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The lattice parameter of Ge films doped with phosphorus, arsenic, and antimony was 

measured as a function of the dopant concentration. When the observed trends are compared 

with similar measurements in doped Si, a clear pattern emerges in support of the Cargill-Keyes 

theory that computes the doping dependence of the lattice parameter as the sum of a purely 

electronic contribution, proportional to the absolute deformation potential for the states occupied 

by the dopant carriers, plus a size mismatch contribution that depends on the universal 

topological rigidity parameter for Si-Ge systems. It is shown that when considered from the same 

global perspective, ab initio calculations of the structural effects of doping are in remarkable 

agreement with the Cargill-Keyes theory.  
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The lattice parameter of doped semiconductors changes as a function on the dopant 

concentration, a fact that has been known for more than half a century [1]. The dependence is 

linear below the dopant solubility limit, which is typically two orders of magnitude less than the 

host atomic concentration. Accordingly, it is customary to define a coefficient β such that 

Δa a = βNI , where Δa/a = (adoped-aundoped)/aundoped, and NI is the dopant concentration. The most 

obvious theory of β is based on the difference in atomic radii rI and rH between the dopant (I) and 

host (H). This leads to [2] 

 β = βsize =
rI rH −1( )

NH

= 2
NH

ΔR
R

  (1) 

where NH (=8/a3 in diamond-structure materials) is the host atomic density, ΔR= rI -rH and 

R=2rH. This result is often referred to as “Vegard’s law” for the lattice parameter dependence on 

doping. As noted by Keyes and others [3,4], however, there is an additional contribution to Δa 

that is purely electronic in character. Consider for example a semiconductor with a density NI of 

shallow substitutional donors. A hydrostatic deformation beyond the distortion caused by the 

dopant-host size mismatch would change the total energy per unit volume by the amount 

ΔE = 3acNIε + 9
2 Bε 2

 [3], where ε is the strain, ac is the so-called absolute deformation potential 

(ADP) associated with the conduction band states from which the donor states are derived, and B 

is the bulk modulus. This expression has a minimum for a non-zero ε = −acNI 3B( ). Thus an 

electronic-induced deformation must be added to the size mismatch effect, and the full doping 

dependence of the lattice parameter becomes [5] 

 Δa
a

= βNI = βsize + βe( ) NI   (2) 

where βsize accounts for the  size mismatch effect, and βe = -ac/(3B). A similar reasoning for the 

case of shallow acceptors leads to an analogous equation with βh = av/(3B), av being the valence 

band ADP. 

Eq. (2) has been proposed by Cargill and coworkers [5,6] as an elegant way to determine 

the elusive ADPs, which play a fundamental role in the theory of carrier mobilities [7,8] and in 

the strain dependence of band offsets [9]. Its major success has been the explanation of the 

counterintuitive experimental finding that the Si lattice contracts upon As-doping, in spite of the 

prediction β > 0 from Eq. (1). However, the usefulness and even the correctness of the Cargill-

Keyes (CK) theory have been challenged on multiple grounds. An important drawback is the 
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lack of independent evidence concerning the magnitude of the size contribution βsize. One 

possibility is to use Eq. (1). Alternatively, Cargill et al. proposed to start from experimental 

values of the impurity-host bond length R+ΔR, as obtained from extended X-ray absorption fine 

structure spectroscopy (EXAFS). However, it is well known that the bond length of a 

substitutional isoelectronic impurity such as Ge in Si or In in GaAs is not related to the change in 

lattice parameter as in Eq. (1), because bond lengths in Si1-xGex or Ga1-xInxAs alloys do not 

follow Vegard’s law between the end-point compounds [10,11]. In fact, if one assumes that the 

size contribution from a dopant atom has the same functional dependence as the size contribution 

from an isoelectronic impurity, it is easy to show that instead of Eq. (1) one should use [6] 

 βsize = 2
a**NH

ΔR
R

  (3) 

where  a** is the so-called topological rigidity parameter (also relaxation parameter [10]), which 

is a** =0.7 in the Si-Ge system [11,12]. However, the superior accuracy of Eq. (3) relative to Eq. 

