bosonic current algebra.

2. The orders (A1, k) 1
2
with k odd

In the SU(2)k theory, the field Φk is a simple current
with fusion rules

ΦkΦl = Φk−l, l = 0, 1, . . . k . (82)
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This simple current can be used for a number of simple
current reductions of the order (A1, k).
First assume that k is odd and of the form k = 4p +

3. We can form a product with U(1)1 ∼ SU(2)1, and
consider the bosonic simple currents

Φ0 e
i
(2j)
√

2
φ′

, Φk e
i
(2j+1)

√
2

φ′

, j, j′ ∈ Z. (83)

The primary sectors with respect to these currents are

Φl e
i (l+2j)

√
2

φ′

, l = 0, 1, . . .
k − 1

2
, j ∈ Z. (84)

They form the excitations of the reduced order (A1, k) 1
2

at c = 2 2k+1
k+2 and N = (k + 1)/2. In formula we have

(A1, k) 1
2
= [(A1, k)⊗ U(1)1] 1

4
, k = 3, 7, . . . (85)

For k of the form k = 4p+ 1 one needs instead a factor
U(1)∗1 ∼ SU(2)∗1 with c = −1 and non-trivial primary at
s = − 1

4 ,

(A1, k) 1
2
= [(A1, k)⊗ U(1)∗1] 14 , k = 5, 9, . . . (86)

It is instructive to re-examine these same reductions
starting from Zk parafermions ψI , I = 0, . . . k − 1, and
the two scalar fields φ, φ′. For k = 3 and with respect to
the basis

φ1 =

√

2

3
φ, φ2 =

√

1

6
φ+

√

1

2
φ′ (87)

the metric becomes

G(3) =

(

2
3

1
3

1
3

2
3

)

. (88)

Writing Vk for e ik·φ, we can write bosonic currents

cI,kI = ψIVkI (89)

where kI1 , k
I
2 are integers satisfying 2kI1+k

I
2 ≡ 2I mod 3.

The admissible topological excitations become

Φ1
mVk with 2k1 + k2 ≡ m mod 3 . (90)

Note that Φ1
1 = σ1, Φ

1
3 = ǫ1 and Φ1

5 = σ2. The fields
Φ1

mVk form a single primary sector, with conformal di-
mension s = 2

5 and quantum dimension d = ζ13 , and we

recover the order (A3, 1) 1
2
= 2B14

5

.

For general k = 4p+ 3, the 2-scalar metric becomes

G(k) =

(

2
k

1
k

1
k

1+k
2k

)

. (91)

The bosonic currents are

cI,kI = ψIVkI (92)

with 2kI1 + kI2 ≡ 2I mod k and the primaries are

Φl
mVk with 2k1 + k2 ≡ m mod k, (93)

with l = 1, 2, . . . , k−1
2 and quantum dimensions d = ζlk.

In this notation, the underlying SU(2)k ×SU(2)1 cur-
rent algebra is formed by

ψ1V(1 0), ψk−1V(−1 0) ; V(−1 2), V(1 −2); (94)

together with the fields i∂φ. Odd-l primaries under
SU(2)k are doublets under the SU(2)1, while even-l pri-
maries are singlets.
For k = 3 there is even more symmetry. The following

currents have conformal dimension equal to 1

ψ1V(1 0), ψ1V(−1 1), ψ1V(0 −1),

ψ2V(−1 0), ψ2V(1 −1), ψ2V(0 1),

V(2 −1), V(1 1), V(−1 2),

V(1 −2), V(−1 −1), V(−2 1). (95)

Together with i∂φ these form the (14-dimensional) cur-

rent algebra of G
(1)
2 . The excitations, all of conformal

dimension s = 2
5 ,

ǫ1, σ1V(−1 0), σ1V(1 −1), σ1V(0 1),

σ2V(1 0), σ2V(−1 1), σ2V(0 −1) (96)

form the 7-dimensional representation of G2. Thus, the
(G2, 1) simple current algebra can also produce the topo-
logical order 2B14

5

.

