
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Topological phases with long-range interactions
Z.-X. Gong, M. F. Maghrebi, A. Hu, M. L. Wall, M. Foss-Feig, and A. V. Gorshkov

Phys. Rev. B 93, 041102 — Published  8 January 2016
DOI: 10.1103/PhysRevB.93.041102

http://dx.doi.org/10.1103/PhysRevB.93.041102


Topological phases with long-range interactions

Z.-X. Gong,1, 2, ∗ M. F. Maghrebi,1, 2 A. Hu,1, 3 M. L. Wall,4 M. Foss-Feig,1, 2 and A. V. Gorshkov1, 2

1Joint Quantum Institute, NIST/University of Maryland, College Park, Maryland 20742, USA
2Joint Center for Quantum Information and Computer Science,

NIST/University of Maryland, College Park, Maryland 20742, USA
3Department of Physics, American University, Washington, DC 20016, USA

4JILA, NIST/University of Colorado, Boulder, CO 80309, USA

Topological phases of matter are primarily studied in systems with short-range interactions. In nature, how-
ever, non-relativistic quantum systems often exhibit long-range interactions. Under what conditions topological
phases survive such interactions, and how they are modified when they do, is largely unknown. By studying
the symmetry-protected topological phase of an antiferromagnetic spin-1 chain with 1/rα interactions, we show
that two very different outcomes are possible, depending on whether or not the interactions are frustrated. While
non-frustrated long-range interactions can destroy the topological phase for α <∼ 3, the topological phase sur-
vives frustrated interactions for all α > 0. Our conclusions are based on strikingly consistent results from
large-scale matrix-product-state simulations and effective-field-theory calculations, and we expect them to hold
for more general interacting spin systems. The models we study can be naturally realized in trapped-ion quantum
simulators, opening the prospect for experimental investigation of the issues confronted here.

PACS numbers: 75.10.Jm, 75.10.Pq, 03.65.Vf

Since the discovery of topological insulators1–3, there has
been tremendous interest in exploring various topological
phases of matter, both theoretically4,5 and experimentally6–8.
Topological phases are generally associated with—and derive
much of their presumed utility from—stability against local
perturbations. But precisely what constitutes “local” in this
context is a subtle issue; power-law decaying (1/rα) interac-
tions, which are present in many experimental systems, do not
necessarily qualify9–11. Recent theoretical advances have be-
gun to elucidate the conditions under which long-range inter-
acting systems maintain some degree of locality12,13, poten-
tially providing some insight into effects of long-range inter-
actions on topological phases of matter. And recently, explicit
theoretical evidence of topological order has been found in
a variety of long-range interacting systems, including dipo-
lar spins14 or bosons15, fermions with long-range pairing16

and hopping17,18, and electrons with Coulomb interactions19.
These results notwithstanding, a complete understanding of
how topological phases respond to the addition of long-range
interactions is still lacking.

The stability of topological phases to small local perturba-
tions is intimately connected to the existence of a bulk ex-
citation gap20,21, and the introduction of long-range interac-
tions to a short-range Hamiltonian supporting a topological
phase poses several potential challenges to this connection.
First, even if the gap remains finite, long-range interactions can
change the ground state correlation decay from exponential to
power-law16,18,22,23. Thus topological phases with local inter-
actions are, at the very least, subject to qualitative changes in
their long-distance correlations. Second, the gap can in princi-
ple close in the presence of long-range interactions, even when
they decay fast enough that the total interaction energy remains
extensive20,24. Third, long-range interactions have the abil-
ity to change the effective dimensionality of the system25,26,
and thus might change the topological properties even if the
gap does not close16,18. We emphasize that the understanding
of these issues is not of strictly theoretical interest. Many of

the promising experimental systems for exploring or exploit-
ing topological phases of matter, e.g. dipolar molecules27–29,
magnetic30 or Rydberg atoms31, trapped ions32–37, and atoms
coupled to multi-mode cavities38, are accurately described
as quantum lattice models with power-law decaying interac-
tions. The unique controllability and measurement precision
afforded by these systems hold great promise to improve our
understanding of topological phases39–42, but first we must
reliably determine when—despite their long-range interac-
tions—they can be expected to harbor the topological phases
that have been theoretically explored for short-range interact-
ing systems.

