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Abstract

A physical mechanism that may enable electrical control of carrier spin-valley polarization is

theoretically examined in a monolayer transition-metal dichalcogenide (TMD) structure. The idea

is based on the interplay between the strongly spin-orbit coupled nature of the TMD band structure

and the exchange interaction with a proximate magnet that can spontaneously lift the valley

degeneracy when the carrier density exceeds a certain threshold. The analysis based on the free

energy of the system clearly illustrates the desired spin-valley polarization in the TMD layer as well

as the accompanied rotational phase transition in the magnetization. Numerical estimates utilizing

the WS2 parameters as an example indicates a sharp transition in the spin-valley polarization over

tens of percent at room temperature only with a modest change in the electrochemical potential

of a few meV via electrostatic bias. Detection of the predicted phenomenon is expected to be

straightforwardly through the corresponding modification in the TMD channel conductance.

PACS numbers: 73.22.Gk, 73.40.-c, 75.70.Ak, 75.70.Cn
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Atomically thin two-dimensional (2D) layered materials offer a number of unique oppor-

tunities that the quasi-2D structures of conventional bulk crystals cannot access. One such

example is the recently proposed concept of valleytronics in the crystals of honeycomb lat-

tice symmetry that often possess two equivalent energy bands at the corners of the Brillouin

zone1. Similar to other internal degrees of freedom with binary states (e.g., electron spin),

valley polarization can lead to a host of novel physical phenomena and provide the basis

for practical applications including information processing. In this regard, transition-metal

dichalcogenides (TMDs) have become a focus of attention for their finite band gaps as well as

the possibility to lift the valley degeneracy via the opposite spin symmetry of the valleys1,2.

Nonetheless, achieving sufficient valley polarization remains a challenge at room tempera-

ture. The obvious approach through an external magnetic field, as it turns out, requires an

extreme field strength3–6. An alternative attempt based on the optical Stark effect appears

to suffer from a similar debacle as it needs a very large electric field (excited by circularly

polarized radiation) for a sizable valley splitting7.

A potential solution to the problem may reside in the phenomenon of the proximity

interaction with an adjacent magnet. As in other materials with 2D surface states such as

graphene8–10 or topological insulators11–13, the spin properties of free carriers in the TMDs

can be strongly influenced by the exchange field whose strength may actually exceed the

effect of external magnetic fields14. It is evident that the proximate magnet would break the

time reversal symmetry, leading potentially to the different valley-associated spin splitting

and valley polarization even without external magnetic field or optical pumping. Moreover,

the valley polarization could be sensitive to the magnetization direction. Indeed, the in-

plane magnetization is likely to have no impact on the the energy degeneracy of the valley

band structure, while the out-of-plane component is expected to shift the valley extrema

in the opposite ways; i.e., enhancing the effect of spin-orbital splitting in one valley and

diminishing it in the other. Accordingly, the ability to modulate the magnetization proves

to be crucial in the application of the valleytronics concept.

At the first glance, only multiferroic or magneto-electric materials can achieve electrical

control of magnetization rotation. However, a careful scrutiny reveals an alternative mech-

anism that can be triggered self-consistently by spin polarized carriers, i.e., by means of the

reciprocal influence of the carrier spin polarization on the magnetization. The spin-valley

interlocked band structure of monolayer (ML) TMD is favorable for realizing the in-plane
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to the out-of-plane magnetization switching in the form of rotational phase transition as the

imbalance in the valley (hence, spin) population can induce the effective exchange field in an

adjacent magnetic layer along the latter (i.e., out-of-plane) direction through an interplay.

The purpose of this investigation is to theoretically examine the feasibility of the envi-

sioned physical process under a simple electrical control. The result demonstrates that the

strength of the exchange effective field, under a sufficiently large carrier density, can indeed

exceed the in-plane magnetic anisotropy field and stabilize the net carrier spin-valley polar-

izations along with the reoriented magnetization [see the schematic illustrations of Figs. 1(a)

vs. 1(b)]. A quantitative description of such spontaneous polarization driven by electrical

biases is provided below by using ML WS2 as an example for the numerical estimates.

