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Abstract

Phonon boundary scattering is typically treated using the Fuchs-Sondheimer theory, which as-

sumes that phonons are thermalized to the local temperature at the boundary. However, whether

such a thermalization process actually occurs and its effect on thermal transport remains unclear.

Here we examine thermal transport along thin films with both thermalizing and non-thermalizing

walls by solving the spectral Boltzmann transport equation (BTE) for steady state and transient

transport. We find that in steady state, the thermal transport is governed by the Fuchs-Sondheimer

theory and is insensitive to whether the boundaries are thermalizing or not. In contrast, under

transient conditions, the thermal decay rates are significantly different for thermalizing and non-

thermalizing walls. We also show that, for transient transport, the thermalizing boundary condition

is unphysical due to violation of heat flux conservation at the boundaries. Our results provide in-

sights into the boundary scattering process of thermal phonons over a range of heating length scales

that are useful for interpreting thermal measurements on nanostructures.
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I. INTRODUCTION

Engineering the thermal conductivity of nanoscale materials has been a topic of con-

siderable research interest over the past two decades [1]. While applications such as GaN

transistors [2, 3] and light emitting diodes (LEDs) [4] require high thermal conductivity sub-

strates to dissipate heat, the performance of thermoelectric and thermal insulation devices

can be significantly enhanced by reducing their thermal conductivity [5, 6]. In many of these

applications, phonon boundary scattering is the dominant resistance to heat flow, making

the detailed understanding of this process essential for advancing applications.

Phonon boundary scattering has been studied extensively both theoretically and exper-

imentally. The thermal conductivity reduction due to boundary scattering of phonons is

conventionally treated using the Fuchs-Sondheimer theory, which was first derived for elec-

tron boundary scattering independently by Fuchs [7] and Reuter and Sondheimer [8] and was

later extended to phonon boundary scattering in several works [9–11]. Fuchs-Sondheimer

theory is widely used to interpret experiments but makes an important assumption that the

diffusely scattered part of the phonon spectrum at a partially specular wall is at a local

thermal equilibrium with the wall - the thermalizing boundary condition. The thermalizing

boundary condition is also a key assumption in the diffuse boundary scattering limit of

Casimir's theory [12].

Several computational works [11, 13–16] have studied the reduction in thermal con-

ductivity due to phonon boundary scattering in nanostructures by solving the phonon

Boltzmann transport equation (BTE). These works have considered either thermalizing

or non-thermalizing boundaries but have never compared the effect of these two different

boundary conditions on the thermal conductivity of nanostructures. Several experimental

works have also studied the reduction in thermal conductivity of nanomaterials such as

nanowires [17–19], thin films [10, 20, 21] and nanopatterned structures [22] due to phonon

boundary scattering. These works have used the Fuchs-Sondheimer theory to interpret their

measurements. However, it is not clear if the assumptions made in the Fuchs-Sondheimer
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theory are necessarily applicable for these experiments. In fact, an analysis of the effect of

the key assumption made in the Fuchs-Sondheimer theory, that the walls are thermalizing,

has never been investigated due to the challenges involved in solving the Boltzmann trans-

port equation (BTE) for non-thermalizing walls.

Here, we examine the role of thermalizing and non-thermalizing walls in heat conduction

along thin films by solving the spectral phonon BTE for a suspended thin film under steady

state and transient transport conditions. We find that steady state transport is insensitive

to whether phonons are thermalized or not at the boundaries and that Fuchs-Sondheimer

theory accurately describes thermal transport along the thin film. In the case of transient

transport, we find that the decay rates of the initial temperature distribution (defined by

γ = 4π2keff/(Cλ
2), where C is the volumetric specific heat of the material and keff is the

effective thermal conductivity of the thin film at a heating length scale λ/2) are significantly

different for thermalizing and non-thermalizing walls and that Fuchs-Sondheimer theory

accurately predicts the thermal conductivity only when the thermal transport is diffusive.

Moreover, under transient transport conditions, we find that phonons cannot undergo ther-

malization at the boundaries in general due to the violation of heat flux conservation. Our

results provide insights into the boundary scattering process of thermal phonons that are

useful for interpreting thermal measurements on nanostructures.

II. MODELING

A. Boltzmann Transport Equation

We begin our analysis by considering the two dimensional spectral transient BTE under

the relaxation time approximation for an isotropic crystal, given by,

∂gω
∂t

+ µvω
∂gω
∂z

+ vω
√

1− µ2 cosφ
∂gω
∂x

= −gω − go (T )

τω
+
Qω

4π
(1)

Here, gω is the phonon energy distribution function, ω is the phonon frequency, vω is the

phonon group velocity, τω is the phonon relaxation time, x and z are the spatial coordinates,
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t is the time variable, g0 (T ) is the equilibrium phonon distribution function at a deviational

temperature T = T0 +∆T from an equilibrium temperature T0, µ is the direction cosine, φ is

the azimuthal angle and Qω is the rate of volumetric heat generation for each phonon mode.