To address these general questions, in this manuscript we
study a spin-1 chain with antiferromagnetic Heisenberg inter-
actions, which is a paradigmatic model exhibiting a symmetry-
protected topological (SPT) phase43,44. Specifically, we con-
sider two extensions of the short-range version of this model by
including long-range interactions that decay either asJα(r) =
1/rα or asJ ′α(r) = (−1)r−1/rα, which could be simulated in
trapped-ion based experiments for 0 < α < 345,46. Based on
a combination of large-scale variational matrix-product-state
(MPS) simulations and field-theory calculations, we establish
and explain a number of important and potentially general con-
sequences of long-range interactions. The J ′α(r) interactions
are unfrustrated, being antiferromagnetic (ferromagnetic) be-
tween spins on the opposite (same) sub-lattice. In this case,
numerics and field theoretic arguments suggest the destruction
of the topological phase for α <∼ 3, accompanied by a closing
of the bulk excitation gap and spontaneous breaking of a con-
tinuous symmetry in 1D, consistent with other recent findings
on the relevance of long-range interactions for α < D + 2 in
D-dimensional quantum systems47,48. The Jα(r) interactions
are frustrated, and, remarkably, do not close the bulk excita-
tion gap for any α > 0. In addition, two key properties of
the SPT phase, a doubly degenerate entanglement spectrum49

and a non-vanishing string-ordered correlation50, are both pre-
served. However, because of the long-range interactions, spin-
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Figure 1: (a) Low-lying energy levels of the Haldane chain for even
L. The entanglement structure of ground states is shown at the
bottom. The ground states in the total Sz = 0, 1, 2 subspace are
named |0〉, |1〉, |2〉 and have energies E0, E1, E2. (b-c) The mth

largest value λm (m = 1, 2 · · · 8) of the ground-state entanglement
spectrum for Hα (b) and H ′α (c) using finite-size MPS calculations
with L = 200. We choose the |1〉 state to avoid extra entangle-
ment between edge spins. For H ′α, the entanglement spectrum for
1.5 ≤ α ≤ 4 will exhibit a smooth crossover between the α = 1.5
and α = 4 cases due to the finite system size, but we expect a sharp
transition at some αc <∼ 3 in the thermodynamic limit. The exact pair
degeneracies in {λm} are a result of the spatial-inversion symmetry
protecting the topological phase44,49.

spin correlations and the edge-excitation amplitudes only de-
cay exponentially within some intermediate distance scale, af-
ter which they decay algebraically. We expect these qualitative
changes to be quite general, occurring in other long-range in-
teracting systems in which the topological phase survives.

Model.—We consider a spin-1 chain with either frustrated
or unfrustrated long-range Heisenberg interactions:

Hα =
∑
j,r>0

Jα(r)Sj ·Sj+r, H ′α =
∑
j,r>0

J ′α(r)Sj ·Sj+r. (1)

With only nearest-neighbor interactions (α → ∞), H∞ =
H ′∞ is usually called the Haldane chain, which has been
extensively studied theoretically51–53, numerically54–58, and
experimentally59,60. The low-lying states of the Haldane chain
are shown in Fig. 1(a) for an open boundary chain with even
size L. The unique ground state has total spin S = 0. The first
set of excited states has S = 1 (h̄ = 1), contains spin exci-
tations only near the edge of the chain, and is separated from
the ground state by an energy gap (edge gap) that is exponen-
tially small in L and topologically protected. Consequently,
these excited states belong to a degenerate ground-state sub-
space in the thermodynamic (L → ∞) limit. The second set
of excited states all have S = 2, contain spin excitations in
the bulk of the chain, and have an energy gap (bulk gap) that
converges to a finite value when L → ∞. The entanglement
structure of the four ground states is close to that of the Affleck-

Kennedy-Lieb-Tasaki (AKLT) states61 shown at the bottom of
Fig. 1(a), where each spin-1 is decomposed into two spin-1/2s,
pairs of spin-1/2s on neighboring sites form singlets, and the
system is finally projected back onto the spin-1s. The four
quasi-degenerate ground states correspond to the four states
formed by the two unpaired spin-1/2s at the edge.

We use variational MPS calculations62–65, to determine the
ground-state entanglement structure ofHα andH ′α in Fig. 1(b-
c). For α > 0 (α > 3), the ground-state entanglement spec-
trum of Hα (H ′α), defined as the eigenvalues of the left/right
half-chain’s reduced density matrix, is dominated by the two
largest degenerate eigenvaluesλ1 = λ2 ≈ 0.5. This can be un-
derstood heuristically as the result of cutting a spin-1/2 singlet
in the AKLT state, and suggests the survival of the topological
Haldane phase. For H ′α with α <∼ 3, the entanglement spec-
trum has an entirely different structure, and we will study the
related ground state properties below.

