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Nanostructured materials exhibit low thermal conductivity because of the additional scattering
due to phonon-boundary interactions. As these interactions are highly sensitive to the mean free path
(MFP) of phonons, MFP distributions in nanostructures can be dramatically distorted relative to
bulk. Here we calculate the MFP distribution in periodic nanoporous Si for different temperatures,
using the recently developed MFP-dependent Boltzmann Transport Equation. After analyzing the
relative contribution of each phonon branch to thermal transport in nanoporous Si, we find that at
room temperature optical phonons contribute 17% to heat transport, compared to 5% in bulk Si.
Interestingly, we observe a constant thermal conductivity over the range 200 K < T < 300 K. We
attribute this behavior to the ballistic transport of acoustic phonons with long intrinsic MFP and
the temperature dependence of the heat capacity. Our findings, which are in qualitative agreement
with the temperature trend of thermal conductivities measured in nanoporous Si-based systems,
shed light on the origin of the reduction of thermal conductivity in nanostructured materials, and
demonstrate the necessity of multiscale heat transport engineering, in which the bulk material and
geometry are optimized concurrently.
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I. INTRODUCTION

The quest for high-efficiency thermoelectric materials may be advanced by using the ability of nanostructures to
suppress heat transport by several orders of magnitude with respect to bulk without degrading electrical transport
significantly.1 This phenomenon is based on the fact that phonon mean free paths (MFPs) are generally larger than
electron MFPs; consequently, heat transport exhibits stronger size effects. The extent of the suppression of phonon
transport depends on the ratio between the intrinsic phonon MFP and the characteristic length of the nanostructure,
Lc. This ratio is known as the Knudsen number (Kn). When Lc is much smaller than MFP, i.e. for small Kn, phonon
interactions with boundaries are negligible. In this regime, heat transport reduction is only due to geometrical effects,
such as material removal in nanoporous materials, while phonon-boundary scattering is minimal. Therefore, heat
transport is dominated by intrinsic scattering. On the other hand, for high Kn, scattering is dominated by phonon-
boundary interactions. Within this regime, the phonon MFPs in the nanostructure approach Lc and the phonons
are considered to travel ballistically. The intermediate regime (i.e. Kn ≈ 1) is often referred to as the quasi-ballistic
regime.

This analysis implicitly assumes single-MFP materials, but in most materials, there is a wide distribution of phonon
MFPs, which in some cases span several orders of magnitude. For example, first-principles calculations for Si show that
about half of the heat is carried by phonons with MFPs larger than 1 µm.2 Recent experimental measurements showing
a reduction in thermal conductivity of Si membranes with microscale pores3 provide support for these computational
results. Together, they suggest that an accurate analysis of thermal transport in nanostructures should include the
actual bulk MFP distribution.

In bulk Si, the optical and acoustic phonons have very different MFP distributions.2 Optical phonons have relatively
low MFPs because their dispersion curves are flatter than those of acoustic phonons, which by contrast have large
MFPs. This effect has important consequences on thermal conductivity. First-principles calculations show that optical
phonons contribute only 5% to the total thermal conductivity of Si, while the remaining 95% is dominated by acoustic
phonons.2 As a result, optical phonons are often neglected when calculating nanoscale heat transport in Si. However,
in nanostructures, heat carried by optical phonons is only slightly reduced while acoustic phonons can be strongly
suppressed, making the two contributions comparable.

We recall that the phonon MFP is given by Λ = |v|τ , where v is the phonon group velocity for a given polarization
and frequency and τ is the scattering time. In bulk materials, the scattering events comprise several mechanisms, in-
cluding three-phonon scattering, phonon-isotope scattering, electron-phonon scattering and interaction with defects.4