As the in-plane (x) direction is infinite in extent, we require boundary conditions only for

the cross-plane (z) direction. In the traditional Fuchs-Sondheimer problem, the boundary

conditions enforce that the diffusely scattered phonons are thermalized while also allowing

some phonons to be specularly reflected. Here, we generalize these boundary conditions to

allow for the possibility of both partial thermalization and partial specularity as:

For µ ∈ (0, 1] ,

g+
ω (0, µ, φ) = pωg

−
ω (0,−µ, φ)

+ (1− pω)

(
σω
Cω∆T (z = 0)

4π
− (1− σω)

π

∫ 2π

0

∫ 0

−1

g−ω (0, µ′, φ′)µ′dµ′dφ′

)
For µ ∈ [−1, 0) ,

g−ω (d, µ, φ) = pωg
+
ω (d,−µ, φ)

+ (1− pω)

(
σω
Cω∆T (z = d)

4π
+

(1− σω)

π

∫ 2π

0

∫ 1

0

g+
ω (d, µ′, φ′)µ′dµ′dφ′

)
(2)

where, d is the thickness in the cross-plane direction, g+
ω (0, µ, φ) is the phonon distribution

leaving the cross-plane wall at z = 0, g−ω (0, µ, φ) is the phonon distribution approaching the

cross-plane wall at z = 0, g+
ω (d, µ, φ) is the phonon distribution approaching the cross-plane

wall at z = d, g−ω (d, µ, φ) is the phonon distribution leaving the cross-plane wall at z = d,

Cω is the specific heat of a phonon mode with frequency ω, pω and σω are the phonon spec-

ularity parameter and the thermalization parameter for the thin film walls respectively. The

specularity parameter represents the fraction of specularly scattered phonons at the bound-

aries and the thermalization parameter represents the fraction of the phonon distribution

that is absorbed and reemitted at the local equilibrium temperature of the thin film walls.

For simplicity, we ignore mode conversion for non-thermalizing boundary condition in our

analysis. The simulation domain and the boundary conditions (equation 2) are pictorially

represented in figure 1.
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FIG. 1. Spatial distribution of the temperature profile and pictorial representation of the boundary

conditions (equation 2) used in this work. The thin film is assumed to be infinite in extent along

the in-plane (x) direction and has a finite thickness (d) in the cross-plane (z) direction. For steady

state transport calculations, the temperature gradient exists only in the in-plane (x) direction. For

transient transport, the initial temperature distribution is an in-plane sinusoidal distribution with

a period λ, but can develop a cross-plane temperature gradient at later times. In the case of non-

thermalizing wall, the diffusely reflected component gdiff of the distribution function is isotropic

but away from local thermal equilibrium at the boundary while for the thermalizing wall, gdiff is

equal to the local equilibrium distribution function g0. For both thermalizing and non-thermalizing

boundary conditions, the specular reflection component (gspec) has its direction reversed compared

to the incoming distribution gin and is also away from the local thermal equilibrium. In our work,

we consider either thermalizing or non-thermalizing boundary conditions for both walls of the thin

films at a time.

The unknown quantities in this problem are the phonon distribution function (gω (t, x, z, µ, φ))

and the deviational temperature distribution (∆T (t, x, z)). They are related to each other
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through the energy conservation requirement,∫ ωm

ω=0

∫ 1

µ=−1

∫ 2π

φ=0

[
gω
τω
− 1

4π

Cω
τω

∆T

]
dφdµdω = 0 (3)

Due to the high dimensionality of the BTE, analytical or semi-analytical solutions are only

available in literature for either semi-infinite domains [23–25] or domains with simple bound-

ary and transport conditions [26] or with several approximations [27]. For nanostructures

with physically realistic boundaries, several numerical solutions of the BTE have been re-

ported [11, 16, 28]. However, computationally efficient analytical or semi-analytical solutions

for the in-plane heat conduction along even simple unpatterned films [10, 20] are unavail-

able. To overcome this problem, we solve the BTE analytically for steady state transport

(section II B) and semi-analytically for transient transport along thin films in the transient

grating (TG) experiment [10, 20] (section II C).

B. Steady State Heat Conduction in Thin Films

In this section, we extend the Fuchs-Sondheimer relation for thermal conductivity sup-

pression due to phonon boundary scattering to the general boundary conditions described

in equation 2. To simulate steady state transport, Qω is set to 0 in the BTE (equation 1).

Furthermore, we assume that a one-dimensional temperature gradient exists along the thin

film (figure 1) and ∂gω
∂x
≈ ∂g0

ω

∂x
. These assumptions are consistent with the conditions under

which typical steady state thermal transport measurements are conducted on nanostruc-

tures [19, 29, 30]. Under these assumptions, the BTE is simplified as,

vωµ
∂gω
∂z

+ vω
√

1− µ2 cosφ
∂g0

ω

∂x
= −gω − g

0
ω

τω
(4)

For steady state transport, it is convenient to solve the BTE in terms of the deviation from

equilibrium distribution (ḡω = gω − g0
ω (∆T (x))). In this case, the BTE transforms into,

∂ḡω
∂z

+
ḡω
µΛω

= −cosφ
√

1− µ2

µ

∂g0
ω

∂x
(5)
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The boundary conditions (equation 2) for ḡω now become,