Effective field theory.—The low energy physics of the Hal-
dane chain can be understood via field theoretic analysis due
to Haldane52 and Affleck66; here we build on their work to
provide a field theoretic treatment of the long-range interact-
ing model. We begin by decomposing the spin operators into
staggered and uniform fields, n(2i + 1

2 ) = (S2i − S2i+1)/2

and l(2i + 1
2 ) = (S2i + S2i+1)/2. The intuition behind this

decomposition is that the classical ground state of both Hα

and H ′α is Néel-ordered for any α > 0, with n2(x) = 1
and l(x) = 0. We therefore expect that in the quantum
ground state n2(x) ≈ 1, while l(x) ≈ 0 represents small
quantum fluctuations in the direction of n(x). Importantly,
we expect that only long-wavelength fluctuations of n(x) and
l(x) will be important at low energy. In momentum space,
we can write Hα ≈

´
dq
(
ω(q)|n(q)|2 + Ω(q)|l(q)|2

)
and

H ′α ≈
´
dq
(
Ω(q)|n(q)|2 + ω(q)|l(q)|2

)67, with

ω(q) = 2

∞∑
r=1

J ′α(r) cos qr, Ω(q) = 2

∞∑
r=1

Jα(r) cos qr. (2)

For any α > 0, ω(q) is analytic at small q and can be ex-
panded as ω0+ω2q

2+O(q4), whereas Ω(q) is non-analytic at
small q with an expansion Ω0 +Ω2q

2 +λ|q|α−1 +O(q4). The
coefficients ω0,2, Ω0,2, and λ depend on α, but their exact val-
ues are not important for the following analysis. Physically, the
analyticity (non-analyticity) of the spectrum arises because the
long-range interactions interfere destructively (constructively)
for the staggered field. Keeping only the lowest non-trivial or-
der in q for the dispersion of both n(q) and l(q) turns out to
be sufficient for obtaining qualitatively correct behavior of the
excitation gap. Therefore, we keep only the 0th order term in
the dispersion of l(q), and the next-leading term in the disper-
sion of n(q) (for n(q), the 0th order term only adds a con-
stant to the Hamiltonian due to the constraint n2(x) = 1).
Thus for α > 0 (α > 3) the Hamiltonian Hα (H ′α) is ap-
proximately given by (ignoring the order-unity coefficients)
Hα ∼ H ′α ∼

´
dq
(
q2|n(q)|2 + |l(q)|2

)
. When the zero-

temperature partition function is expressed as a coherent-spin-
state path integral, the action is quadratic in the field l and it
can be integrated out68,69. The remaining path integral over the
staggered fieldn is a 1+1DO(3) nonlinear sigma model, with
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Lagrangian density (nonlinear constraint n2(x) = 1 implied)

L(x) ≈ 1

g

(
|∂n/∂t|2 − v2s |∂n/∂x|2

)
. (3)

Here g is an effective (α- and short-distance-cutoff-dependent)
coupling strength, and the spin-wave velocity vs is also α-
dependent. This model is gapped and disordered for all g51.

To investigate ground state properties of Eq. (3), we can re-
move the constraintn2(x) = 1, while phenomenologically in-
troducing a mass gap ∆α and a renormalized spin-wave veloc-
ity vα (the parameters ∆′α and v′α will be used to describe the
Lagrangian for H ′α)57,58. Transforming to momentum space,
we thereby arrive at a free-field Lagrangian density

L(q) ∝ |∂n/∂t|2 − (∆2
α + v2αq

2)|n(q)|2. (4)

This Lagrangian leads to ground-state correlations Cij =
〈Szi Szj 〉0 [where 〈· · ·〉m denotes the expectation value in the
state |m〉 defined in Fig. 1(a)] that decays as

Cij ∝ (−1)r
ˆ

eiqrdq√
∆2
α + v2αq

2
∝ (−1)rK0(r/ξα). (5)

Here ξα ≡ vα/∆α (or ξ′α ≡ v′α/∆′α forH ′α) defines the corre-
lation length, and K0(x) is a modified Bessel function, which
behaves as K0(x) ∼ exp(−x)/

√
x for large x.

For α < 3, the non-analytic |q|α−1 term in H ′α dominates
the dispersion of n(q) at small q, and Eqs. (3-4) are not valid.
To analyze this case, we write down the renormalization group
(RG) flow equation for the coupling strength g under the scal-
ing transformation x→ xe−l to one-loop order68,70,

dg

dl
=
α− 3

2
g +

g2

4π
. (6)

For α < 3, an unstable fixed point appears at g∗ = 2π(3−α),
and for a bare coupling g < g∗ the RG flow is towards a weak-
coupling ordered state at g = 068. The bare coupling, and
therefore the value of α at which this phase transition occurs,
is difficult to determine a priori. But we nevertheless expect
(and confirm numerically) that for α < αc, with 2 < αc <
3, the gap will close as the system spontaneously breaks the
continuous SU(2) symmetry of H ′α48,71.

