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A scaled quantum computer with donor spins in silicon would benefit from a viable semiconductor framework
and a strong inherent decoupling of the qubits from the noisy environment. Coupling neighbouring spins via the
natural exchange interaction according to current designs requires gate control structures with extremely small
length scales. We present a silicon architecture where bismuth donors with long coherence times are coupled
to electrons that can shuttle between adjacent quantum dots, thus relaxing the pitch requirements and allowing
space between donors for classical control devices. An adiabatic SWAP operation within each donor/dot pair
solves the scalability issues intrinsic to exchange-based two-qubit gates, as it does not rely on sub-nanometer
precision in donor placement and is robust against noise in the control fields. We use this SWAP together with
well established global microwave Rabi pulses and parallel electron shuttling to construct a surface code that
needs minimal, feasible local control.

I. INTRODUCTION

In 1998 Loss and DiVincenzo1 proposed a scheme
for universal quantum computing with electron spins in
semiconductor quantum dots, and Kane2 presented an
alternative scheme with donor spin qubits. These blueprints
have inspired a great deal of progress in controlling bulk donor
spins3,4 and single- or few-spin donor devices5–8, as well as
dot-based quantum devices9–12, but their full implementation
still faces significant fundamental hurdles. In a large quantum
register the delicate conditional-phase gate built between
two neighbouring spins by their natural exchange interaction
requires tight inter-qubit distances2, high precision local
tuning of each coupling, and extreme robustness to noise13.

Here we show in detail how bismuth donors in silicon
can be combined with quantum dots to implement a scaled
surface code processor architecture that implements effective
error correction14 and can tolerate inaccuracy in local spin
placement and tuning. The more relaxed length scales typical
of quantum dots and the possibility of moving electrons short
distances between them9,10,12,15,16 allow neighbouring donor
spins to be implanted at least ∼ 1 µm apart while retaining
all their specific advantages17–19: the pitch requirements
are thus much more attainable than the ∼ 20 nm donor
distance required by Kane’s scheme, and allow space for
enough gates to adequately control wave functions in quantum
dots. Scalability is further improved by using the exchange
interaction between the electron spins of a donor/dot pair
only to swap quantum states through adiabatic transfer, with
no need to build the fragile two-qubit dynamical phases
common to both of the previous proposals. This adiabatic
SWAP is shown to be insensitive to large variations in donor
to dot coupling, and provides the building block for the
surface code CNOT that is used for error diagnosis: by
construction, this pivotal operation does not need individual
voltage tuning or precise timing, and is very robust against
electric and magnetic noise. Our proposal is completed
by microwave-driven spin rotations of the Bi donors,
whose fidelities have recently surpassed the fault-tolerance

threshold20. These fields are applied globally, while the
only site-selectivity required is provided by feasible local
electric control: thus parallel processing of a large number
of two-qubit gates in silicon becomes more viable.

We improve donor-only architectures with respect to i)
the enlarged distance between donors, that could even be
increased to several microns if more area is required for
readout and classical control circuitry, with little increase in
decoherence; ii) the robustness of the CNOT gate to the strong
variations in the magnitude of the exchange coupling as the
donor separation changes21. At the same time, a dot-only
architecture would miss the crucial benefits inherent to the
nuclear spin, which we show allows for selective donor/dot
entanglement within the SWAP that we envision, thanks to
the electron-nuclear spin hybridization achieved by the natural
hyperfine interaction at the donor. The possibility of coupling
Zeeman-split dot and coherent donor states is exclusively
provided by Bismuth atoms that have a large enough nuclear
spin space (nuclear spin I= 9/2).