For µ ∈ (0, 1],

ḡ+
ω (0, µ, φ) = pωḡ

−
ω (0,−µ, φ)− (1− pω) (1− σω)

π

∫ 2π

0

∫ 0

−1

ḡ−ω (0, µ′, φ)µ′dµ′dφ

For µ ∈ [−1, 0),

ḡ−ω (d, µ, φ) = pωḡ
+
ω (d,−µ, φ) +

(1− pω) (1− σω)

π

∫ 2π

0

∫ 1

0

ḡ+
ω (d, µ′, φ)µ′dµ′dφ

(6)

The general solution of the BTE (equation 5) along with the boundary conditions (equa-

tion 6) is given by,

ḡ+
ω (z, µ, φ) = −Λω cosφ

√
1− µ2

∂g0
ω

∂x

1−
exp

(
− z
µΛω

)
(1− pω)

1− pω exp
(
− d
µΛω

)


+
(1− pω) (1− σω)

[
A+
ω + pω exp

(
− d
µΛω

)
A−ω

]
1− p2

ω exp
(
− 2d
µΛω

) exp

(
− z

µΛω

)
︸ ︷︷ ︸

I

ḡ−ω (z,−µ, φ) = −Λω cosφ
√

1− µ2
∂g0

ω

∂x

1−
exp

(
− (d−z)

µΛω

)
(1− pω)

1− pω exp
(
− d
µΛω

)


+
(1− pω) (1− σω)

[
A−ω + pω exp

(
− d
µΛω

)
A+
ω

]
1− p2

ω exp
(
− 2d
µΛω

) exp

(
−(d− z)

µΛω

)
︸ ︷︷ ︸

II

(7)

for µ ∈ (0, 1]. Here, the terms A+
ω and A−ω only depend on phonon frequency. In particular,

they are independent of the angular coordinates µ and φ. The derivation of the final expres-

sions for ḡ+
ω (z, µ, φ) and ḡ−ω (z,−µ, φ) (equation 7) is shown in section I of the supplementary

material. The expression for the in-plane (x direction) spectral heat flux is given by,

qx,ω =
1

d

∫ d

z=0

∫ 1

µ=−1

∫ 2π

φ=0

vxḡω
D (ω)

4π
dφdµdz

= −

[
1

3
CωvωΛω

]
∂T

∂x

1− 3 (1− pω) Λω

2d

∫ 1

0

(
µ− µ3

) 1− exp
(
− d
µΛω

)
1− pω exp

(
− d
µΛω

)dµ

 (8)
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since the diffuse contributions to the distribution functions ḡ+
ω (z, µ, φ) and ḡ−ω (z,−µ, φ)

(terms I and II in equation 7) are independent of the azimuthal angle φ and integrate out

to 0. Comparing equation 8 with the expression for heat flux from the Fourier’s law, the

spectral effective thermal conductivity of the thin film is obtained as a product of the bulk

spectral thermal conductivity and the well-known Fuchs-Sondheimer reduction factor due to

phonon boundary scattering given by,

kω,eff (d) =

[
1

3
CωvωΛω

]
︸ ︷︷ ︸

kω,bulk

1− 3 (1− pω) Λω

2d

∫ 1

0

(
µ− µ3

) 1− exp
(
− d
µΛω

)
1− pω exp

(
− d
µΛω

)dµ


︸ ︷︷ ︸

Fuchs−Sondheimer reduction factor−F(Λω
d )

(9)

It is interesting to observe from equation 9 that the spectral effective thermal conductivity is

independent of the thermalization parameter σω even though a general boundary condition

(equation 2) has been used in this derivation. Thus, the steady state thermal conductivity

suppression due to boundary scattering is only influenced by the relative extent of specular

and diffuse scattering (parameterized by the specularity parameter pω) and does not depend

on the type of diffuse scattering process (parameterized by the thermalization parameter

σω). We explicitly demonstrate this result using numerical simulations in section III A.

C. Transient Heat Conduction in Thin Films

In this section, we solve the BTE (equation 1) for transient thermal transport along a

thin film. The initial temperature profile considered in this work is identical to that of the

TG experiment, which has been used extensively to study heat conduction in suspended thin

films [10, 20]. In the TG experiment, the thermal transport properties of the sample are

obtained by observing the transient decay of a one-dimensional impulsive sinusoidal temper-

ature grating on the sample at different grating periods. In the large grating period limit

of heat diffusion, the temporal decay is a single exponential. Since the initial temperature

distribution is an infinite one-dimensional sinusoid in the x direction, the temperature dis-

tribution remains spatially sinusoidal at all later times. Therefore, each wave vector q in the
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spatially Fourier transformed BTE directly corresponds to a unique grating period λ = 2π/q.