For k = 4p+ 1 the 2-scalar metric can be picked as

G′(k) =

(

2
k

1
k

1
k

1−k
2k

)

. (97)

Note that the metric G′(k) has determinant detG′(k) =
− 1

k , whereas detG(k) = 1
k . This implies that for k =

4p+ 1 the 2-scalar sector adds 1 + (−1) = 0 to the total
central charge, in agreement with eq. (86). The currents

V(−1 2), V(1 −2), (98)

have conformal dimension −1 and generate the algebra
SU(2)∗1.

3. The orders (A1, k) 1
4
, k = 4, 8, . . .

For k = 4p the simple current Φk is bosonic and can
be added to the currents of the SU(2)1 Kac Moody al-
gebra. In this situation, there exists a modular invariant
partition function, labeled as D k

2+2, which only features

the even-l primaries (see e.g. Ref. 44)

D k
2+2 : Zk =

k−4
2
∑

l=0,2,...

|χl + χk−l|2 + 2|χ k
2
|2 . (99)
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Corresponding to this partition function is a bosonic
topological order with N = k

4 + 2, which we denote as
(A1, k) 1

4
.

The quantum dimensions of the fields Φl, l =
0, 2, . . . k−4

2 are simply ζlk. The theory features two fields

Φ
(1)
k
2

and Φ
(2)
k
2

, which need to be ‘resolved’ in the modu-

lar S-matrix37,39. The result is that the two fields share

the total quantum dimension ζ
k
2

k , leading to twice a value
1
2ζ

k
2

k .
This construction for k = 4 reproduces the abelian

order at NB
c = 3B2 , while for k = 8 we reproduce the

order at NB
c = 4B12/5 (we used ζ28 = (ζ13 )

2 and ζ48 = 2ζ13 ).

The case D8 at k = 12 gives 5B18/7 with

d = 1,
1

2
ζ612,

1

2
ζ612, ζ

2
12, ζ

4
12

s = 0, −1

7
, −1

7
,
1

7
,
3

7
. (100)

Using ζ25 = 1
2ζ

6
12 we find a perfect match with the entry

in the Table II.
Similarly, the entry at 6B8/3 in Table III is found to agree

with the order (A1, 16) 1
4
. Note that ζ37 = 1

2ζ
8
16 = ζ216,

revealing a triple degeneracy in the primary sectors. This
hints at an alternative interpretation, which we obtain in
section IVC3.

4. The Z8 operation T8 for (A1, k), k = 2, 6, . . .

Inspecting the case k = 2, 6, . . ., we find that the simple
current Φk gives rise to yet another type of simple-current
reduction. In this case, an appropriate scalar field factor
is U(1)2, which is the order 4B1 . Constructing the order

[(A1, k)⊗ U(1)2] 1
4
, k = 2, 6, . . . (101)

we arrive at N = k+1, c = 3k
k+2 +1, whereas the starting

point (A1, k) corresponded to N = k + 1, c = 3k
k+2 . This

reduction is thus an example of the operation T8, which
we defined in more general terms in the equation (70).

C. Affine Kac-Moody algebras of higher rank

We can repeat the analysis for the SU(2) case for the

affine Kac-Moody extension X
(1)
l of all simple Lie alge-

bras. As is well known, these have been classified as four
regular series Al, Bl, Cl, and Dl, l = 1, 2, . . . plus five
exceptional algebras E6, E7 and E8, F4 and G2. This
leads to many more examples of bosonic orders of low
rank, which we have marked in the tables. Note that
C2 ∼ B2, D2 ∼ A1 × A1, D3 ∼ A3 and . In the tables
we have displayed c modulo 8 and conformal dimensions
si modulo 1.

A tentative list of simple-current primaries in the X
(1)
l

Kac-Moody current algebras has been given in37. As for
the SU(2)k case, these give rise to a variety of simple-
current reductions of the order (Xl, k).
For (An, k) a reduction by a factor Zn+1 is possible

if g.c.d.(n + 1, k) = 1 (see Ref. 12), leading to orders
(An, k) 1

n+1
. Below we discuss the cases with n = 2 and

the general case with level k = 2 and n even. We remark
that other reductions involving additional abelian factors
are possible, such as a reduction (A3, 2) 1

2
which leads to

the order 5B,a
−2 .