II. THE ARCHITECTURE AND THE PROTOCOL

In Fig. 1 we show an idealized diagram of a portion
of the structure we are suggesting. Here we assume
that the donors are incorporated below the quantum dots,
and the donor/dot interaction is controlled by a back gate,
as in the devices suggested by Schenkel et al.22. This
vertical donor-dot configuration allows the dots to have
quite simple gate structures and easily modeled electrostatic
fields. All electrodes in the upper layer of Fig. 1 act as
3-phase charge-coupled device (CCD) gates23, moving all
dot electrons in unison – this requires only five independent
gate signals: two for horizontal shuttling, two for vertical
coupling, and one for dot confinement. The underlying
back gates are individually addressable to determine which
qubits are involved in each surface code cycle. Crucially,
the robustness of the adiabatic SWAP to donor-dot coupling
strength variations implies that the back gates can all
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FIG. 1: Schematic diagram of the donor-dot array structure. The
combination of top gates and holes in the depletion gate form the
quantum dots, half of which are occupied with data qubit electrons.
These electrons can be moved to dots positioned above the donor
measurement qubits, each with a back gate to control the exchange
coupling between the donor electron and the electron in the
quantum dot.

be switched between two standard voltages, rather than
requiring individual tuning at every site. Other layouts
have technological advantages and disadvantages which are
discussed in Appendix D.

The surface code architecture we will consider consists
of a square planar array of qubits as described in detail
by Fowler et al.14. We consider the data qubits (DQ) to
be the spin of the electrons in the quantum dots, and the
measurement qubits (MQ) to be states of the donor electron
and nuclear spins (coupled through the hyperfine interaction).
There are four basic operations which the qubit array must
perform for error correction: (1) movement of the entire
array of DQ to each of the four adjacent MQ in turn, (2)
addressable CNOT operations with the DQ as control and the
MQ as targets, (3) measuring the MQ, and (4) applying global
Hadamard gates to the DQ. This protocol allows the diagnosis
of phase-flip and bit-flip errors accumulating in the DQ array.
The movement operation (1) would utilize the surface gates
described above. When electrons are released from their
quantum dots and allowed to move in a two-dimensional layer,
it is known that their spin coherence is significantly degraded,
but still of the order of microseconds15. If the period of
the donor-dot array is of order a micron, and the electrons
are moved at 106 cm/s (about 500 mK electron energy in
Si), the time to transport the electrons is only about 100 ps.
The error per qubit accumulated during the electron motion
is < 10−4, less than that which can be expected from gate
operations. For operation (3) we assume the ability to measure
the spin state of individual donors. Accurate measurement of
electron and nuclear spins of single donors in Si has recently
been demonstrated5,24 using spin-to-charge conversion via
electron tunnelling, though selective optical excitation with
relaxed donor positioning constraints may also be possible25.
The tunnelling measurements were performed by coupling a
single-electron-transistor (SET) to a donor implanted within
a 90 × 90 nm2 region5,24. For this style of donor readout the
SET would be integrated with the bottom gate and the size of

the readout structures would be well within the micron pitch
of our proposed architecture. The Hadamard operation (4)
will use a global microwave field. Such operations can be
performed with a fidelity better than 99.6%11.

The main obstacle to the implementation of a surface code
is thus performing the addressable CNOT gate between MQ
and DQ, which we now construct using adiabatic transfer
swaps based on the exchange coupling between the donor and
its paired dot electron (see Fig. 1). We start with a detailed
description of the Hamiltonian of the pair and focus on the
selection rules induced by the hyperfine-coupled nuclear spin
on the exchange-coupled electron states of the donor and the
dot.

III. THE LOGICAL HILBERT SPACE

The Hilbert space spanned by the tensor combinations of
the states of the donor nuclear spin I = 9/2, the donor
electron spin Sdonor = 1/2 and the dot electron spin Sdot =
1/2 is 40-dimensional, and is governed by the Hamiltonian

H = γeB0 ·Sdonor−γnB0 ·I+AS·I+γeB0 ·Sdot+JSdonor ·Sdot,
(1)

where B0 is the applied dc magnetic field, A is the hyperfine
interaction between the nuclear spin I and the electron spin S,
γe =

geµB
~

= 27.997 GHz/T is the magnetic moment of the
electron, γn = 0.007 GHz/T is the nuclear magnetic moment,
and J is the exchange coupling between the two electron
spins. This can be increased from zero – when the electron
wavefunctions do not overlap much – by locally tuning the
back gate voltage as described above, causing the dot electron
density to be pulled towards the implanted impurity.