(1) has never been independently confirmed. 

The problem of separating the size and electronic contributions also affects ab initio 

calculations in which the change in lattice constant is obtained from optimizing the structure of 

large supercells containing a dopant atom.[13,14] Moreover, ab initio theoretical attempts to 

compute separately the electronic contribution[14-16] to the lattice constant change have led 

some to conclude that this effect is not well represented by the CK theory [14,15]. 

Experimentally, the application of the hole version of Eq. (2) to Ga-doped Si seems to yield a 

deformation potential av with the wrong sign [6], indirectly supporting the theoretically-based 

claims [14,15] that the theory behind Eq.(2) may be inadequate. Even the apparent success with 

the Si:As system has been questioned on the basis that the experimental data were obtained from 

epitaxial films in which there is a significant shear strain component. This shear strain splits the 

six-degenerate valleys at the bottom of the Si conduction band, which changes the energy 

expression used above to compute the ADP contribution [17]. Ignoring such effects has been 

claimed to lead to large errors in the ADPs derived from Eq. (2). Finally, the experimental 

challenges of obtaining accurate measurements of β and ΔR should not be underestimated. The 

changes in lattice parameter are small, requiring highly doped samples with very uniform doping 

profiles of substitutional impurities. These are very hard to fabricate, which probably explains 

the disagreement between published reports. Even in the case of Si:As—perhaps the best 
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example to date in support of the CK theory—published values for β range from 2.5 times higher 

(Ref. [18]) to 5 times smaller (Ref. [19]) than reported in  Ref. [5].  If we add to this the 

experimental uncertainties associated with EXAFS measurements of the dopant-host bond 

lengths, we are led to the conclusion that an experimentally validated theory of the doping 

dependence of the lattice parameter in elemental semiconductors is still lacking.  

 

In this letter, we report a study of the lattice parameter of Ge doped with P, As, and Sb. 

We show that a comparison of lattice constant trends for the same series of isoelectronic 

dopants—such as P, As, and Sb—in Si and Ge offers the key insights from which the correct 

theoretical framework to describe the effect of doping can be determined. This is because for the 

same concentration of any of these dopants, the electron-induced deformation should remain the 

same, while the size contribution should vary dramatically, making it possible to separate the two 

contributions. Moreover, since the relevant ADPs in Si and Ge correspond to different valleys 

and have opposite sign [9], the presence of a substantial electronic contribution should manifest 

itself as a systematic difference in the effect of the same dopant on Si and Ge. The conclusion 

from our analysis is that the experimental evidence offers strong support for the CK theory 

represented by Eqs. (2) and (3).  Furthermore, we show that when existing ab initio calculations 

are considered from the same global perspective, a remarkable agreement emerges with the CK 

theory.   

Our experimental study of doped Ge was greatly facilitated by the recent development of 

P(GeH3)3 and As(GeH3)3 precursors for in situ doping of Ge-on-Si epitaxial films [20-22].  

These precursors promote the substitutional incorporation of the dopant at very low 

temperatures, leading to very high doping levels with extremely flat profiles, as required for 

measurements of the doping dependence of the lattice constant. We also introduce here 

deuterated stibine (SbD3) as a Sb-source that allows us to complete the sequence of n-type 

dopants in Ge. It is important to mention that electrons in n-type Ge reside in conduction band 

valleys along the (111) direction of the Brillouin zone. These valleys are not split by epitaxial 

shear strain in (001)-oriented thin films, so that—unlike the case of doped Si—no shear strain 

contribution to the total energy needs to be considered or corrected for in our Ge films [17].  