The specific structure under consideration, as shown in Fig. 1, consists of a thin dielectric

(or insulating) ferromagnet (FM) on top of a sheet of TMD monolayer that is followed by

the gate electrode. The in-plane dimensions of the magnet are selected to be sufficiently

small to ensure the uniform magnetization M and yet larger than the carrier mean free path

of the TMD layer. The dielectric nature of the magnet permits the use of the given TMD

dispersion relation without the concern of significant band modification. The electrochemical

potential µ of the system is controlled by the doping as well as the applied gate bias. The

entire structure is placed on a substrate for structural integrity. For simplicity, only the

TMD region in direct contact with the magnet is considered with no regard to the fringing

field.

In the analysis, the governing Hamiltonian accounts for the electrostatic energy including

the Coulomb repulsion that counterbalances the accumulation of charges in a small region.

This term is usually obtained from the Poisson equation but an accurate calculation requires

a host of additional details such as the actual geometry of the structure, the dielectric

constant of each material, etc. To avoid the unnecessary complexities, a semi-quantitative

treatment is adopted instead, where the Coulomb force inside the small contact region (of

size A0) is approximated by the number of charged particles times a constant Cq that is

inverse proportional to
√
A0. With N carriers and N0 oppositely charged dopants, the

electrostatic energy caused by charging/discharging the area can then be simply expressed

as CqN(N −N0)
15. A more precise evaluation is not essential for the present investigation.

The corresponding Hamiltonian of the system including the contributions from the ex-
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change field G and the magnetic energy Em of the magnet becomes

H0 =
∑

γ,σ,σ′,k

[(εγ,σ,k − µ+ Cq∆N)δσ,σ′ +G(M) · sσ,σ′ ]a†γ,σ,kaγ,σ′,k + Em(M) , (1)

where ∆N = N − N0. The index γ = ±1 indicates the K and K ′ valleys, respectively,

with the corresponding momentum vector γK from the zone center; σ, σ′ = ±1 denote spin

up and spin down along the z axis; and k is the carrier (electron or hole) wave vector, all

for ML TMD. Note that this work adopts the notations either in the electron or the hole

picture depending on the sample types (i.e., n-type or p-type, respectively). As such, the

carrier energies are generally described by the positive values. Then, the first term in Eq. (1)

accounting for the electron/hole energy spectrum in the γ valley of the intrinsic TMD is

given as

εγ,σ,k =
~
2(k− γK)2

2m∗
+ (1− γσ)∆SO , (2)

where m∗ is the effective mass and 2∆SO gives the spin-orbital splitting16. While convenient,

this is an approximate expression valid only near the conduction/valence band extrema.

The second term in the square brackets of Eq. (1) defines the exchange interaction of TMD

carriers with the proximate magnet via the effective field G(M) = Gm, where m = M/|M|
and s represents the Pauli matrices. Then, a†γ,σ,k and aγ,σ,k are the usual creation and

annihilation operators. As such, n̂ =
∑

γ,σ,k a
†
γ,σ,kaγ,σ,k is the operator for the total number

of particles with the mean value 〈n̂〉 = N . The last term in Eq. (1) accounts for the

magnetic energy that depends on the intrinsic anisotropy as well as the size and the shape

of the magnet. Referring to the detailed analysis of these dependencies in the literature

(e.g., Ref. 17), we approximate the magnetic energy by the axial anisotropy term in the

form Em(θ) = V0Ka sin
2 θ, where V0 = A0d is the volume of the magnet (with the thickness

d). The anisotropy constant Ka (> 0) establishes the vertical (z) direction as the hard axis

and the x-y as the easy plane; θ denotes the angle of M deviation from the easy plane

(toward the hard axis).