Comparison with numerics.—Using finite-size MPS calcu-
lations, we have obtained the bulk excitation gap E2−E1 and
the correlation length [fitted using Eq. (5)] for both Hα and
H ′α. As shown in Fig. 2(a-b), we see consistent results with
the field theory predictions. For Hα, the gap remains open
for all α > 0, and the correlation length decreases together
with α due to both an increase of the bulk gap, and a decrease
of the spin-wave velocity (as a result of a weakened Néel or-
der for longer-range interactions). To the contrary, for H ′α,
the gap decreases quickly as the interactions become longer
ranged, and the correlation length diverges when α decreases
to around 3, suggesting the disappearance of the topological
phase at α <∼ 372. Calculation of the string-ordered correla-
tion Sij ≡ 〈Szi Szj

∏
i<k<j(−1)S

z
k 〉0 of both Hα and H ′α at

α = 1.5 [Fig. 2(c)] provides further evidence that the topolog-
ical phase survives for Hα, but not for H ′α, for 0 < α <∼ 3.
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Figure 2: (a) Bulk gap ∆α and ground state correlation length ξα in
the L → ∞ limit, obtained by finite-size scaling for 200 ≤ L ≤
500. (b) Bulk gap ∆′α and ξ′α with L = 100 and L = 300. (c)
Ground-state string-ordered correlation function Sij for Hα and H ′α
with α = 1.5 and L = 300. For various α and 200 ≤ L ≤ 500,
we consistently find that Sij quickly saturates to a finite value forHα
at all α > 0, but vanishes at large distance for H ′α at α <∼ 3. (d)
Ground-state spin-spin correlation Cij for α = 0.5 and L = 500.
This choice of α = 0.5 is arbitrary, but assists in a clear presentation
of the coexisting exponential and 1/rα+4 power-law decays.

We now analyze the effects of terms beyond leading order in
q that have been ignored in our field theory treatment. Includ-
ing the higher-order analytic terms, such as the O(q4) term,
will result in negligible corrections to the correlation func-
tions that decay in distance faster than Eq. (5)57. However,
even for α > 3, inclusion of the non-analytic O(|q|α−1) term
will add a power-law tail to the correlation functions, which
will dominate over Eq. (5) at long distance. In the supplemen-
tal material, we show by a more involved field-theory calcula-
tion that, for Hα, Cij decays as 1/rα+4 at large r. Our MPS
calculations using L = 500 spins [Fig. 2(d)] show remark-
able agreement with the field theory predictions, even captur-
ing the oscillations in |Cij | occurring at intermediate distance
where the short-range and long-range contributions to the cor-
relation functions are of comparable magnitude and interfere.
A power-law tail in Cij should also exist for H ′α, but the in-
creased correlation length prevents us from observing its exis-
tence clearly for α > 3.

Edge excited states.—We expect the influence of long-range
interactions on the edge- and bulk-excited states to be strong
at small α; because the topological phase of H ′α does not sur-
vive for α <∼ 3, we will focus on Hα from now on. Edges
can be introduced into the field theory by replacing the two
end spin-1’s with spin-1/2’s, represented by τL (τR) for the
left (right) edge, resulting in an edge-bulk coupling Hamil-
tonian Hc =

∑L−1
i=2 Si ·

(
τL/(i − 1)α + τR/(L − i)α

)57.
For the edge excited state |1〉 [Fig. 1(a)], τL,R are polarized
in the +z direction, and we expect 〈Szi 〉 to decay away from
the ends. Solving the free theory defined by Eq. (4) and treat-
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Figure 3: (a) Distribution of an edge excitation in state |1〉 for L =
500 andα = 2. (b) Edge gap |E1−E0| as a function of the chain size
L for α = 3. (c) Lowest energy magnon probability density distri-
bution for L = 200 and α = 3.0, 0.5. (d) The finite-size correction
to the lowest magnon excitation energy [see Eq. (7)]. For α = 3, we
obtain vα = 2.18 and vα/∆α ≈ 4.51, in good agreement with the
ξα ≈ 4.55 obtained in Fig. 2.

ingHc using standard first-order perturbation theory57, we find
that 〈nz(x)〉1 ∝

´
dq(exp[iq(L−x)]−exp[iq(x−1)])/(∆2

α+
v2αq

2) ∝ exp[−(L − x)/ξα] − exp[−(x − 1)/ξα] for even
L. In addition, 〈lz(x)〉1 contributes a power-law correction
1/(x−1)α+2+1/(L−x)α+2 for x far away from both ends73.
Our numerical calculation of 〈Sz(x)〉1, shown in Fig. 3(a),
agrees well with a sum of these two contributions, clearly ex-
hibiting an exponential followed by 1/rα+2 decay.