A second class are reductions based on bosonic simple-
current primaries. Below we present the case of (A2, k) 1

9
.

1. (A2, k) 1
3
for k = 2, 4, 5, 7, . . .

For k = 3p+ 2 this reduction can concisely be written
as

(A2, k) 1
3
= [(A2, k)⊗ (A2, 1)] 1

9
, k = 2, 5, . . . (102)

For k = 2 this reduces the order (A2, 2) = 6B16/5 to

(A2, 2) 1
3
= 2B−14/5.

One can re-examine this reduction in terms of the
SU(3)2 parafermions and four scalar fields. For k = 3p+2
the scalar field metric reads, in a convenient basis

G(k) =
1

k











2 1 2 2

1 2 2 3

2 2 4 + 2p 4 + p

2 3 4 + p 6 + 2p











. (103)

The currents

Φ
(0 0)
(±2 ∓1)V(±1 0 0 0),

Φ
(0 0)
(∓1 ±2)V(0 ∓1 0 0),

Φ
(0 0)
(±1 ±1)V(±1 ∓1 0 0), (104)

together with two scalars i∂φ, form an SU(3)k current
algebra. In addition,

V(∓1 0 ±2 ∓1), V(0 ∓2 ∓1 ±2), V(∓1 ∓2 ±1 ±1) (105)

together with the other two scalars form an SU(3)1.
For k = 2 the lattice defined by the matrix G(2) admits

a total of 8 ‘short’ integral vectors kS
i , with kS

i · kS
i = 1,

as well as 24 ‘long’ integral vectors kL
i , with kL

i ·kL
i = 2.

In fact, one recognizes in G(2) the metric of the SO(9)
weight lattice. Combining the integral vectors with a sin-
gle Ising fermion (which is the parafermion for SO(9)1),
one can write a total of 24 + 8 + 4 = 36 bosonic cur-
rents, which form the SO(9)1 Kac-Moody current al-
gebra. Combining these same vectors with the SU(3)2
parafermions, which include three fields of conformal di-
mension s = 1

2 , leads to a total of 24 + 3 × 8 + 4 = 52
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bosonic currents, which form the Kac-Moody algebra

for F
(1)
4 at level 1. Combining these same vectors with

the SU(3)2 parafermion spin fields, one can construct
26 fields of dimension s = 3

5 , which form an irreducible
representation under F4 and together constitute the sin-
gle non-trivial primary sector of the topological order
NB

c = 2B−14/5.

For k = 3p+ 1, the reduction becomes

(A2, k) 1
3
= [(A2, k)⊗ (A2, 1)

∗] 1
9
, k = 4, 7, . . . (106)

We checked that for k = 4 the quantum dimensions and
spins of this reduced order match with the entry NB

c =
5B18/7 in Table II.

2. (An, 2) 1
n+1

for n = 2, 4, . . .

For n = 2, 6, . . ., this reduction can be implemented as

(An, 2) 1
n+1

= [(An, 2)⊗ (φ1, φ2)] 1
n+1

, n = 2, 6, . . .

(107)

with the scalar field metric given by (91) with k = n+1.
The field content becomes

φ(l1 l2 ... ln)Vk (108)

where the lj are the Dynkin labels of the An representa-
tion carried by φ(l1 l2 ... ln) and

2k1 + k2 ≡
n
∑

j=1

jlj mod n+ 1. (109)

This reduction adds +2 to the central charge. For n =
4, 8, . . ., one uses instead the metric (97) and the central
charge remains unchanged.
We observe that there is a duality between the orders

(A1, k) 1
2
and (Ak−1, 2) 1

k
, in the sense that they form a

pair (NB
c , N

B
−c) with identical quantum dimensions di

and opposite spins si. This duality is a manifestation of
the well-known level-rank duality between SU(2)k and
SU(k)2.
Other manifestations of level-rank duality are the pair

(A1, 4) and (A3, 2) 1
2
and the pair (A2, 4) 1

3
and (A3, 3) 1

4
,

both with rank N = 5.