Supposing the controllability of µ by the gate bias, the valley polarization and the cor-

responding magnetization would feed the minimum of the thermodynamic potential Ωc(θ)

of the carriers that is partly counteracted by the increase in Em(θ). Diagonalization of the

spin-dependent part in Eq. (1) redefines the valley extrema and their spin splitting as

Ec
γ,σ(θ) = ∆SO − γσ

√
G2 +∆2

SO − 2γ∆SOG sin θ . (3)
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It is evident that the in-plane orientation of M (i.e., θ = 0) retains the energy degeneracy

between the conjugated spin states in the K and K ′ valleys with some lowering of ground

energies (≃ −G2/2∆SO if G ≪ ∆SO) due to the mixing with the excited spin states by

the exchange field. On the other hand, a canting magnetization lifts the degeneracy such

that the previously identical ground state energies of the two valleys [i.e., (γ, σ) = (1, 1) vs.

(−1,−1)] are now separated by as much as 2G when θ = ±π/2. The resulting asymmetry

causes valley repopulation and the corresponding spin polarization that, in turn, can reorient

the magnetization through a self-consistent process [see Fig. 1(b)]. The initial trigger (i.e.,

a slight deviation from the perfectly in-plane magnetization) can come from the ubiquitous

thermal fluctuation.

To identify the conditions under which the magnetization rotation leads to a gain in

the stability, we need to evaluate the thermodynamic potential of TMD carriers Ωc(θ) =
∑

γ,σ Ωγ,σ(θ) subjected to an exchange field G. The necessary summation (or integration)

over the electronic states k can be expressed in terms of a polylogarithmic function Li2(x) =
∫ 0

x
ln(1− t)dt

t
and the reduced electrochemical potential µ∗ = µ− Cq∆N ,

Ωγ,σ(θ) =
kBT

ζ
Li2[− exp

µ∗ − Ec
γ,σ(θ)

kBT
]. (4)

The conversion to integration can be justified by the stipulation that the spectrum εγ,σ,k is

dense on the scale of thermal energy kBT ; i.e.,

ζ =
2π~2

m∗A0kBT
≪ 1. (5)

The mean number of free carriers in the corresponding γ,σ states can be found from Eq. (4)

as

Nγ,σ =
1

ζ
ln

(
1 + exp

µ∗ − Ec
γ,σ(θ)

kBT

)
, (6)

and the total mean number in the region A0 is simply given by N =
∑

γ,σ Nγ,σ. Strictly

speaking, the band shift induced by the proximity interaction modifies the number of carriers

in the area. However, its impact is very minor under typical conditions. For instance, the

induced variation is estimated to be less than 1% with the acceptor concentration of over

2 × 1012 cm−2 and even a smaller fraction in the corresponding n-type cases, assuming

the exchange coupling constant G of 20 meV. Hence, the analysis can proceed with an

approximation that both Ωγ,σ(θ) and Nγ,σ are controlled by µ but not affected by the

proximate exchange field.
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Equation (6) along with Eq. (3) clearly show that the TMD layer acquires spontaneous

valley (thus, carrier spin) polarization at a finite θ, i.e., when magnetization deviates from

its in-plane direction. This magnetization rotation can be achieved in the manner of ori-

entational phase transition18,19 that can be controlled, in turn, by µ. Particular values of

µ, which realize the spin-valley polarization are defined by the boundaries of neutral state

(with θ = 0) instability. Since the angle θ plays the role of order parameter in Landau

theory of phase transitions, the boundaries of µ corresponds to the curvature sign change of

the total energy Ωc(θ) + Em(θ) at θ = 0. An explicit form of the latter condition is

∆2
SO

G2 +∆2
SO

∑

σ

[
eξ

eξ + eησ
+

σkBT√
G2 +∆2

SO

ln(1 + eξ−η−σ)

]
= Λ, (7)

where ξ = µ/kBT and ησ = Ec
1,σ(0)/kBT . The parameter

Λ =
2π~2Kad

m∗G2
(8)

represents the magnetic stiffness and its reduction due to the exchange interaction with the

proximate TMD carriers. Equation (7) can be readily solved with respect to ξ in the limit of

large spin-orbital splitting (∆SO ≫ G, kBT ) that eliminates the effect of excited spin-orbital

split states. Under this approximation, which is closely relevant to the valence bands of such

TMDs as MoS2 or WS2, the spin-valley polarization appears when µ > µcr with

µcr = −kBT ln

(
1

Λ
− 1

)
. (9)

It is not surprising that spontaneous polarization mediated by the out-of-plane rotation of

M favors a small stiffness; that is, Λ < Λmax, where the absolute upper bound for Λmax is 1

according to Eq. (9). This condition in turn provides a limit in the strength of the magnetic

anisotropy. For instance, the realistic values of d = 2 nm, G = 20 meV and m∗ = 0.34m0

(m0 being the free electron mass) suggests Ka < 2.4 × 105 erg/cm3 − a criterion that can

be satisfied by most known magnetic insulators.