With J = 0, the transition energies of the uncoupled donor
and dot spin states as a function of applied magnetic field
are shown in Fig. 2(a). We will utilize the donor ‘clock
transitions’ whose frequency is independent of magnetic field
to first order4, and thus can cross the Zeeman quantum dot
transition (linear in magnetic field). Fig. 2(a) shows that the
dot transition crosses the lowest donor clock transition almost
exactly at its minimum, where the Bi spins have particularly
long coherence. This feature is unique to Bismuth among the
group V donors, since as we show in Appendix A it needs the
nuclear spin to be at least 9/2.

Electron spin resonance (ESR) measurements of the clock
transition near 7 GHz have shown that there are two nearly
degenerate components at every clock transition4,26. Since
they involve different initial and final states, these four
states can be used as two independent qubits residing on the
bismuth. It is convenient to label the upper of each pair of
transitions ‘forbidden’ and the lower ‘allowed’, even though
this terminology is properly descriptive only in the high field
limit (where Zeeman splitting is much larger than hyperfine
energy).

We thus focus in our scheme on a combination of three
qubits, which are shown schematically in Fig. 2(b). The
first (left) is the electron spin in the dot, and given the name
‘Dot’ qubit. With the magnetic field held near the 5 GHz
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(a)
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FIG. 2: (a) Spin transition energies of neutral Si:Bi donors (color
curves) and an electron in a quantum dot in Si (black straight line)
as a function of magnetic field. Every donor curve represents two
transitions, one ‘allowed’ and one ‘forbidden’ in the high field
limit26, whose separation is not resolved in the figure. The dot and
donor transition energies cross at the 5 GHz clock transition of the
donor. The inset shows a calculation of the mixing between the
‘allowed’ and quantum dot transitions when the donor and dot are
exchange coupled. (b) Diagram of the transition energies of the
three qubits in a donor-dot structure. The dot qubit and the allowed
transition of the ESR qubit (|NMR〉 = |1〉) can be coupled by a
gate-controlled exchange interaction.

clock transition (B0 ≈ 0.185 T), the dot qubit can be driven
by conventional microwave ESR fields. The second qubit
consists of the donor states at the 5 GHz clock transition. In
the high-field limit this qubit would be simply an electron spin
on the donor, and thus we call it the ‘ESR’ qubit. The third
qubit is the coupled electron and nuclear states making up the
allowed versus the forbidden transitions. In the high field limit
this would just be a nuclear spin, and we call it the ‘NMR’
qubit. The transition energy of this qubit is about 0.74 GHz.
All three qubits can be driven with microwave fields.

The Hamiltonian in Eq. 1 with J = 0 can be diagonalized
with separable combinations of the following dot and donor
states: {|↓〉 , |↑〉}dot⊗|±,m〉donor, where the donor eigenstates
are written, using the notation |Szdonor, I

z〉, as27 (see Appendix
A for more details)

|±,m〉 = a±m| ± 1/2,m∓ 1/2〉+ b±m| ∓ 1/2,m± 1/2〉, (2)

withm = Szdonor+I
z being the sum of the electron and nuclear

spin projections on the quantization axis,

a±m =

{
cos(θm/2)

− sin(θm/2)
, b±m =

{
sin(θm/2)

cos(θm/2)
, (3)

and

θm = arctan

A
√
I(I + 1) + 1

4 −m2

(Am+B0γe +B0γn)

 , 0 ≤ θm < π.

(4)
The ‘allowed’ (A) pair and the ‘forbidden’ (F) pair of
donor/dot states that cross close to the sweet spot considered
here can be written, in the basis defined above, as

|1〉A = |↓〉dot ⊗ |+,−3〉donor ,
|2〉A = |↑〉dot ⊗ |−,−4〉donor ,
|1〉F = |↑〉dot ⊗ |−,−3〉donor ,
|2〉F = |↓〉dot ⊗ |+,−4〉donor .

