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We study coherent transport in a system of periodic linear chain of quantum dots placed be-
tween two parallel quantum wires. We show that resonant-tunneling conductance between the wires
exhibits Rabi splitting of the resonance peak as a function of Fermi energy in the wires indicat-
ing the emergence of strong coupling between the system consituents. The underlying mechanism
of strong coupling regime is conservation of quasimomentum in a periodic system that leads to
transition resonances between electron states in quantum dot chain and quantum wires. A perpen-
dicular magnetic field, by breaking the system left-right symmetry, gives rise a fine structure of the

conductance lineshape.

INTRODUCTION

During the past decade, strong coupling effects in op-
tics of nanostructures have been a subject of intense
interest [1]. Optical interactions between excited dye
molecules or excitons in semiconductor structures and
resonant optical cavity modes or surface plasmons in
metal structures can lead to a mixed state with disper-
sion characterized by an anticrossing gap (Rabi splitting)
in the resonance region. Strong coupling regime is es-
tablished when coherent energy exchange between two
systems exceeds incoherent losses through radiative or
nonradiative mechanisms, while the Rabi splitting mag-
nitude can vary in a wide range [2-25]. For example,
a relatively weak Rabi splitting in the range 100 ueV
— 1 meV was reported for a semiconductor quantum dot
(QD) radiatively coupled to a cavity mode [2-4], whereas
a much larger splitting (above 100 meV) was observed for
surface plasmons coupled to excitons in J-aggregates [5—
12], individual dye molecules [13-19], or semiconductor
QDs [20-22]. A weaker, although still significant, Rabi
splitting (~ 10 meV) was reported for quantum well ex-
citons coupled to surface-plasmon polaritons [23, 24] or
to graphene plasmouns [25]. Recently, strong coupling be-
tween molecular vibrational modes and cavity modes in
Raman scattering experiments was reported [26-29].

On the other hand, electron quantum transport in
semiconductor nanostructures [30-32] bears deep simi-
larities to coherent optical processes [33]. Interference of
electron pathways in confined structures give rise to, e.g.,
the analogue of Dicke superradiance in resonant tunnel-
ing through several QDs [33, 34], Fabri-Perrot interfer-
ence in electron waveguides [35], or extraordinary elec-
tron transmission through a QD lattice [36]. However, to
the best of our knowledge, no physical mechanism that
could give rise to strong coupling regime in electron trans-
port has been suggested to date.

Here we demonstrate that strong coupling regime can
be realized in resonant tunneling through a periodic chain

of QDs (QDC) [37, 38] placed between two parallel semi-
conductor quantum wires (QW) [39, 40] (see the inset in
Fig. 1). Due to scattering by QDC periodic potential, the
energy spectrum of one-dimensional electron gas (IDEG)
in QWs splits into Bloch bands characterized by quasi-
momentum that conserves across the system. We show
that even for weak tunelling between individual QDs and
QWs, the momentum-selective transitions between the
QDC states and Bloch states in QWs cause anticross-
ing of Bloch band dispersion and resonant energy level,
leading to Rabi splitting of the conduction peak. A per-
pendicular magnetic field, by breaking the symmetry be-
tween left and right QWs, leads to a fine structure of the
conductance lineshape.

CONDUCTANCE THROUGH A PERIODIC
ARRAY OF QUANTUM DOTS

We consider resonant tunneling through a QDC with
lattice constant a separated from the left and right QWs
by potential barriers (see Fig. 1). Within tunneling
Hamiltonian formalism [33], the system Hamiltonian is

H = Z Eoc;cj + Z Egcliacka + Z (Vﬁ‘cc;c;m + H.C.) ,
i ka

kayj

where Ey and c; (cj) are, respectively, the energy and

creation (annihilation) operator for QD states, £ and

c;fm (ko) are those for QW states with momentum k

(a = L, R stands for the left/right QW), and V&) is the
transition matrix element between QD and QW states.
We assume no direct tunneling between QQDs, and restrict
ourselves to the single-electron picture of transport due
to low probability of QD double occupancy. The zero-
temperature conductance through N QDs is [33]
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