3. (A2, k) 1
9
for k = 3, 6, . . .

For k = 3p, the SU(3)k primaries with weight (k0)
and (0k) are bosonic simple currents. They lead to an
exceptional modular invariant, labeled Dk in the clas-
sification of Ref. 45. These exceptional invariants only
include fields with triality zero, l1 + 2l2 ≡ 0 mod 3.
For k = 3 the partition function is

Z3 = |χ(00) + χ(30) + χ(03)|2 + 3|χ(11)|2. (110)

The corresponding order has 4 fields: the identity and 3
fields originating from φ(11), with di = 1, si = 1

2 . The
value di = 1 arises via equal distribution of the quantum
dimension d[φ(11)] = 3. We recognize the entry NB

c =

4B4 .
For k = 6, c = 16

3 , the modular invariant reads

Z =|χ(00) + χ(60) + χ(06)|2

+ |χ(11) + χ(41) + χ(14)|2

+ |χ(33) + χ(30) + χ(03)|2 + 3|χ(22)|2. (111)

The weight (2 2), with s = − 1
9 , comes in with multiplicity

3 and quantum dimension 3ζ37 - after resolution into 3
primaries this leads to the values di = ζ37 . The data for
the other sectors are

(0 0), (6 0), (0 6) : s = 0, d = 1

(3 3), (3 0), (0 3) : s = −1

3
, d =

sin[ 4π7 ] sin[ 4π7 ]

sin[π7 ] sin[
2π
7 ]

= ζ416

(1 1), (4 1), (1 4) : s =
1

3
, d =

sin[ 2π7 ] sin[ 4π7 ]

sin[π7 ] sin[
π
7 ]

= ζ616,

(112)

all in agreement with the data for the entry 6B−8/3.

For general k = 3p, the rank of the order (A2, k) 1
9
is

N = (k2 + 3k)/18 + 3.

4. The Z2 operation T2

Inspecting the table II of rank-5 orders, we observe

that 5B,a
±2 derive directly from Kac-Moody current alge-

bra, but 5B,b
±2 do not. We remark that the orders 5B,b

±2

arise through a simple-current reduction of the product

of 5B,a
±2 with 4B,b

0 ,

5B,b
±2 = [5B,a

±2 ⊗ 4B,b
0 ] 1

4
. (113)

This is a special case of the operation T2 defined in
eqn. (69). Similar doublets under the action of T2 are

(6B,a
0 , 6B,b

0 ), (6B,a
4 , 6B,b

4 ), and (7B,b
±2 , 7

B,c
±2 ).

5. More general reductions

We already mentioned that simple-current reductions
of products of non-abelian orders are possible. While
these are not needed to reproduce the N ≤ 7 orders that
we list in this paper, they are needed to cover such cases
as minimal models of the Virasoro or Wn algebras, which
are understood via a coset construction44,46. The idea is
that a coset G/H is viewed as G × H−1 and that the
corresponding order can be obtained as a simple-current
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reduction of the product of orders G and H∗. As a con-
crete example, consider the coset

SU(2)3 × SU(2)1
SU(2)4

, (114)

which describes the c = 4
5 unitary minimal model of the

Virasoro algebra, of rank N = 10. Inspecting Table II,
we see that the role of (A4, 1)

∗ can be played by (C4, 1).
We therefore consider the product

(C4, 1)⊗ (A1, 3)⊗ (A1, 1) (115)

and pick as additional bosonic simple current the field

Φ(0001) × Φ3 × e
i φ√

2 . (116)

Of the 5 × 4 × 2 = 40 fields in the product theory, 20
are primary with respect to the extended simple-current
algebra, and these organize into orbits of length 2. We
thus recover the N = 10 primary sectors of the minimal
model.