Unlike in the steady state case, here we solve for the absolute phonon distribution gω rather

than the deviation ḡω = gω − g0
ω. Furthermore, the BTE is solved in the frequency domain

(η) by Fourier transforming equation 1 in the time variable t. With these transformations,

the BTE reduces to,

iηGω + µvω
∂Gω

∂z
+ iqvω

√
1− µ2 cosφ Gω = −Gω

τω
+

1

4π

Cω
τω

∆T̄ +
Q̄ω

4π
(10)

where, the substitution G0 (T ) = 1
4π
Cω∆T̄ has been made and Gω represents the spatial (in-

plane axis) and temporal Fourier transform of absolute phonon energy distribution function

gω.

The outline of the solution methodology for equation 10 is as follows. The general solution

is given by,

For µ ∈ (0, 1] , G+
ω (z, µ, φ) = G+

ω (0, µ, φ) exp

(
−
γFS
µφ

µΛω

z

)

+
exp

(
− γFS

µφ

µΛω
z
)

4πµΛω

∫ z

0

(
Cω∆T̄ + Q̄ωτω

)
exp

(
γFS
µφ

µΛω

z′

)
dz′

For µ ∈ [−1, 0) , G−ω (z, µ, φ) = G−ω (d, µ, φ) exp

(
γFS
µφ

µΛω

(d− z)

)

−
exp

(
− γFS

µφ

µΛω
z
)

4πµΛω

∫ d

z

(
Cω∆T̄ + Q̄ωτω

)
exp

(
γFS
µφ

µΛω

z′

)
dz′

where, γFS
µφ = (1 + iητω) + iΛωq

√
1− µ2 cosφ

(11)

Here, G+
ω (0, µ, φ) and G−ω (d, µ, φ) are determined by solving the boundary conditions (equa-

tion 2) with the following procedure. First, the angular integrals in the boundary conditions

are discretized using Gauss quadrature, which results in the following set of linear equations

in the variables G+
ω (0, µi, φj) and G−ω (d,−µi, φj) for every {µi, φj} ∈ (0, 1]× [0, 2π] doublet
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from the discretization.

G+
ω (0, µi, φj) = pωG

−
ω (d,−µi, φj) exp

(
−
γFS
ij

µiΛω

d

)

+
pω

4πµiΛω

∫ d

0

(
Cω∆T̄ + ¯̃Qωτω

)
exp

(
−
γFS
ij

µiΛω

z′

)
dz′

+ (1− pω)

[
σω
Cω∆T̄ (z = 0)

4π

+
(1− σω)

π

∑
i′j′

G−ω
(
d,−µ′i, φ′j

)
exp

(
−
γFS
i′j′

µ′iΛω

d

)
µ′iwµ′iwφ′j

+
(1− σω)

4π2Λω

∑
i′j′

∫ d

0

(
Cω∆T̄ + ¯̃Qωτω

)
exp

(
−
γFS
i′j′

µ′iΛω

z′

)
dz′wµ′iwφ′j

]

G−ω (d,−µi, φj) = pωG
+
ω (0, µi, φj) exp

(
−
γFS
ij

µiΛω

d

)

+
pω

4πµiΛω

∫ d

0

(
Cω∆T̄ + ¯̃Qωτω

)
exp

(
−
γFS
ij

µiΛω

(d− z′)

)
dz′

+ (1− pω)

[
σω
Cω∆T̄ (z = d)

4π

+
(1− σω)

π

∑
i′j′

G+
ω

(
0, µ′i, φ

′
j

)
exp

(
−
γFS
i′j′

µ′iΛω

d

)
µ′iwµ′iwφ′j

+
(1− σω)

4π2Λω

∑
i′j′

∫ d

0

(
Cω∆T̄ + ¯̃Qωτω

)
exp

(
−
γFS
i′j′

µ′iΛω

(d− z′)

)
dz′wµ′iwφ′j

]
(12)

To obtain equation 12, we have substituted the general BTE solution into the boundary

conditions to eliminate G−ω (0, µ, φ) and G+
ω (d, µ, φ). Therefore, the only unknowns in the

set of linear equations (equation 12) are G+
ω (0, µ, φ) and G−ω (d, µ, φ). By bringing the terms

containing G+
ω (0, µ, φ) and G−ω (d, µ, φ) to the left hand side, equation 12 can be written in

a concise matrix form: U+
kk′ U

−
kk′

D+
kk′ D

−
kk′

 G+
ω (0, µi, φj)

G−ω (d,−µi, φj)

 =

 ¯̃c+
ω (0, µi′ , φj′)

¯̃c−ω (d, µi′ , φj′)

 (13)

where, ¯̃c+
ω (0, µi′ , φj′) and ¯̃c−ω (d, µi′ , φj′) are analytical functions of the unknown temperature
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distribution function ∆T̄ obtained from the right hand side of equation 12. The solution to

this set of linear equations can be represented as:

 G+
ω (0, µi, φj)

G−ω (d,−µi, φj)

 =

 T+
kk′ T

−
kk′

B+
kk′ B

−
kk′

 ¯̃c+
ω (0, µi′ , φj′)

¯̃c−ω (d, µi′ , φj′)