(5)

that we enlarge to our computational basis (with subscripts
omitted for simplicity from now on)

|1〉 ≡ |000〉 = |↓〉 |−,−3〉 |5〉 ≡ |100〉 = |↑〉 |−,−3〉
|2〉 ≡ |001〉 = |↓〉 |−,−4〉 |6〉 ≡ |101〉 = |↑〉 |−,−4〉
|3〉 ≡ |010〉 = |↓〉 |+,−4〉 |7〉 ≡ |110〉 = |↑〉 |+,−4〉
|4〉 ≡ |011〉 = |↓〉 |+,−3〉 |8〉 ≡ |111〉 = |↑〉 |+,−3〉 .

(6)

When a nonzero exchange coupling between the dot
electron and the donor electron is turned on, the crossing
between |1〉A and |2〉A is avoided, as shown in the inset of
Fig. 2(a), while there is no avoided crossing between the
|1〉F and |2〉F states. Among all the states in Eq. 5, the
exchange interaction couples electron spin states with the
same Szdonor + Szdot projection, but the nuclear spin further
selects only the states with the same nuclear spin projection
to be coupled. Thus, as it is evident from combining Eqs. 5
and 2, A〈1|JSdonor · Sdot|2〉A 6= 0, while F 〈1|JSdonor ·
Sdot|2〉F = 0.

As a consequence, if we sweep the magnetic field
through the donor/dot degeneracy point in Fig. 2(a) and
at the same time pulse the donor/dot exchange coupling,
the nuclear state fundamentally determines the occurrence
of a population transfer between {|1〉A , |2〉A} and nothing
but phase accumulation between {|1〉F , |2〉F }. Within our
computational basis this represents a natural three-qubit
NMR-controlled SWAP operation (Fredkin gate28), where
states |4〉 and |6〉 (where the NMR qubit is in state ‘1’ ) are
SWAPped but states |3〉 and |5〉 (where the NMR qubit is in
state ‘0’ ) are not.

In the next section we will describe how this logical gate
can be combined with well established Rabi techniques to
realize the surface code CNOT, and describe the detailed
operations that complete a surface code cycle.
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IV. SURFACE CODE CYCLE

At the beginning of each cycle, we assume that the dots
contain the DQ and the |ESR〉 qubits have been initialized
in a |0〉 state, as e.g. described in Ref. 26. The transfer
gates bring the appropriate data electron to the quantum dot
situated above the donor. The magnetic field will be held
below that corresponding to the degeneracy of the dot and
donor transitions described above [Fig. 2(a)]. Pulsing the back
gate voltage below the donors selected for an operation turns
on an exchange coupling between the donor and the dot. As
shown in Fig. 3(a) and anticipated above, the magnetic field
is swept through the resulting avoided crossing to swap the
|101〉 and |011〉 states (linked by an allowed ESR transition),
but not the corresponding states with |NMR〉 = |0〉 (i.e. |100〉
and |010〉, linked by a forbidden ESR transition).

Crucially, we devise our operation to be adiabatic: in a
more detailed description included in the next section, we
will show that high gate fidelities can be thus achieved across
the wide range of J couplings expected from the non-exact
positioning of the implanted donors21, the details of the local
electric environment confining the quantum dots, and the
noise intrinsic to the control voltages13. The adiabaticity of
this site-selective SWAP, which we will call f, is maintained
if ~J̇ � ∆2

0: here, ∆0 corresponds to the initial energy
difference between the two states |101〉 and |011〉, which is
limited by the experimental ability to sweep the dc global
magnetic field B0. Larger magnetic field excursions would
give slower gates: We assume that 10 mT sweeps can be
realized within 1 µs. It has been demonstrated that the back
gate voltage could be switched by the required amount within
this time window29, leading to effective population transfer
within a realistic operational framework.