The edge gap |E1 − E0| can be obtained by using a path
integral to integrate out the n field57, resulting in an effec-
tive edge-edge Hamiltonian ∝ (−1)L exp(−L/ξα)τL · τR.
This scaling is confirmed, at relatively small L, by the nu-
merical results in Fig. 3(b). However, the numerics also re-
veal that at large L the edge gap receives a long-range correc-
tion given by 1/Lα. This remarkably simple result, including
the unity prefactor, can be understood as follows. The edge-
excited states behave differently from the bulk-excited states
due to correlations between the orientations of τ1 and τ2,
and therefore 〈Si · Sj〉1 − 〈Si · Sj〉0 is very small unless i
and j are very close to 0 and L, respectively. Thus we have
E1 − E0 ≈ L−α

∑
i<j(〈Si · Sj〉1 − 〈Si · Sj〉0) = 1/Lα,

where the last equality is a sum-rule following from the total
spin of the ground (S = 0) and edge excited (S = 1) states.

Bulk excited states.—As in the short-range Haldane
chain, the elementary bulk excitations of Hα are spin-1
magnons55–57. Physically, the magnon represents fluctua-
tions in the field n, and, from Eq. (4), these fluctuations have
a dispersion relation εα(q) =

√
∆2
α + (vαq)2 ≈ ∆α +

q2v2α/(2∆α) (valid at small q). The lowest-energy magnon
wave-function Ψ0(x) can be extracted from the numerics using

the relation |Ψ0(i)|2 ≈ |〈Szi 〉2−〈Szi 〉1|. The presence of long-
range interactions gives the magnon an additional potential en-
ergy due to the edge-bulk coupling HamiltonianHc, and Ψ(x)
can be approximately described by the following Schrödinger
equation (with Dirichlet boundary condition at x = 1, L)

v2α
2∆α

∂2Ψ(x)

∂x2
+

1

2

[
1

(x− 1)α
+

1

(L− x)α

]
Ψ(x)=EΨ(x). (7)

The kinetic (potential) energy always scales as 1/L2 (1/Lα);
therefore, for α > 2 and large L, the potential energy can
be ignored. The ground-state energy E0 ≈ v2απ

2/(2∆αL
2)

and probability density |Ψ0(x)|2 ≈ (2/L) sin2(πx/L) are
then identical to those of a particle in a box, as confirmed
numerically in Fig. 3(c-d). The relation E2 − E1 ≈ ∆α +
v2απ

2/(2∆αL
2) allows us to obtain both vα and ∆α through

finite-size scaling [Fig. 2(b)], and we confirm that the corre-
lation length determined by ξα = vα/∆α agrees with that
obtained by fitting Cij using Eq. (5). For α < 2, the poten-
tial energy dominates the kinetic energy for large L, and the
potential can be approximated as harmonic around x = L/2.
Thus |Ψ0(x)|2 resembles a Gaussian [Fig. 3(c)], and a simple
scaling analysis predicts a width γ ∝ L1−α/2. In the large-L
limit, |Ψ0(x)|2 become sharply peaked at x = L/2 and, from
Eq. (7), we expect the bulk gap to scale as ∆α+(2/L)α, which
is clearly observed in Fig. 3(d). Since E2 − E1 = 2 when
α = 0, it follows that ∆α→0 = 1, consistent with Fig. 2(a).

Outlook.—The stability of the topological Haldane phase
to 1/rα interactions for all α > 0 is favorable for trapped-
ion based experiments, as stronger couplings can be achieved
for smaller α36,37. Moreover, because the correlation length
shrinks for longer-range interactions, a relatively small number
of ions will suffice to suppress finite-size effects. Probing the
topological phase by measuring both Cij and Sij with single-
site resolution is nearly impossible in typical condensed-
matter systems, but is quite straightforward in ion traps74.
Based on the generality of our field theory analysis, we spec-
ulate that for generic lattice models, the tails in the power-
law interactions can possibly destroy the topological phase
only when long-range interactions are unfrustrated and α <
D + 2. Experimentally, unfrustrated long-range interactions
can be easily implemented by generating a 1/rα ferromagnetic
interaction71. We hope that our work can serve as a spring-
board for future studies on how distinct topological phases be-
have in the presence of long-range interactions.
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