 (14)

where k is the index which represents the doublet {µi, φj}. The details of the simplification

of the boundary conditions and the evaluation of T+
kk′ , T

−
kk′ , B

+
kk′ , B

−
kk′ ,

¯̃c+
ω (0, µi′ , φj′) and

¯̃c−ω (d, µi′ , φj′) are described in section II A of the supplementary material. To close the

problem, the expressions for G+
ω (z, µ, φ) and G−ω (z, µ, φ) (equation 11) and the boundary

conditions (equation 14) are substituted into the energy conservation equation (equation 3)

and an integral equation in the variable z for ∆T̄ (z) at each η and q is obtained, which has

the form:

∆T̄ (z) = h (z) + f (z) +

∫ d

0

[
K (z′, z) ∆T̄ (z′)

]
dz′ (15)

where the functional form of the inhomogeneous parts f (z), h (z) and the kernel K (z′, z) are

described in section II B of the supplementary material. This integral equation (equation 15)

is then solved using the method of degenerate kernels for each η and q to obtain the frequency

domain solution ∆T̄ (z) for every η and q. The details of the degenerate kernel calculations

are described in section II C of the supplementary material. Finally, the solution ∆T̄ (z) is

substituted into equation 11 to obtain expressions for Gω (z, µ, φ) and also the thickness-
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averaged in-plane heat flux jx,ω given by,

jx,ω =
1

4πd

∫ d

0

∫ 2π

0

∫ 1

−1

Gωvω
√

1− µ2 cosφdµdφdz

=
1

4π

∑
ij

µiKndω
γFS
ij

∑
i′j′

[ (
T+
kk′ +B+

kk′

)
¯̃c+
ω (0, µi′ , φj′)

+
(
T−kk′ +B−kk′

)
¯̃c−ω (d, µi′ , φj′)

](
1− exp

(
−

γFS
ij

µiKndω

))

+
2

4πγFS
ij

(
Cω

t0
2

+ Q̄ωτω

)[
1− µiKndω

γFS
ij

(
1− exp

(
−

γFS
ij

µiKndω

))]

−
Cω

(
1− exp

(
− γFS

ij

µiKndω

))
4πµiKndω

N∑
m=1

tm
1 + (−1)m

m2π2 +
(

γFS
ij

µiKndω

)2

vω√1− µ2
iwµiwφj

(16)

where ti’s are the Fourier coefficients for the expansion of ∆T̄ in the cross-plane (z) direction

and Kndω = Λω/d is the Knudsen number. The conventional approach to describe the thermal

transport properties of the thin film is to compare the expression for heat flux from the BTE

solution with that expected for heat diffusion, as was done in equation 8 for the steady state

Fuchs-Sondheimer theory. However, in practice, equation 16 is not easily reduced into the

form of Fourier’s law. To overcome this problem, the following strategy is adopted. The solu-

tion of the Fourier heat equation to a one-dimensional heat conduction with an instantaneous

spatially sinusoidal heat source is a simple exponential decay ∆T (t, x = 0) = ∆T0 exp (−γt),

where the decay rate (γ) is related to the effective thermal conductivity (keff) and the vol-

umetric heat capacity of the solid (C) as, γ = keffq
2/C. Therefore, to obtain the effective

thermal conductivity from our calculations, we perform an inverse Fourier transform of the

temperature distribution averaged in the z-direction (
∫ d

0
∆T̄ (η, q, z) dz) with respect to the

variable η, fit the resulting solution to an exponentially decaying function ∆T0 exp (−γt)

and extract the thermal conductivity from the fit. If the fitting fails, the transport is in the

strongly quasi-ballistic regime [25] and we conclude that the Fourier law description of the

heat conduction with an effective thermal conductivity keff is not valid for that case.
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The semi-analytical solution of the BTE for transient transport presented in this work

is computationally very efficient, taking only a few seconds on a single computer processor,

while the direct Monte Carlo simulation of the BTE takes up to a few days on a high-

performance computer cluster executed in parallel mode. Moreover, it is computationally

challenging to extract the heat flux distribution directly from the Monte Carlo solution,

while in our semi-analytical solution, the evaluation of heat flux distribution is a single step

process (equation 16).

III. RESULTS & DISCUSSION

We now present the results of the calculations for free-standing silicon thin films. To

obtain these results, we use an isotropic dispersion and intrinsic scattering rates calculated

using a Gaussian kernel-based regression [31] from the ab-initio phonon properties of iso-

topically pure silicon. The first principles phonon properties are calculated by J. Carrete &

N. Mingo using ShengBTE [32, 33] and Phonopy [34] from the inter-atomic force constants

calculated using VASP [35–38].

A. Steady State Transport in Thin Films

1. Comparison with Monte Carlo Solution

We first examine steady state heat condition along thin films. Figures 2 (a) and (b) show

the cross-plane distribution of the in-plane heat flux and the effective thermal conductivity

respectively, for steady state transport through thin films computed using a Monte Carlo

technique and the analytical solution from this work. The details of the Monte Carlo tech-

nique used in this work is described in section III of the the supplementary material. For both

fully diffuse and partially specular boundary conditions, the heat flux distribution and the

effective thermal conductivity of the thin film show excellent agreement between the Monte

Carlo solutions and the analytical solution from this work over a range of temperatures and
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film thicknesses. In particular, both solutions predict identical heat flux and thermal con-

ductivities for thermalizing and non-thermalizing boundary conditions at the thin film walls

since the steady state transport is insensitive to the type of diffuse boundary scattering of

phonons, as discussed in section II B. This observation can be generalized further to state

that in steady state thermal transport experiments on thin films, it is impossible to distin-

guish between non-thermalizing and any type of inelastic diffuse scattering of phonons at

boundaries.