With the DQ swapped to the ESR states of the selected
donors by our operation f, microwaves can drive a transition
on the ESR qubits, conditioned on the state of the NMR
qubits. This conditional excitation ΠESR is nothing more
than pulsed Electron Nuclear Double Resonance (ENDOR)30.
These donor CNOT fields can be applied globally, since
those sites where the SWAP was not done will have their
ESR qubit initialized to |0〉, and the CNOT has no effect
– our surface code implementation does not need any local
magnetic field selectivity. The strong hyperfine mixing near
the clock transitions in Si:Bi allows the ENDOR transitions
to be driven through the electronic part of the states, and
thus can be as fast as conventional ESR pulses26. Following
the donor CNOT operation the exchange interaction can be
reestablished and the ESR qubit swapped back to the dot
electron: the overall result is a donor/dot CNOT with the
NMR qubit as control and Dot qubit as target. This gate can be
turned into the basic operation required to maintain the surface
code, i.e. a CNOT with the data qubit as control and the MQ
as target, via the application of four Hadamard gatesHi:

Surface code CNOT = HdotHNMRfΠESRf−1H−1
dotH

−1
NMR.

(7)
After each DQ has been moved to perform a surface code

CNOT with its four neighboring donors, the spin state of

those donors must be measured and reinitialized, and a similar
protocol (without the Hadamard gates in Eq. 7) performed for
the X stabilizer measurement.

The splitting between the allowed and forbidden transitions
is only about 2 MHz, while selectively exciting one and not
the other is a building block of the CNOT gate. Therefore,
if the difference in transition energy provides the only
selectivity, the pulses can be no shorter than about 250 ns
to avoid exciting the other transition. However, these two
transitions are excited by microwaves of opposite helicity, and
photon polarization can be used to excite them selectively with
short pulses31,32.

The protected quantum memory designed so far could be
readily endowed with defects and braiding, that allow the
definition of logical qubits within a surface code33. To
form a defect at any donor site the stabilizer operations are
blocked by not applying the voltage to that bottom gate: thus
the exchange interaction and SWAP is disabled. The other
quantum gates in Eq. 7 either only affect the donor qubits,
which are reset anyway by the measurement step, or are pairs
of Hadamard gates, which reduce to the identity.

V. ADDRESSABLE ADIABATIC DONOR/DOT SWAP

We now turn to the full characterization of the dynamics
that can lead to a robust operation f as sketched above:
we restrict ourselves to the basis of the four states
|2〉 , |6〉 , |4〉 , |8〉 defined in Eq. 6, which correspond to the
configuration with NMR qubit fixed to ‘1’, because of the
selection rules explained before.

As shown in Fig. 3(a), we propose initializing the dc
magnetic field at a point away from the anticrossing, where
the states are not mixed. This is a ‘quiet’ phase configuration
at a field of B0(−t0) = B∗

0 − ∆B0, where B∗
0 marks the

E4 − E6 degeneracy point and ∆B0 ≈ 5 mT. The field
is then swept through the anti crossing and beyond, up to
B0(+t0) = B∗

0 + ∆B0. The coil currents that generate the dc
magnetic field could heat the device unacceptably if the sweep
rate were too fast, thus we assume that a sweep of 10 mT
is attainable within a 2t0 ≈ 2 µs time interval. This is the
fundamental limitation on the speed of the proposed gate.

In the meantime, the exchange coupling is turned on
adiabatically from its quiet value J(−t0), that is much smaller
than the initial detuning |E4(−t0) − E6(−t0)| ≈ 140 MHz,
to some maximum Jmax, which is maintained at t = 0
when E4(0) = E6(0), and then back to the quiet stage [see
Fig. 3(a)]. In Appendix B we show that it is sufficient to
ramp the voltage up by about 10 mV to increase the exchange
coupling by three orders of magnitude for typical device
parameters. The qubit states at t = −t0 will adiabatically
follow the instantaneous eigenstates of the time-dependent
evolution, hence if the coupling is strong enough during
a sufficient interval of time, a strong population transfer
between the diabatic |4〉 and |6〉 states will take place.