V. SUMMARY

In this paper, we use simple-current algebra to con-
struct many-body wave functions for 2+1D bosonic topo-
logical orders. We found that simple-current algebra can
produce all the simple topological orders. This supports
the conjecture that all the (non-)abelian statistics de-
scribed by MTC can be realized by bosonic systems. It
also suggests that, in a certain sense, simple-current al-
gebra can be classified by MTC.
The simple-current reduction is an important tool in

our constructions. Such reductions correspond to the
condensation of bosonic topological excitations.39–43 So
the simple-current reduction is also a tool to study the
condensation of bosonic topological excitations and the
induced topological phase transition between the original
topological order and the reduced topological order.
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Appendix A: CFT of Kac-Moody current algebra

The starting point for the construction of a CFT based
on Kac-Moody current algebra is a simple Lie algebra Xl

plus a positive integer k (which is called the level of the
Kac-Moody current algebra). In this appendix we briefly
review the connection between CFT and Kac-Moody cur-
rent algebra and specify some of the data needed to iden-
tify key properties of the CFT.

1. Root and weight lattices of finite dimensional

Lie algebras

In the structure theory of simple Lie algebras, it is
common to choose a Cartan-Weyl basis {hi, eα}, where
the hi, i = 1, . . . , l, form a basis of the Cartan sub-algebra
H, and the eα are ladder operators for the roots α =
(α1, . . . , αl),

[hi, eα] = αieα. (A1)

The Killing form

Kab = Tr(ad(Ja)ad(Jb)), (A2)

leads to an inner product in the root space H∗

(α, β) =
∑

ij

Kijα
iβj ,

∑

j

KijK
jk = δik. (A3)

Integral linear combinations of the roots α form the
so-called root-lattice associated with Xl. For a choice of
simple roots αi, which form a basis of the root lattice,
one defines the Cartan matrix is

Aij = 2
(αi, αj)

(αj, αj)
. (A4)

Dual to the root lattice is the weight lattice, which
plays a crucial role in a systematic description of the
irreducible representations of Xl. Its elements Λ can be
characterised by the Dynkin labels

li = 2
(Λ, αi)

(αi, αi)
. (A5)

The weight is then written as a linear combination of
fundamental weights Λ =

∑

i liΛi, where the fundamen-
tal weights have inner product

(Λi,Λj) = Gij (A6)

with

Gij = (A−1)ij
(αj , αj)

2
. (A7)
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2. Primaries of Kac-Moody current algebra

The CFT associated with Lie algebra Xl and level k is
characterised by a larger symmetry algebra, which is the
so-called affine Kac-Moody extension or current algebra

X
(1)
l of Xl at level k. The central charge of this CFT can

be expressed as

c =
kD

k + g
(A8)

where D is the dimension of Xl and g is the dual Coxeter
number. In table VI we list these data for the simple Lie
algebras Xl.
The primary sectors of the current algebra CFT are

labeled by particular weights Λ - the so-called dominant
integral weights. Their Dynkin labels satisfy lj ≥ 0 and

l
∑

j=1

lj a
∨
j ≤ k, (A9)

where a∨j is the comark (or dual Kac label) to the root

αj
47.
The conformal dimension (spin) of the primary sector

labeled by Λ is given by

sΛ =
(Λ,Λ + 2ρ)

2(k + g)
(A10)

where ρ =
∑

i Λi is the sum of the fundamental weights.
The S-matrix is given by

SΛΛ′ ∝
∑

w∈W

sign(w)e−
2π i
k+g

(w(Λ+ρ),Λ′+ρ) (A11)

where the summation is over the Weyl group of Xl. Via
the relation

di =
S0i

S00
(A12)

this S-matrix fixes the quantum dimensions di.
We refer to Ref. 44 for further details. Here, for the

sake of illustration, we present such details for the rank-2
algebras A2 (or su(3)), B2 (or so(5)) and G2.