2. Effective Phonon Mean Free Path

We also examine the effective mean free path (MFP) of phonons within the thin film for

various film thicknesses. An approach to estimate the effective phonon mean free path in

thin films is by using the Matthiessen’s rule [39] given by,

1

Λω,eff

=
1

Λω,bulk

+
1− pω
1 + pω

1

d
(17)

where d is the thickness of the thin film and Λω,bulk is the intrinsic phonon mean free

path in the bulk material. Although the Matthiessen’s rule has been used in the past

for computational [40] and experimental [41] investigations of phonon boundary scatter-

ing, the mathematical rigor of such an expression for effective mean free path is unclear.

On the other hand, the effective mean free path of phonons in thin films can also be

determined rigorously from the Fuchs-Sondheimer factor (F (Λω/d)), since by definition,

F (Λω/d) = kω,eff/kω,bulk = Λω,eff/Λω,bulk. Figure 2 (c) shows the comparison of the nor-

malized effective phonon mean free paths obtained from the Fuchs-Sondheimer factor and

Matthiessen’s rule for different film thicknesses. Matthiessen’s rule underpredicts phonon

MFPs comparable to the thickness of the film. Even for phonons with intrinsic mean free

path an order of magnitude smaller than the film thickness, Matthiessen’s rule predicts a

shorter effective phonon mean free path compared to the predictions of the Fuchs-Sondheimer

factor from the rigorous solution of the BTE, which is consistent with the findings of another

work based on Monte Carlo sampling [42]. This result highlights the importance of using the

rigorous BTE solution to estimate the extent of diffuse phonon boundary scattering even in
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FIG. 2. (a) Comparison of the cross-plane distribution of the in-plane steady state heat flux

between analytical and Monte Carlo solutions of the BTE at 300 K and film thickness of 100 nm

for different boundary conditions. The geometry of the thin film and the coordinate axes used

in this work are shown in the inset. (b) Comparison of the steady state thermal conductivity

between analytical and Monte Carlo solutions of the BTE at different temperatures and thin film

thicknesses. For both (a) and (b), the Monte Carlo solutions are identical for thermalizing and non-

thermalizing boundary scattering and agree well with the analytical solution derived in this work

for both fully diffuse and partially specular boundary conditions (RMS 0.1 nm). For the partially

specular boundary condition, the specularity parameter (pω) is calculated from Ziman’s specularity

model [39] for a surface RMS roughness of 0.1 nm. (c) Effective MFPs of phonons computed using

the Matthiessen’s rule (MR) and the Fuchs-Sondheimer (FS) theory for different film thicknesses

and fully diffuse boundary scattering. Matthiessen’s rule underpredicts the effective phonon MFPs

in thin films compared to the Fuchs-Sondheimer theory, which is a rigorous BTE solution.

simple nanostructures.

B. Transient Transport in Thin Films

We now examine transient thermal conduction along thin films observed in the TG ex-

periment. To perform this calculation, we solve the integral equation (equation 15) semi-
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analytically using the same isotropic phonon properties used in steady state transport calcu-

lations. The source term in the BTE (equation 10) is assumed to follow a thermal distribution

given by Qω = Cω∆T0, where Cω is the volumetric specific heat of the phonon mode.

1. Difference between Thermalizing and Non-thermalizing Boundary Scattering

Figure 3 (a) shows a comparison of the time traces calculated from the degenerate kernel

method and the Monte Carlo method for a grating period of 20 µm. To obtain the thickness

averaged time traces using the degenerate kernels method, we used 6 Gauss quadrature

points for µ variable, 10 Gauss quadrature points for φ variable, and 1 term in the Fourier

cosine expansion to achieve a convergence threshold of 10−6 on the relative change in the

solution for an increase in the number of discretization points. The transient decays are in

good agreement between the degenerate kernel and the Monte Carlo solutions over a wide

range of temperatures and different boundary conditions. As expected, the solution for the

specular boundary condition results in a faster transient decay than the diffuse boundary

conditions since a specularly reflecting wall does not resist the flow of heat in the in-plane

direction. However, the transient decay for the non-thermalizing diffuse boundary condition

is faster that the thermalizing diffuse boundary condition, indicating that the thermalizing

boundary condition offers higher resistance to heat flow than the non-thermalizing diffuse

scattering.