The scattering rates related to these events, which we define here as intrinsic events, are typically assumed indepen-
dent and summed up following the Matthiessen’s rule. In presence of boundaries, phonon MFPs are modified for two
reasons. First, phonon-boundary interactions modify the total scattering time. Secondly, coherent effects may affect
phonon group velocities via the change in the dispersion curves. As we will see later in the text, our study focuses on
nanoporous-Si (np-Si) with periodicity of about 10 nm. The importance of coherence effects in such systems has been
assessed in another recent study, where Monte Carlo simulations were used to compute thermal transport in np-Si
membranes.5 Their conclusion was, however, that incoherent effects can fully explain the remarkably low thermal
conductivity in these systems.6 On the other side, a recent work attempts to quantify the effect of coherence effects in
periodic structures at room temperature.7 In this study, the coherence regime is accounted for band-folding effects and
a hybrid coherent/incoherent model was able to partially explain the remarkably low thermal conductivities obtained
in their samples. It is clear, therefore, that the influence of phonon phase-conserving phenomena in such structures
is still under debate. In this work, however, we focus on assessing the temperature dependence of heat transport in
nanostructures when heat reduction is dominated by incoherent effects. For this reason, we will compare our results
qualitatively with experiments on disordered pores, where coherence effects unlikely take place.

A simple model for phonon-boundary scattering was devised by Casimir in 1938.8 Within the Casimir approach,
the scattering rates related to phonon-boundary scattering are considered independent from the intrinsic mechanisms
and the MFP induced by such events is the same as the material’s characteristic length. Using the Casimir model,
Tian et al.9 concluded that optical phonons in Si nanowires contribute over 20% to the total thermal conductivity
at room temperature. When dealing with complex boundaries, the Casimir approach fails for two reasons.10 First, it
assumes that the characteristic length is known a priori, while in most materials with complex geometry this quantity
is unknown. Secondly, a portion of the MFP distribution may lie in the diffusive or quasi-ballistic regime.

In this work, we use the MFP-dependent Boltzmann Transport Equation (MFP-BTE)11 to calculate heat transport
in nanoporous materials and provide the relative contribution of each phonon branch to the thermal conductivity as a
function of temperature. The use of the BTE enables treatment of complex geometries with a good level of predictive
power. We focus on np-Si with aligned pores with square cross section and a periodicity of 10 nm, and consider the
temperature range 100 K−300 K. We show that at room temperature the thermal conductivity in np-Si is suppressed
by more than one order of magnitude with respect to bulk Si, with longitudinal optical (LO) phonons contributing
more than 15% to the total heat transport. This result is in agreement with the previous qualitative discussion above.
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Further, we find that the thermal conductivity of np-Si exhibits a plateau over the temperature range 200 K− 300 K.
We demonstrate that this arises from two effects: first, as most of the acoustic phonons travel ballistically because
of their large Kn, their MFPs in np-Si are constrained by the characteristic length of the material, and therefore
are not reduced by increasing temperature. Second, in this temperature range, the heat carried by optical phonons
changes weakly with temperature in bulk Si itself, inducing similar behavior to np-Si. By revealing the microscopic
mechanisms leading to the reduction in heat conduction, our findings may enable new approaches for engineering
high-efficiency thermoelectric devices.

II. METHOD

To compute the reduction of heat transport in nanostructures, we employ the concept of the “suppression function,”
S(Λ), which, in the context of the steady-state BTE, defines the departure from diffusive transport in terms of the
MFP distribution function:11

S(Λ) =
Knano
p (Λ)

Kbulk
p (Λ)

, (1)

where Kbulk
p (Λ) and Knano

p (Λ) are the bulk MFP distributions for branch p in bulk Si and np-Si, respectively. Within
the relaxation time approximation, the effective thermal conductivity for each phonon branch can be written as

κnano
p =

∫ ∞
0

Knano
p (Λ)dΛ =

∫ ∞
0

Kbulk
p (Λ)S(Λ)dΛ. (2)

The total thermal conductivity is then given by κnano =
∑
p κ

nano
p . In the case of purely diffusive transport, the

suppression function is MFP-independent and Eq. 2 leads to the diffusive thermal conductivity κnano = κbulkg, where
g is a function that depends only on the material geometry and κbulk is the bulk thermal conductivity. The bulk MFP
distribution at different temperatures can be obtained either experimentally through MFP reconstruction techniques12

or computationally. In this work we adopt a first-principles approach based on Density Functional Theory (DFT)

and the linearized BTE.2,13 The bulk MFP distribution is computed via Kbulk
p (Λ) =

∂αbulk
p (Λ)

∂Λ , where αbulk
p (Λ) is the

cumulative thermal conductivity. We recall that the cumulative thermal conductivity is the thermal conductivity of
phonons whose MFPs are below a given Λ.14,15 We note that αbulk

p (Λ) does not include boundary scattering. For this

reason, in rest of this study, we will refer to such a result as bulk-BTE. Details on the calculation of αbulk
p (Λ) can be

found in the Appendix.
The suppression function can be obtained in different ways, depending on the system and the required accuracy.