Note that the condition µ > µcr is necessary but not sufficient in the TMD with a finite

spin-orbital splitting since thermal population of both spin subbands reduces the effect of the

carrier mediated effective field. Increasing the carrier density juxtaposes the Fermi level with

the excited spin-orbital subband that reduces spin-valley polarization and can finally return

the system to the balanced state with θ = 0. The range of the electrochemical potential
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(µ1, µ2) that supports the spin-valley polarization can be found from the numerical solutions

of Eq. (7) for arbitrary ratios between ∆SO, G, and kBT .

For the detailed analysis, a WS2 based structure is used as a specific example. The

corresponding material parameters adopted in the calculations are ∆SO = 13.5 meV and

235 meV for the conduction and the valence bands, respectively, and m∗ = 0.34m0, where

the small difference between the electron and hole effective masses is ignored20. In addition,

the values for d and G are set to 2 nm and 20 meV, respectively, as indicated earlier. At

a given temperature, this leaves the magnetic anisotropy (thus, the magnetic stiffness Λ)

and the electrochemical potential µ as the two main variables in solving Eq. (7). Figure 2

provides the resulting calculation at room temperature (curve 1) for the conduction [(a)]

and the valence [(b)] bands. When Λ (thus, Ka) is below a certain maximum Λmax, two

correspondent solutions can be found for µ as indicated by the vertical dashed lines (see,

for example, the cases of Λ = 0.01 and 0.3, respectively). It is the interval between these

two µ positions µ1 and µ2 (thus, the shaded region), where the imbalance in the free carrier

population can be expected between the K and K ′ valleys. This is a significant departure

from the simple picture of Eq. (9), shown by curve 3 in Fig. 2(b), even for the valence band

with a sizable ∆SO.

The desired net valley polarization is illustrated by curves 2 as a function of µ in the

shaded region. Specifically, this quantity is defined as Pv(µ) = (Nγ −N−γ)/(Nγ+N−γ) with

Nγ =
∑

σ Nγ,σ while taking |θ| = π/2 for Ec
γ,σ(θ) [Eq. (6)]. The corresponding values for

spin polarization can be obtained similarly. The percentage of valley polarization, as shown,

reaches the plateau of around 30% (∼ 60%) with a low carrier concentration in the conduc-

tion (valence) band, respectively. The condition of low electron or hole densities, in turn,

requires a small magnetic anisotropy in the magnet (curve 1). This need for a low magnetic

barrier is consistent with the expectation; the magnetization rotation accompanying the sta-

ble spin-valley polarization must be fulfilled with only a limited number of available carrier

spins. The generally lower values of Λ and µ for the conduction band, in comparison to

the counterparts in the valence band, can be understood from ∆SO. The small spin-orbital

splitting energy (27 meV vs. 470 meV) makes the population imbalance difficult to realize

under a degenerate occupancy.

One key question is: Does the magnetization indeed prefer the 90◦ rotation to the out-

of-plane orientation in the shaded region? To examine this point, it is crucial to trace the
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angle θ = θ(µ) that is associated with the minimum of the total energy Ωc(θ) + Em(θ),

as µ varies over the threshold at µ1 and µ2. The calculations exhibit a sharp change of

|θ(µ)| from 0 (in plane) to π/2 (out of plane) within an interval of approx. 0.5 meV and

back to 0 even more steeply in only 0.1 meV (see the inset to Fig. 3). The seemingly

abrupt dependence may be due, in part, to the relative simplicity of the adopted treatment

with only the axial anisotropy. When the higher-order terms of the magnetic anisotropy

are present21, the process tends to become more gradual with a prolonged tail end. For

instance, an extra account of cubic anisotropy with a magnitude about 10% of the axial

term broadens the intermediate range to several meV. However, this contribution is likely

rather minor when compared to the practicable range of µ2 − µ1. Thus, the transition

between two magnetization configurations can indeed be expected via electrical control in a

nearly step-wise manner with a judicious choice of the magnet.