Our samples were grown on Si(001) substrates using Ge0.95Si0.05 intermediate buffer 

layers to reduce the lattice mismatch with the doped film. This approach leads to higher crystal 
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quality as compared to growth directly on Si, while allowing for an easy determination of the 

lattice parameter in the doped film. Pure Ge buffers were also used at the highest Sb doping 

concentrations for which the X-ray diffraction (XRD) peaks for doped film and buffer are well 

separated.  The buffer layers were grown by gas source molecular epitaxy on 4” high-resistivity 

Si(001) wafers at temperatures near 370 ºC, using the Ge4H10 and Si4H10 precursors. They were 

subjected to a 3-min annealing step at 650 ºC to reduce dislocations, and then loaded into a 

separate ultra-high vacuum chemical vapor deposition reactor. The doped films were grown at 

temperatures close to 330 ºC using reactions of Ge3H8 and the appropriate dopant precursors 

P(GeH3)3, As(GeH3)3, and SbD3. Growth details for P(GeH3)3 and As(GeH3)3 are the same as in 

Ref. [21], and [22], respectively. Details for the novel SbD3 precursor will be published 

elsewhere. The average doped film thickness was 200 nm. 

The doping levels were determined 

from Hall effect and infrared spectroscopic 

ellipsometery (IRSE) measurements. In the 

case of Sb-doping, the amount of Sb 

incorporated into the film could also be 

determined directly from Rutherford 

Backscattering (RBS) experiments. Assuming 

a Hall factor γH =1, as usually done in 

semiconductor studies, we find nearly perfect 

agreement between RBS and Hall 

measurements, suggesting 100% 

substitutionality. On the other hand, the best 

estimate for the Hall factor in heavily doped 

Ge is γH =0.83 [23,24].  Accordingly, we have 

used this value, which reduces the carrier 

concentrations by 17% relative to those 

obtained assuming γH =1. The carrier 

concentrations obtained from the IRSE data 

are about 20% lower than the Hall values if 

we assume an effective mass m* =0.12me, 

 

Figure 1  θ-2θ scans for the 004 reflection in several 
Sb-doped Ge films. (a) Film grown on Ge-buffered Si. 
The inset shows a reciprocal space intensity map 
around the 224 reflection; (b) Films grown on 
Ge0.95Si0.05. The peaks at high angles in both panels 
correspond to the buffer layers. 
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where me is the free-electron mass [20]. This discrepancy 

is reduced if one uses a higher value of the effective mass 

to account for non-parabolicity effects [25], although 

band gap renormalization could partially compensate the 

non-parabolicity increase. For the purposes of this paper 

we use the Hall values of the carrier concentration and 

estimate the concentration error as the difference between 

IRSE and Hall measurements. 

The relaxed lattice parameter of the films was 

determined from XRD measurements. The in-plane  

and out-of-plane a⊥  lattice constants were obtained from 

θ-2θ scans for the (004) reflection and reciprocal space 

maps (RSMs) for the (224) reflection. No epilayer tilt 

was detected in (004) RSMs. Figure 1 shows examples of 

the X-ray results for Ge:Sb, demonstrating a significant 

lattice expansion as a function of the doping 

concentration. The relaxed cubic lattice parameter was 

obtained from the measured  and a⊥  using standard 

elasticity theory. We used elastic constants for bulk Ge 

without any correction for doping. This is a good 

approximation because the C12/C11 elastic constant ratio is a very weak function of doping [26]. 

The results are plotted in Fig. 2. The figure includes measurements from 19 additional pure Ge 

films grown by a similar method on Si-substrates. The standard deviation of a for the pure Ge 

films was taken as the error of the relaxed lattice parameter for the doped films. For Ge:As, we 

also include earlier measurements by Isherwood and Wallace [27].The parameter β was extracted 

from a linear fit using an orthogonal distance regression method to account for errors both in the 

lattice parameter and in the doping concentrations.   