In some cases, such in nanowires and thin films, S(Λ) can be obtained analytically within a reasonable level of
accuracy.16 However, most of the analytical derivations are based on the “gray” approximation, which assumes phonon
dispersions described by a single group velocity. Furthermore, formulae for the suppression function are limited to
simple geometries. In this work we therefore employ a recently developed formulation of the BTE that requires only
the bulk MFP distribution Kbulk

p (Λ).11 This method, MFP-BTE, has the same accuracy as the the commonly used
frequency-dependent approach (FD-BTE), provided that we consider small applied temperature gradients, ∆T/L,
where ∆T is the applied difference of temperature and L is the distance between the hot and cold contact. The key
equation of the MFP-BTE is the integro-differential equation

Λs · ∇T̃ (Λ) + T̃ (Λ) = γ
∑
p

∫ ∞
0

Kbulk
p (Λ′)

Λ′2
< T̃ (Λ′) > dΛ′, (3)

where T̃ (r, s,Λ) represents the local temperature of phonons travelling along the direction s, depending only
on the MFP Λ.11 In Eq. 3, s is the phonon propagation direction and γ a material property given by γ =[∑

p

∫∞
0

Kbulk
p (Λ)

Λ2 dΛ

]−1

= 2.2739 × 10−17 KW−1m3 for Si.11 The notation < x > stands for an angular aver-

age. The right-hand-side of Eq. 3 is the effective lattice temperature TL(r),11 which does not depend on Λ explicitly,

and provides an average of the local energy of phonons. We note that both T̃ and TL are normalized to ∆T . Once
Eq. 3 is solved, the suppression function can be computed via the following integral over either the cold or hot contact:

S(Λ) =
3L

ΛA

∫
Γ

< T̃ s · ns > dS, (4)
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where Γ is the surface of the contact having normal ns and area A. The MFP-BTE is solved for a set of 30 MFPs,
uniformly spaced on a logarithmic scale from about 0.1 nm to 100 µm. The spatial discretization is achieved by means
of the finite-volume approach whereas the solid angle is discretized by means of the discrete-ordinate method.17

Our simulation domain consists of a square unit cell, containing one square pore, to which a difference of temperature
∆T = 1 K is applied. Periodic boundary conditions are applied to both the longitudinal and transverse direction of
heat flux, nf , which is enforced by applying a difference of temperature ∆T along nf , i.e.

T̃ (Λ, s, r)− T̃ (Λ, s, r + P) = (n · nf )∆T, (5)

where r runs along the faces of the unit cell, n is the normal to the boundary pointing outside the domain and P is the
periodicity vector. It is straightforward to show that along the direction perpendicular to the heat flux, no difference
of temperature is imposed. We assume that we have an infinite material along the directions orthogonal to the pore
plane. To properly set the boundary conditions along the pores’ surface, we note that the zero-flux conditions can be
achieved by imposing that the total phonon flux incoming to the surface (P−) be equal to the outgoing flux (P+).

Within the MFP-BTE formalism, the phonon flux along a direction s is given by J(Λ, s, r) = sT̃ (Λ, s, r)Kbulk
p /Λ.11

The condition P+ = P− is then obtained by

∑
p

∫ ∞
0

∫
s·n<0

Kbulk
p (Λ)

Λ
T̃−s · ndΩdΛ =

∑
p

∫ ∞
0

∫
s·n≥0

Kbulk
p (Λ)