The combination of Figs. 2 and 3 overviews the possible scenarios of spin-valley polar-

ization in a biased FM/TMD structure. At a low ”gate” voltage (low µ), the symmetrical

valley band structure is preserved with the in-plane magnetization. Such a balanced state

remains immutable under any bias conditions provided a strong magnetic anisotropy (i.e.,

Λ > Λmax). When the magnetic barrier is sufficiently low, on the other hand, the system

can be driven out of the stability, via a appropriate gate bias (with µ1 < µ < µ2), into an

alternative state with the out-of-plane magnetization and spin (and valley) split subbands

(hence, polarization). Further increase in the voltage (µ > µ2) diminishes the net difference

in the carrier population of the different spin subbands and the necessary interplay with the

magnetization, leading to the recovery of the easy-plane orientation and the symmetrical

band structure. The transitions between the two regimes (i.e., symmetric vs. spin-valley

polarized) can occur steeply across the boundary at µ1 or µ2, requiring only a small swing

in the external voltage.

Another interesting aspect of the spontaneous spin-valley polarization and the accompa-

nied electronic band modification is the impact on the conductance G(θ, µ) of the TMD re-

gion under the gate. Assuming the relaxation time approximation (i.e., the diffusive regime),

the channel conductance can be estimated in terms of the key functional dependencies as

G(θ, µ) ≃ const
∑

γ,σ

∫
τγ,σ,kv

2
x(γ, σ,k)

(
− ∂f

∂εγ,σ,k

)
dk, (10)

where τγ,σ,k is the carrier relaxation time, vx(γ, σ,k) the group velocity along the channel
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direction (e.g., x), and f the Fermi-Dirac distribution function22. Subsequently, the magne-

toresistive effect can be gauged by simply taking the ratio between the values for the in-plane

and out-of-plane magnetization. Strictly speaking, the θ = 0 and |θ| = π
2
configurations re-

quire disparate electrochemical potentials. However, they can be chosen sufficiently close

to each other (i.e., only a few meV apart by taking advantage of the very steep transition

discussed above) such that the difference can be ignored for the purpose of the conductance

calculation at room temperature. Then, the desired magnetoresistance can be approximated

as [G(θ = 0, µ)/G(|θ| = π
2
, µ)]− 1, where µ follows the rotational phase transition boundary

defined by curve 1 in Fig. 2.

For numerical evaluation, details on the carrier scattering processes are required. In

the present analysis, we focus on the intrinsic, unavoidable interaction with the lattice.

More specifically, the energy dependent carrier-phonon scattering rates are taken from the

first principles calculations20, which are then approximated by a series of step functions in

each spin-valley subband. The obtained magnetoresistance is plotted in Fig. 4. The result

clearly illustrates that the spontaneous spin-valley polarization can lead to modulation of

the channel resistance by as much as approx. 40 % in the p-type samples (i.e., the valence

band; solid curve) via a small change in the applied electrostatic bias. The effect is the most

prominent when the transition occurs with the electrochemical potential near the valence

band edge. The correspondent outcome in the n-type cases (i.e., the conduction band;

dashed curve) is substantially weaker due to the small spin-obit spitting while, at a few

percent, it is still experimentally detectable.