3. The rank 2 simple Lie algebras

a. The algebra A2

For this Lie algebra the weight-lattice metric Gij is
given by

G =

(

2
3

1
3

1
3

2
3

)

. (A13)

TABLE VI: Dimension D and dual Coxeter number g of the
simple Lie algebras Xl.

algebra D g

Al l ≥ 1 l(l + 2) l + 1

Bl l ≥ 2 l(2l + 1) 2l − 1

Cl l ≥ 3 l(2l + 1) l + 1

Dl l ≥ 4 l(2l − 1) 2l − 2

E6 78 12

E7 133 18

E8 248 30

F4 52 9

G2 14 4

With respect to an othonormal basis ei, the fundamental
weights can be written as

Λ1 =

√

2

3
e2, Λ2 =

1√
2
e1 +

1√
6
e2, (A14)

and the positive roots are

α1 = −Λ1 + 2Λ2, α2 = 2Λ1 − Λ2,

α12 = Λ1 + Λ2, (A15)

which we write as (−1 2), (2 − 1) and (1 1), respectively.
The Weyl group has 6 elements, the orbit of ρ = (1 1) is

sign(w) = +1 : (1 1), (1 − 2), (−2 1)

sign(w) = −1 : (2 − 1), (−1 2), (−1 − 1). (A16)

Dominant integral weights at level k satisfy l1 + l2 ≤ k,
their number is Nk = (k + 1)(k + 2)/2. The conformal
and quantum dimensions for the primary (l1 l2) are given
by

s(l1 l2) =
l21 + l22 + l1l2 + 3l1 + 3l2

3(k + 3)
,

d(l1 l2) =
sin[π(l1+1)

k+3 ] sin[π(l2+1)
k+3 ] sin[π(l1+l2+2)

k+3 ]

sin[ π
k+3 ] sin[

π
k+3 ] sin[

2π
k+3 ]

. (A17)

The central charges are c = 8k
k+3 for the SU(3)k CFT and

ck = 6k−1
k+3 for the corresponding parafermions.

b. The algebra B2

For this Lie algebra the weight-lattice metric Bij is
given by

G =

(

1 1
2

1
2

1
2

)

. (A18)
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With respect to an othonormal basis ei, the fundamental
weights can be written as

Λ1 =
1√
2
e1 +

1√
2
e2, Λ2 = e1. (A19)

The simple roots are

α1 = −Λ1 + 2Λ2, α2 = −2Λ1 + 2Λ2. (A20)

The four positive roots are

−Λ1 + 2Λ2, −2Λ1 + 2Λ2,Λ1, 2Λ2 . (A21)

The Weyl group has 8 elements, the orbit of ρ = (1 1) is

sign(w) = +1 : (1 1), (2 − 3), (−1 − 1), (−2 3)

sign(w) = −1 : (−1 3), (−2 3), (1 − 3), (2 − 3) .

(A22)

Dominant integral weights at level k satisfy l1 + l2 ≤ k.
Their number is Nk = (k+1)(k+2)/2 and the conformal
dimensions are given by

s(l1 l2) =
2l21 + l22 + 2l1l2 + 6l1 + 4l2

4(k + 3)
. (A23)

The central charges are c = 10k
k+3 for the SO(5)k CFT and

ck = 2k−3
k+3 for the corresponding parafermions.

c. The algebra G2

The weight-lattice metric Gij is given by

G =

(

2 1

1 2
3

)

. (A24)

With respect to an othonormal basis ei, the fundamental
weights can be written as

Λ1 =
√
2e2, Λ2 =

1√
6
e1 +

1√
2
e2, (A25)

and the simple roots are

α1 = −Λ1 + 2Λ2, α2 = 2Λ1 − 3Λ2. (A26)

The six positive roots are

− Λ1 + 2Λ2, 2Λ1 − 3Λ2,

Λ1, Λ2, Λ1 − Λ2, −Λ1 + 3Λ2 . (A27)

The Weyl group has 12 elements. The orbit of ρ = (1 1)
is

w = +1 : (1 1), (−2 5), (−3 4),

(−1 − 1), (2 − 5), (3 − 4)

w = −1 : (2 − 1), (−1 4), (−3 5),

(−2 1), (1 − 4), (3 − 5). (A28)
Dominant integral weights at level k satisfy 2l1 + l2 ≤ k.
Their conformal dimensions are given by

s(l1 l2) =
3l21 + l22 + 3l1l2 + 9l1 + 5l2

3(k + 4)
. (A29)

The central charges are c = 14k
k+4 for the (G2)k

WZW model and ck = 4 3k−2
k+4 for the corresponding

parafermions.
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