Λ
T̃+s · ndΩdΛ (6)

where s · n < 0 and s · n ≥ 0 stand for phonons incident to the surface and phonons leaving the surface, respectively.
Here we assume that the surface scatters phonons diffusively so that phonons leaving the surface do not bear memory
of their direction and MFP before scattering with the surface. Practically, the scattered phonons are uniformly
distributed in angular space. In Eq. 6, the term dΩ is the infinitesimal solid angle. This condition is met by setting
T̃− to the following average:18

T̃− = P+

[∑
p

∫ ∞
0

∫
s·n<0

Kbulk
p (Λ)

Λ
s · ndΩdΛ

]−1

(7)

We note that this assumption must be used with caution, especially at very low temperatures, as some phonons can
be reflected specularly depending on the roughness of the boundary. However, in this work we assume surfaces have
sufficient roughness that specularity effects can be neglected in the range of temperature considered. Details on the
surface specularity effects on thermal transport can be found in Ref. 19.

III. RESULTS AND DISCUSSION

We have first applied the MFP-BTE to bulk Si, obtaining exactly the same results as those from bulk-BTE, as
there are no boundaries scattering phonons. The simulation domain for the np-Si cases has periodicity L = 10 nm
and porosities φ = 0.05 and φ = 0.25. We recall that the porosity is the amount of material removal, which, for
square pores, is simply φ = L2

p/L
2, with Lp being the size of the pore. The heat flow is enforced along the in-plane

direction. In Fig. 1-a, the magnitude of the thermal flux for φ = 0.25 is shown. As expected, heat travels mostly
in the regions between pores along the direction of the imposed gradient of temperature. The value for the thermal
conductivities at room temperature for bulk Si is about 143 Wm−1K−1, whereas for the np-Si cases it is only 15.0
Wm−1K−1 and 5.65 Wm−1K−1 for porosities φ = 0.05 and φ = 0.25, respectively. This reduction of one order of
magnitude with respect to bulk is in quantitative agreement with previous studies,11,20 and demonstrates the high
ability of nanostructures to tune thermal transport.

We now analyze the relative contribution of each phonon branch to the total thermal conductivity. Fig. 2-a shows the
normalized cumulative thermal conductivity for bulk Si at T = 300 K. As expected, acoustic phonons contribute most
to the thermal conductivity, while optical phonon contributions are small. In particular, the two transverse acoustic
(TA) branches and longitudinal acoustic (LA) branch contribute approximately one third each to the total thermal
conductivity. The figure also shows that the LO phonons contribute 5% to thermal transport, while the transverse
optical (TO) phonons have a negligible contribution. However, the LO phonons start to contribute significantly in
np-Si, reaching 16% and 17% of the total thermal conductivity for the cases with φ = 0.05 (Fig. 2-b) and φ = 0.25
(Fig. 2-c), respectively. The TO contribution remains negligible.

The roughly four-fold increase in the relative contribution of LO phonons can be better understood by analyzing
the MFP distributions in relation to Lc. According to Ref. 20, in porous materials Lc can be defined as the pore-pore
distance in the direction orthogonal to thermal flux. The pore-pore distance in an array of square aligned pores is
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FIG. 1. a) Periodically aligned square pores (with porosity φ = 0.25 and Lc = 10 nm), subjected to a difference of temperature.
The magnitude of thermal flux, which is normalized to its maximum value, shows that phonons travel mostly in areas between
pores along the direction of the temperature gradient. b) Thermal conductivity versus temperature for bulk Si and np-Si with
porosities φ = 0.25 and φ = 0.05.

related to the porosity via Lc = L(1−
√
φ), which leads to the values 5 nm and 7.76 nm for φ = 0.25 and φ = 0.05,

respectively. The characteristic length dictates the transport regime of phonons with a given MFP. Figure 2-a shows
that the maximum MFP of LO phonons contributing to the thermal conductivity is around 20 nm, while acoustic
phonons have MFPs up to 10 µm. As a result, optical phonons, which generally have MFPs similar to Lc, are less
suppressed than acoustic phonons. For φ = 0.25, the characteristic length is even smaller and, consequently, the
relative LO phonon contribution increases (up to 17%, as shown in Fig. 2-c).