In summary, we propose and theoretically demonstrate the possibility of spontaneous

spin-valley polarization in a strongly spin-orbit coupled TMD monolayer that is mediated

by the orientation phase transition in an adjacent magnet. The analysis illustrates that a

large spin-orbital splitting and a strong proximity exchange interaction are the key conditions

necessary to overcome the magnetic anisotropy of a hard magnet. The consequential valley

(as well as spin) separating phase transition can be driven electrically through a rather

modest change in the carrier densities, which can then be detected rather straightforwardly

through the accompanied modification in the TMD channel conductance. The predicted

non-linear response to an electrical bias can have a major implication in the prospective

valleytronic applications in novel logic and memory23,24. The polarization effect may become

even more pronounced in the magnetically doped TMDs.
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C. Ralph, Phys. Rev. Lett. 114, 037401 (2015).

5 A. Srivastava, M. Sidler, A. V. Allain, D. S. Lembke, A. Kis, and A. Imamoglu, Nat. Phys. 11,

141 (2015).

6 G. Aivazian, Z. Gong, A. M. Jones, R.-L. Chu, J. Yan, D. G. Mandrus, C. Zhang, D. Cobden,

W. Yao, and X. Xu, Nat. Phys. 11, 148 (2015).

7 E. J. Sie, J. W. McIver, Y.-H. Lee, L. Fu, J. Kong, and N. Gedik, Nat. Mater. 14, 290 (2015).

8 Y. G. Semenov, K. W. Kim, and J. M. Zavada, Appl. Phys. Lett. 91, 153105 (2007).

9 H. X. Yang, A. Hallal, D. Terrade, X.Waintal, S. Roche, and M. Chshiev, Phys. Rev. Lett. 110,

046603 (2013)
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FIG. 1. (Color online) Schematic illustration of the TMD-FM structure for the electrically con-

trolled spin-valley polarization accompanied by the magnetization rotation. (a) At low carrier

densities, both K and K ′ valleys are symmetrically occupied (thus, no net spin polarization in the

out-of-plane z direction) and the FM magnetization is along the easy plane. (b) When the carrier

density increases, the spontaneous spin polarization induced by the interplay with the magnet may

eventually exceed the magnetic anisotropy field and stabilize the net carrier spin-valley polarization

along with the magnetization reoriented in the z direction. The K and K ′ bands are plotted from

the perspective of electrons (or holes) for the n-type (or p-type) cases, respectively.
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FIG. 2. (Color online) Critical values of electrochemical potential (curve 1) as a function of

the magnetic stiffness Λ calculated for (a) n-type and (b) p-type ML WS2 at room temperature

[Eq. (8)]. The shaded region denotes the conditions under which the spin-valley polarization and

the reoriented magnetization can be observed. Thus, curve 1 can be viewed as the boundary

that separates two different ”phases”. Curve 3 in (b) shows the ideal case scenario when the

spin-orbital splitting is very large. The reference of µ (i.e., zero) is set to the bottom of the

conduction band [(a)] and to the top of the valence band [(b)], respectively. A negative value of

µ indicates the electrochemical potential in the energy gap between the conduction and valence

bands in both cases. Curves 2 shows the percentage of valley polarization in the shaded region at

the corresponding electrochemical potential. The dashed lines are provided to aid interpretation

of the results. With the magnetic stiffness of 0.01 in (a), for instance, the upper and lower bounds

for the shaded region can be found in terms of µ (curve 1), which then illustrate the respective

valley polarization of 27% and 12% (curve 2; see thin black arrows). An example of Λ = 0.3 is

given likewise in (b). Note that, while similarly polarized, the percentages of net carrier spin take

different numerical values.
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FIG. 3. (Color online) Magnetization orientation as a function of µ illustrating the rotational phase

transition between the in-plane (θ = 0) and out-of-plane (|θ| = π
2
) states. The parameters used in

the calculation are identical to those of Fig. 2(b) with Λ = 0.3 (i.e., the valence band in a p-type

sample). The inset provides a more detailed picture of the transition around µ1.
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FIG. 4. (Color online) Magnetoresistance of n-type (blue, dashed) and p-type (black, solid) ML

WS2 mediated by the rotational phase transition in the magnetization (from the in-plane to the out-

of-plane state). For each value of µ, it is assumed that the system meets the conditions specified by

curve 1 in Fig. 2(b). The reference point (µ = 0) is at the bottom of the conduction band (n-type)

and at the top of the valence band (p-type), respectively, as described before.
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