For a comparison of our results for doped Ge with earlier work on doped Si, Eqs. (1) and 

(3) suggest that we define the dimensionless parameter β * = βNH . The experimental values of β* 

are compared in Fig. 3(a) with the predictions from “Vegard’s theory” in Eq. (1) using Phillips 

 
Figure 2   Relative change of the lattice 
parameter as a function of carrier 
concentration in Ge doped with P, As, 
and Sb. The linear fit coefficients are 
shown in the corresponding panels. 
White squares show Ge:As results from 
Ref. 25. 
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covalent radii [28].  The data for 

Si:P were taken from Refs. [29-

31]. For Si:As, we used results 

from Refs. [5,19,32], and for 

Si:Sb the data were taken from 

Refs. [33,34]. We see that the 

quantitative agreement is 

marginal.  More importantly, a 

systematic trend is readily 

apparent: while all germanium 

values lie above the Eq. (1) line, 

the corresponding Si values are 

below the line. This is a clear 

indication of electronic effects, 

since, as indicated above, these 

effects have opposite signs in Si 

and Ge. A comparison of Ge:As 

and Si:As offers a dramatic 

example of the inadequacy of the “Vegard theory”: the covalent radii of Ge and As are the same, 

whereas that of Si is much smaller, yet the doping dependence of the lattice parameter is much 

stronger in the Ge:As system than in Si:As. Even the good agreement for Si:Sb appears to arise 

from a fortuitous combination of two errors: the overestimation of the experimental values for 

smaller ΔR/R (Si:P and Si:As), combined with the fact that the slope of 2 in the theoretical line 

[Eq. (1)] is clearly smaller than suggested by the experimental data. 

In Fig. 3(b) we first compare the experimental β*’s with ab initio calculations for Ge [13] 

and Si [35]. All values are plotted against ab initio values of ΔR R  from Ref. [13] and Ref. [36]. 

This is done for later comparison with the CK theory, but we first concentrate on the accuracy of 

the predicted values of β*, ignoring the ΔR R  information. We note that the agreement is 

substantially improved relative to the “Vegard theory” represented by Eq. (1).  In fact, the 

remaining discrepancies are within the range that might be expected on account of possible 

systematic errors in the doping concentrations and the difficulty in ruling out the presence of a 

 
 
Figure 3 (a) Normalized β* coefficients for doped Ge (our work) and 
doped Si, from Refs. 5, 19, 29-34, compared with “Vegard’s theory” 
from Eq. (1), with ΔR = rI-rH and R =2rH. The atomic radii rH and rI 
are from Ref. 28. (b) The same normalized β* coefficients for doped 
Ge and doped Si are plotted against ab initio theoretical values of 
ΔR/R from Refs. 13 and 36 (solid squares) and EXAFS values of ΔR/R 
(empty squares). The light red and blue circles correspond to ab initio 
values of β* from Refs 13 and 35 for Ge and Si, respectively. The 
solid red (blue) line is a linear fit of the ab initio results for Ge (Si). 
The slope of both lines turns out to be nearly identical to the value 
2/a** predicted from Eq. (3). The intercept at the origin represents the 
electronic contribution, and it has the opposite sign in both materials 
due to the opposite sign of the corresponding deformation potentials.  
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residual fraction of non-substitutional donors. Even the wrong sign of β* for Ge:P, the only 

remaining qualitative discrepancy between ab initio theory and experiment, does not appear too 

serious if one observes that the magnitude of β* in this case is small. As can be seen in Fig. 2, the 

change in lattice constant in Ge:P is not much larger than the fluctuation of the measured lattice 

parameter in pure Ge. 

From the foregoing analysis we conclude that ab initio calculations of the doping 

dependence of the lattice parameter are in very satisfactory agreement with experiment. This, 

however, has no obvious implication for the validity of the CK theory, since, as indicated above, 

the problem of separating the size and electronic contributions affect both the experimental data 

and the ab initio calculations. On the other hand, if we perform linear fits of the ab initio values 

of β* versus ΔR R , we obtain the red and blue lines in Fig. 3(b). The slope of these lines is 2.96 

(Ge) and 2.89 (Si). This is in excellent agreement with the slope 2/a** = 2/0.7= 2.86 predicted 

from Eq. (3). Moreover, the ordinates at the origin have opposite signs, and when equated to 

−3acNH B , the value predicted by Eq. (2), we obtain ac = -1.86 eV (Ge) and ac = 3.30 eV (Si). 