This observation is also evident from figure 3 (b) which shows the thermal conductivi-

ties obtained by fitting the time traces to an exponential decay for different temperatures,

different grating periods and different boundary conditions. The observed thermal conduc-

tivity of the thin film decreases with decreasing grating period due to the breakdown of the

Fourier’s law of heat conduction and the onset of quasiballistic thermal transport [25] when

the grating period is comparable to phonon MFPs. Consistent with the findings from the

time traces, the thermal conductivity of the thin film with specular walls is higher than that

of the thin film with diffuse walls. Moreover, even for very long grating periods compared to

phonon MFPs, where the thermal transport is diffusive and obeys Fourier’s law, the thermal
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conductivity of thin film with non-thermalizing diffuse walls is higher than that of the thin

films with thermalizing diffuse walls. This observation is in stark contrast with the steady

state condition, where there was no difference in thermal conductivity between thermalizing

and non-thermalizing boundary conditions.

FIG. 3. (a) Comparison between time traces from the Monte Carlo (colored noisy lines) and

the degenerate kernels solutions (black lines) of the BTE for a grating period of 20 µm at 500

K. (b) Comparison of the thermal conductivity predictions from the Monte Carlo (symbols) and

the degenerate kernels solutions (black lines) of the BTE for different temperatures and grating

periods. For both (a) and (b), the Monte Carlo solutions and the BTE solutions from this work

are in very good agreement. (c) Plot showing the difference between the incoming and outgoing

heat flux normalized by the incoming heat flux at the thin film boundaries as a function of the

temporal frequency normalized by the maximum temporal frequency at which the simulations were

performed (ηmax). Specular and non-thermalizing diffuse boundary conditions conserve heat flux to

numerical precision while thermalizing diffuse boundary condition violates heat flux conservation

at the film wall under quasiballistic (T = 100 K, grating period = 1 µm) and diffusive (T = 500

K, grating period = 1000 µm) transport regimes.
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2. Validity of the Thermalizing and Non-thermalizing Boundary Conditions

At this point, it is important to investigate the validity of the thermalizing and non-

thermalizing boundary condition for the thin film walls. The non-thermalizing boundary

scattering condition can be naturally derived from the conservation of heat flux at the

boundary [27]. However, the thermalizing boundary condition is not derived from the heat

flux conservation at the boundary. Therefore, in the absence of any external scattering

mechanisms, phonons cannot reach the local thermal equilibrium and simultaneously con-

serve heat flux at the boundary in general, due to the following reason.

Consider a boundary at z = 0 separating a solid at z > 0 from vacuum in z < 0. The

incoming phonon distribution at z = 0 is g−ω (0, µ, φ), which is a general phonon distribu-

tion, not necessarily at the local thermal equilibrium. According to the formulation of the

thermalizing diffuse boundary condition, the outgoing phonon distribution, in the case of

fully diffuse boundary scattering, is given by g0 (∆T (z = 0)) ≈ Cω
4π

∆T (z = 0), where Cω is

the heat capacity of the phonon mode and ∆T (z = 0) is the local equilibrium temperature

at the boundary z = 0. Since the boundary separates a solid from vacuum, all of the heat

flux incident on the boundary has to be reflected back into the solid. This constraint on the

incident and reflected heat flux at the thermalizing diffuse boundary leads to the following

relation for ∆T (z = 0).

∆T (z = 0) = 4

∑
p

∫ ωmax

ω=0

∫ 0

µ=−1

∫ 2π

φ=0
g−ω (0, µ, φ) vωµdµdφdω∑

p

∫ ωmax

ω=0
Cωvωdω

(18)

Additionally, energy conservation (equation 3) has to be satisfied at all locations including

the boundaries in the absence of any other source or sink of phonons. This requirement

further adds constraints on ∆T (z = 0) through the relation,

∆T (z = 0) = 2

∑
p

∫ ωmax

ω=0

∫ 0

µ=−1

∫ 2π

φ=0
g−ω (0,µ,φ)

τω
dµdφdω∑

p

∫ ωmax

ω=0
Cω
τω

dω
(19)

For the assumptions made in the Fuchs-Sondheimer theory under steady state transport con-

ditions, the integrals of the incoming and the outgoing distribution functions (equation 7)
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over the azimuthal angle φ are 0. Therefore, there is no heat flux towards or away from the

boundary and the constraints on ∆T (z = 0) (given by equations 18 and 19) are trivially

satisfied. However, in general, these two expressions for ∆T (z = 0) are not equal, indicating

phonons cannot thermalize at the boundaries in the absence of any external source or sink

of phonons.

Figure 3 (c) shows the difference between the incoming and outgoing total heat flux at

the thin film wall (z = 0) as a function of the temporal frequency η. The specular and

non-thermalizing diffuse boundary conditions satisfy heat flux conservation to numerical

precision. However, there is a significant difference between the incoming and the outgoing

heat flux for the thermalizing diffuse boundary condition under quasiballistic (T = 100