More precisely, the time evolution operator induced by the
dynamics just outlined in the four-state basis above will lead
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to the block matrix
e
− i

~

t0∫
−t0

dtE2

0 0

0 e
− i

2~

t0∫
−t0

dt(E6+E4)

U t0−t0 0

0 0 e
− i

~

t0∫
−t0

dtE8


,

(8)
where the eigenergies of the corresponding eigenstates
defined in Eq. 6

E2(t) = E2−
−4(t)−B0(t)γe2 −

J(t)
4 cos θ−4(t),

E8(t) = E2+
−3(t) +B0(t)γe2 + J(t)

4 cos θ−3(t),

E6(t) = E2−
−4(t) +B0(t)γe2 −

J(t)
4 cos θ−4(t),

E4(t) = E2−
−3(t)−B0(t)γe2 −

J(t)
4 cos θ−3(t),

(9)

combine the energiesE2±
m of the isolated donor states in Eq. 2

(fully defined in Appendix A), the Zeeman energy of the dot
state and the appropriate exchange coupling. The two-state
transfer matrix U t0−t0 can be written as(

a(J ; t0) eiψ(J;t0)
√

1− a(J ; t0)2 eiφ(J;t0)

−
√

1− a(J ; t0)2 e−iφ(J;t0) a(J ; t0) e−iψ(J;t0)

)
,

(10)
where a is a real number, and ψ and φ are two real phases: the
functional dependence of the propagator on the time profile
of the exchange coupling and the duration t0 of the pulses
has been made explicit. As we calculate in the next section,
and show in Fig. 3(b), at any instant J(t) can change by at
least two orders of magnitude across all the parallel donor/dot
pairs, though it always has the same time dependent profile.
An adiabatic evolution where the exchange is pulsed slowly
with respect to the magnitude of the initial detuning, ~J̇(t)�
(140 MHz)2, allows us to achieve high population transfer
fidelities, i.e. to make a small enough, over this large range
of J couplings. This way, U t0−t0 resembles a SWAP operation
over the very wide range of parameters typical of the orbital
electron states in a scaled architecture.

More quantitavely, we have simulated the exact time
evolution of the system in the adiabatic regime just defined,
with ∆(t) = −∆0( tt0 ),−t0 ≤ t ≤ t0, t0 = 2 µs and
J(t) = J0(1 − exp[(|t| − t0)/σ]), where σ = 0.9 µs sets
a realistic timescale for tuning the back gate voltage. The
fidelities of population transfer 1−a2 as a function of different
donor/dot separations are shown in Fig. 3(b): fidelities higher
than 99.9%, thus within the 0.1% error rate per operation
desired for the surface code with a reasonable overhead14,
correspond to the green region of the plot. Thus almost all of
the donor/dot pairs addressed by a local exchange-tuning can
undergo a fault-tolerant operation within 2 µs. This fidelity
can thus be maintained with two orders of magnitude variation
of the donor-dot exchange coupling. This is a conservative
estimate of the calculated range of interactions that the pairs
could experience across an array like Fig. 1.

However, the realization of a Dot/NMR CNOT gate as
proposed in Eq. 7 would not follow immediately if the

Dot/ESR SWAP f were implemented by the time evolution
defined in Eqs. 8 and 10. The reason for such failure lies in the
presence of the J-dependent phase φ 6= 0, which implies that
the operator in Eq. 10 has entangling power: its action would
not be limited to SWAPping the quantum states involved. This
problem is solved by the sequence illustrated in Fig. 3(a), that
combines the time evolution in Eq. 10 with a ‘phase-erasing’
operation. The only extra ingredients required by this recipe
are selective Rabi resonant pulses that could be achieved with
high fidelity for µs gating times, followed by extra adiabatic
tuning sequences of magnetic field and back gate voltage. The
propagator of this updated sequence is, up to an irrelevant
multiplicative phase,

f =


e−

i
~ ξ 0 0 0

0 a eiθ −
√

1− a2 0

0
√

1− a2 a e−iθ 0

0 0 0 e−
i
~ ξ

 , (11)

where the phase φ has now disappeared, and ξ =
t0∫

−t0
dt(E2 +

E8 −E6 −E4). Straightforward matrix multiplication shows
that the complete sequence in Eq. 7, assuming for simplicity a
perfect Dot/ESR transfer (a = 0), leads to the following time
propagator in the complete basis of Eq. 6:

−i


I 0 0 0

0
0 1
1 0

0 0

0 0
0 1
1 0

0

0 0 0 I

 . (12)

This is seen to coincide with the desired surface code CNOT,
when restricted to the degrees of freedom that effectively host
the data and measurement qubits, namely the states with the
ESR qubit being initialized to ‘0’: |1〉 , |2〉 , |5〉 , |6〉. Crucially,
this form of the time propagator is retained within the surface
code error tolerance across almost all donor/dot pairs in a
realistic scaled donor/dot computer.