Combined with predicted av = 2.23 eV (Ge) and av = 2.38 eV (Si) in Ref. [37], these values 

imply band gap deformation potentials a = -4.1 eV (Ge) and a  = 0.9 eV (Si), in good agreement 

with the experimental values a = -3.6 eV (Ge, Ref. [38]) and a = 1.5 eV (Si, Ref. [39]). Other 

direct calculations of ADPs are also in good agreement with the values determined with our 

procedure.  For example, Van de Walle finds ac = -1.5 eV (Ge) and ac = 4.18 eV (Si) [9]. We 

thus conclude that, far from disagreeing with the CK theory in Eqs. (2) and (3), as previously 

claimed, ab initio calculations provide strong support for it and, in particular, demonstrate fairly 

conclusively that Eq. (3) is the correct way to account for size effects. 

The analysis so far demonstrates that ab initio results are in good agreement with 

experiment and with the Cargill-Keyes theory. However, the definitive validation of the CK 

theory requires a study of the experimental β*’s as a function of experimental ΔR R  values. We 

have done so in Fig. 3(b) for the cases in which EXAFS data for ΔR R  are available[5,40] 

(empty squares), and we see that the difference with the ΔR R  from ab initio calculations is 

small and, if anything, the agreement with the theoretical β*’s is improved. In fact, for Si:As even 

closer agreement with the ab initio ΔR R  value is reported by Koteski et al.[41]  The similarity 

between ab initio and EXAFS values of ΔR R  can be expected based on the observation that ab 
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initio calculations of Raman spectra in alloy semiconductors with significant bond length 

mismatch are in excellent agreement with experiment [42]. Errors in the compositional 

dependence of optical phonon frequencies are no larger than 4%, which, given the fact that 

Grüneisen parameters are of the order of unity, imply comparable errors in ΔR/R. (Ref. [43]). We 

thus conclude that the CK theory is fully consistent with the experimental evidence. Still, the 

objection could be raised that the ΔR/R values from both EXAFS measurements and ab initio 

calculations are themselves affected by the electronic contribution, so that we might be counting 

this contribution twice. However, as demonstrated by Chizmeshya [13], the size effect is strongly 

localized around the dopant atom, whereas the electronic contribution is uniformly spread over 

the lattice. Thus the error incurred is of the order of NI/NH, which is negligible under normal 

conditions. 

So far we have limited ourselves to n-systems, but the CK theory applies to p-systems as 

well. Unfortunately, there are no available data to create the equivalent of Fig. 3(b) for p-

materials.  Moreover, the valence band ADPs for Ge and Si have the same sign and similar 

magnitude, so that the separation between size and electronic effect would not be equally 

obvious. An individual case that has been studied in detail is Si:B. Ab initio calculations predict 

ΔR/R = -0.107 [44]. Thus the size contribution from Eqs. (2) and (3) is predicted to be βsize
*  =-

0.31. In addition, using av = 2.38 eV [37], we obtain  βh
*  = 0.06.  The total β* = -0.25 is in 

reasonable agreement with experimental values in the -0.31 to -0.26 range [45-47]. On the other 

hand, in the above mentioned Si:Ga case [6] av is determined to be negative. We notice, 

however, that Si:Ga is somewhat anomalous because there is no consensus on the value of ΔR/R. 

EXAFS gives ΔR/R = 0.025 but could not completely rule out ΔR/R ~ 0 [6], whereas ab initio 

calculations range from ΔR/R = 0.013 (Ref. [48]) to 0.017 (Ref.[49]). These particular results 

underscore the fact that extracting deformation potentials from measurements on one single host-

dopant system may lead to incorrect conclusions. Only when the results are considered globally, 

as in Fig. 3(b), does the validity of the CK approach become apparent. 

In summary, we have presented measurements of the doping dependence of the cubic 

lattice parameter for a complete series of shallow donors in Ge. When the experimental results 

and ab initio theoretical calculations are combined with similar measurements and calculations 

on doped Si, a clear pattern emerges that supports the Cargill-Keyes theory for the doping 

dependence of lattice parameters in semiconductors.   
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