When Lc is larger (e.g. 100 nm), the effect of the nanostructure on optical phonons becomes negligible, but most
acoustic phonons are still suppressed. In this case, it is possible to have a “reversal effect,” in which optical phonons
are the main contribution to the thermal conductivity. For macroscopic samples, e.g. Lc > 100 µm, the thermal
conductivity approaches the diffusive value predicted by the Fourier model and the MFP distributions are restored
to the bulk ones times the geometric factor, g, that depends only on the geometry. For aligned porous materials, the
geometry factor can be well approximated by g = 1−φ

1+φ .21 This approximation was validated against finite-element

modeling of diffusive heat conduction.19

This finding has important consequences for optimizing nanostructured thermoelectric materials. Typically, the
bulk thermoelectric materials and the geometry of the nanostructure are optimized separately.1 Here we suggest that
both macro and nanoscale have to be considered concurrently. The following example helps clarify this point. Let
us assume that we have two “gray” materials, A and B, with average MFPs ΛA and ΛB , respectively. We further
assume that the thermal conductivity of material B is larger than that of material A. We consider a nanostructure
with ΛA � Lc � ΛB . Material B will undergo strong phonon suppression whereas heat transport in material A
will still be in the diffusive regime. It is clear therefore that, with a sufficiently large ΛB , material B exhibits lower
thermal conductivity than that of material A, making it more appealing for thermoelectrics. Similar conclusions can
be drawn for non-gray materials.

We now investigate the temperature dependence of thermal conductivity in the range 200 K < T < 300 K. All
the results shown below refer to the case with φ = 0.25. Similar conclusions can be drawn for the case with φ = 0.05.
As shown in Fig. 1, the thermal conductivity of np-Si exhibits little change in this temperature range, whereas it
decreases as 1/T due to Umklapp scattering in bulk Si.2,13 This behavior arises from the very large Kn of acoustic
phonons, which therefore travel ballistically. According to Fig. 3, when the temperature approaches 200 K, the bulk
MFP of high-Kn acoustic phonons becomes even longer, further enhancing the ballistic effect. In np-Si, the MFP of
these phonons are constrained to be equal to Lc. In this regime, heat transport is governed by heat capacity, which,
according to Fig. 4-a does not change significantly. On the other side, the MFP distribution in the region around
Lc, which is shaded in Fig. 3, remains essentially unaltered over this temperature range. As a result, the thermal
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FIG. 2. Cumulative thermal conductivity at T = 300 K for a) bulk Si, b) np-Si with porosity φ = 0.05 and c) np-Si with
porosity φ = 0.25. All the values are normalized to the total thermal conductivity. The largest MFP contributing to heat
transport for a given branch can been seen from the point where the relative cumulative thermal conductivity becomes flat.

conductivity of acoustic phonons remains essentially constant, as shown in Fig. 4-c.

Optical phonons, on the other hand, have MFPs close to Lc, and, in principle, their temperature dependence in
bulk Si would affect their MFPs in np-Si. However, according to Fig. 4-b, in this temperature range, heat carried by
LO phonons in bulk Si does not change significantly with temperature because the increase in heat capacity, which
is shown in Fig. 4-a, is compensated by the decrease in scattering time.2 Consequently, heat carried by LO phonons
in np-Si does not change with temperature. The heat carried by TO phonons is negligible in both bulk Si and np-Si.
These combined effects lead to the observed insensitivity of thermal conductivity to temperature in np-Si.

Finally, as the temperature decreases in the range 100 K < T < 200 K, heat carried by LO phonons in bulk Si starts
to decrease, because heat capacity starts to decrease more rapidly toward lower temperatures, as shown in Fig. 4-a.
As a consequence, their relative contributions to the thermal conductivity in np-Si decreases as well. According to
Fig. 4-c, the decrease in the thermal conductivity is partially also due to the decrease of heat carried by the TA2

branch because its heat capacity, as shown in Fig. 4-a, increases more rapidly with temperature than the other acoustic
branches.