K, grating period = 1 µm) and diffusive (T = 500 K, grating period = 1000 µm) transport

regimes. Nevertheless, it is still possible for inelastic (but not thermalizing) diffuse boundary

scattering to take place as long as the following conditions for heat flux are met at the thin

film boundaries:∑
p

∫ ωmax

ω=0

g+
ω (z = 0) vωdω = − 1

π

∑
p

∫ ωmax

ω=0

∫ 0

µ=−1

∫ 2π

φ=0

g−ω (z = 0, µ, φ) vωµdµdφdω

∑
p

∫ ωmax

ω=0

g−ω (z = d) vωdω =
1

π

∑
p

∫ ωmax

ω=0

∫ 1

µ=0

∫ 2π

φ=0

g+
ω (z = d, µ, φ) vωµdµdφdω

3. Comparison with Fuchs-Sondheimer Theory at Different Grating Periods

We now examine if the Fuchs-Sondheimer theory can be used to explain transient heat

conduction in the TG experiment along thin films. If the suppression in thermal conduc-

tivity of thin films due to phonon boundary scattering and quasiballistic effects in the TG

experiment are assumed to be independent, Fuchs-Sondheimer theory can be employed to

describe quasiballistic transport in the TG experiment using the following expression:

k (q, d) =
∑
p

∫ ωmax

0

F

(
pω,

Λω

d

)
S (qΛω)

[
1

3
CωvωΛω

]
dω (20)

where F
(
pω,

Λω
d

)
is the Fuchs-Sondheimer suppression function from the steady state trans-

port condition and S (qΛω) is the quasiballistic suppression function [25] for a grating period
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q. Recent works [20] have used a similar expression for the thermal conductivity suppression

of the form:

k (q, d) =
∑
p

∫ ωmax

0

F

(
pω,

Λω

d

)
S

(
qΛωF

(
pω,

Λω

d

))[
1

3
CωvωΛω

]
dω (21)

Henceforth, equation 20 is referred to as FS I and equation 21 is referred to as FS II.

Figure 4 (a) shows the comparison of thermal conductivity obtained by fitting the BTE

solution for temperature decay, and thermal conductivities from FS I and FS II models for

fully diffuse boundary scattering. We only consider non-thermalizing diffuse scattering as

we have shown that thermalizing diffuse scattering is unphysical for the problem considered

here. At very long grating periods, when the transport is primarily diffusive, the thermal

conductivity predictions from FS I and FS II match well with the BTE solution from this

work, as expected. However, at the shorter grating periods comparable to phonon MFPs,

where the transport is in the quasiballistic regime, FS I underpredicts the thin film thermal

conductivity while FS II overpredicts it.

This observation is also evident from the magnitude of the suppression function plotted at

η = 0 for fully diffuse boundary conditions shown in figures 4 (b) and (c). The suppression

function for the thin film geometry is defined as

S (qΛω,Λω/d, ητω, pω) =
κω,BTE

κω,Fourier

(22)

where, κω = jx,ω/∆T̄ is the conductance per phonon mode and jx,ω is the thickness-averaged

in-plane heat flux defined in equation 16. In figures 4 (b) and 4 (c), the magnitude of the

suppression function at η = 0 is plotted against phonon MFP non-dimensionalized with

respect to the grating period q. The suppression functions from the complete BTE solution

and the models FS I and FS II are identical at high temperatures and long grating periods,

when the transport is primarily diffusive, governed by the Fourier’s law of heat conduction.

However, for low temperatures and short grating periods, FS I underpredicts the heat flux

and FS II overpredicts the heat flux carried by phonons with very long MFPs. Moreover,

the difference between the models FS I and FS II, and the BTE solution is smaller for

thinner films indicating that enhanced boundary scattering in thinner films delays the onset
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of quasiballistic heat conduction. These observations emphasize the importance of using the

complete BTE solution to accurately investigate boundary scattering when grating periods

are comparable to phonon MFPs.

FIG. 4. Comparison of the thermal conductivity (a) and the suppression functions ((b) and (c))

calculated from the models FS I, FS II and by solving the BTE for non-thermalizing diffuse bound-

ary conditions at different temperatures, grating periods (λ) and film thicknesses. In figures (b)

and (c), the symbols correspond to the degenerate kernel solution, the solid lines correspond to

FS I model and the dashed solid lines correspond to FS II model. For very thin films and long

grating periods, the models FS I and FS II are in good agreement with the BTE predictions. For

thicker films and shorter grating periods, FS I underpredicts and FS II overpredicts the thermal

conductivity at short grating periods (a) and the contribution of phonons with long MFP ((b) and

(c)) compared to the complete BTE solution.

IV. CONCLUSION

We have studied the effect of thermalizing and non-thermalizing boundary scattering of

phonons in steady state and transient heat conduction along thin films by solving the BTE

using analytical and computationally efficient semi-analytical techniques. From our analysis,

we reach the following conclusions. First, under steady state transport conditions, we find
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that the thermal transport is governed by the Fuchs-Sondheimer theory and is insensitive

to whether the boundaries are thermalizing or not. In contrast, under transient conditions,

the decay rates are significantly different for thermalizing and non-thermalizing walls and

the Fuchs-Sondheimer theory is only applicable in the heat diffusion regime. We also show

that, for transient transport, the thermalizing wall boundary condition is unphysical due to

violation of heat flux conservation. Our results provide insights into the boundary scattering

process of thermal phonons over a wide range of heating length scales that are useful for

interpreting thermal measurements on nanostructures.
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