Although our predictions are based on np-Si, they can be applied to any Si nanostructures, as long as the feature
size is comparable with the heat-carrying phonon MFPs. Notable examples belonging to this category include silicon
nanowires22, nanobridges23 and thin films.24

Our results are consistent with the in-plane thermal conductivity measured over a wide temperature range for
np-Si samples in which randomly arranged pores were produced by electrochemical etching 25. The sample with
φ = 0.89 comprises crystallites with an average dimension of 4.5 nm, similar to Lc of our structure with φ = 0.25.
Although the obtained temperature dependence is consistent with that from our work, the numerical value of the
thermal conductivity is two orders of magnitudes lower. The reasons for such a discrepancy are explained as follows.
First,according to the formula for geometric factor g above, a porosity of φ = 0.89 is roughly ten times more effective
in decreasing diffusive heat transport with respect to the case with φ = 0.25. We note that although the formula for
g has been derived for periodic pores, it can still serve as good estimator for disordered np-Si. The second reason is
that in our system scattering is only from pore walls, whereas in the experiment there is also scattering by crystallite
boundaries. Lastly, the experimental samples have a range of crystallize sizes, and while the average matches our
characteristic size, in fact the thermal conductivity is most affected by the smallest crystallites, thus making it smaller
than expected from the average. For these reasons, the experiment finds a lower overall thermal conductivity but
similar temperature dependence to our np-Si results, reflecting the fact that both systems have a characteristic length
much smaller than heat-carrying phonon MFPs.
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FIG. 3. MFP distributions of bulk Si at a) T = 300 K and b) T = 200 K. In both panels, the shaded area shows the region of
MFPs up to ten times the characteristic size of the nanostructure in case of φ = 0.25. At low temperatures, the contribution
to the thermal conductivity from long-MFP acoustic phonons rises. However, the ballistic regime constrains these MFPs to be
equal to Lc.
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FIG. 4. a) Specific heat capacity for different phonon branches and temperatures. Contribution of each phonon branch to the
total thermal conductivity for b) bulk Si and c) np-Si for φ = 0.25. In the range 200 K < T < 300 K, the contributions to
the thermal conductivity from each phonon branch in np-Si do not change significantly with temperature. Within the ballistic
regime, the temperature dependence of thermal conductivity is mainly dictated by the heat capacity.
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IV. CONCLUSIONS

Using the MFP-BTE, we calculate the temperature dependence of thermal conductivity in np-Si. We quantify the
contribution of optical phonons to thermal conductivity in np-Si with periodicity 10 nm, which at room temperature
amounts to 17%. We also predict constant thermal conductivity over the range 200 K < T < 300 K, in qualitative
agreement with experiments. Our findings help further the understanding and manipulation of heat transport at the
nanoscale for low thermal-conductivity applications such as thermoelectrics. We have also showed that the effectiveness
of nanostructuring in reducing thermal transport does not depend directly on the bulk thermal conductivity but rather
on the bulk MFP distributions of phonon branches. Consequently, our approach suggests that the search for better
nanostructured thermoelectric materials has to involve the shape of the bulk cumulative thermal conductivity in
relation with the material’s geometry. In other words, the material optimization has to be done at both macro and
nanoscale concurrently.

V. APPENDIX: BULK THERMAL CONDUCTIVITY

We define the cumulative thermal conductivity in the bulk material, along the x-direction, as

αpbulk(Λ) =
1

(2π)3

∫
B.Z.

Cp(q)v2
p,x(q)τ bulkp (q) Θ(Λ− τbulk

p (q)|vp,x(q)|)d3q (8)

where Cp(q) is the heat capacity, vp,x(q) is the group velocity along the x-direction, τbulk
p (q) is the three-phonon

scattering time, and Θ is the Heaviside function. We recall that the cumulative thermal conductivity is the thermal
conductivity of phonons whose MFPs are below a given Λ.14 All the quantities appearing in Eq. 8 are taken from Ref. 2
and are not reported here for the sake of simplicity. The phonon dispersion curves and scattering times are obtained
by means of harmonic and anharmonic force constants, which are extracted from DFT. The system’s relaxation times
are computed by using a uniform reciprocal space grid of 24 × 24 × 24 points, harmonic force constants up to 5th

neighbors and cubic force constants up to first neighbors. We use the Local Density Approximation (LDA) from
Perdew and Zunger26 with a energy cutoff of 40 Ryd. The obtained bulk thermal conductivity is in good agreement
with experimental data.27
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