VI. STRONG VARIABILITY OF QUBIT COUPLINGS AND
SPLITTINGS WITHIN A SCALED ARCHITECTURE

Order-of-magnitude oscillations in J are expected as the
position of the donor changes with respect to the abrupt
heterointerface where the quantum dot is formed. This feature
is intrinsic to the silicon band structure21,34,35, and makes
high-fidelity hard to attain with the dynamical phase gates
proposed in donor-based quantum computers proposals2. In
Fig. 3(b) we show the results of our multi-valley effective
mass theory calculation of the exchange energy of a donor
and dot electron as a function of the distance from the
surface to the donor ion, assuming a field of 4 kV/cm is
confining the dot electron. This theoretical approach has
been introduced in Refs. 35,36, and the details of how it
has been adapted to the system considered here are given
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(a)

(b)

FIG. 3: (a) Complete CNOT sequence between the Dot and the
NMR qubit, that includes performing resonant Hadamard (π/2) and
π Rabi pulses on the different qubits, plus adiabatic Dot/ESR
transfer sequences f (light blue boxes) based on linear dc ramping
of the magnetic field B0 and the back-gate voltage, V . The
adiabatic transfers take place thanks to the J coupling turned on at
the crossing points of the Dot/ESR levels (∆ = 0), while ‘phase
erasing’ steps allow the final quantum state to be independent of the
evolution induced by each particular J . All operations require a few
µs. (b) The red line shows a best fit to a set of calculations of
exchange splittings that the different donor-dot pairs of electrons
would experience within a scaled architecture, due to the imprecise
implantation depth d of the donors (an equivalent applied electric
field F = 4 kV/cm is assumed). The pairs within the green regions
will undergo adiabatic population transfer with fidelity higher than
99.9%. These regions become thinner to the left edge of the plot,
where the high couplings break the adiabaticity condition, and to the
right edge, where the couplings are too weak to induce an efficient
depopulation at the avoided crossing.

in Appendix B. It is clear that moving the donor one
lattice constant closer or farther from the surface can bring
the exchange interaction from a peak to a trough. The
placement of phosphorus donors in a single plane has been

demonstrated using hydrogen lithography on Si37, but an
analogous approach for Bi donors has not been developed.
Placement of Bi donors by ion implantation is associated with
larger alignment uncertainties22.

Furthermore, the exchange coupling between any two
confined electron spins in silicon is known to depend
exponentially on the magnitude of a uniform applied electric
field, as we have confirmed in Appendix B for a donor/dot
pair. The only alternative to high precision, individual tuning
of gate voltages at each qubit site is to develop, as we have
proposed, manipulations that possess an innate insensitivity
to these orbital details.

It is expected that non-Markovian noise on the applied
control voltages, which represents another major hurdle to
Loss-DiVincenzo two-qubit gates13, will also be effectively
combated by such insensitivity – although a more complete
analysis is a subject for future work. In Appendix C we show
how our surface code CNOT is also extremely robust against
local magnetic noise that affects both the donor and the dot
spins.

VII. CONCLUSIONS

In summary, we have shown how bismuth donors and
quantum dots in a silicon host can be combined into a surface
code quantum computer architecture. The first insight of this
scheme is that coherent donor spins can be positioned microns
apart, which is compatible with the current state of the art
in silicon fabrication, as connections between neighboring
donors are mediated by the quantum dot electrons. This
requires a robust, addressable way of SWAPping information
from a donor to a dot and vice-versa, which we construct from
a NMR-controlled Fredkin gate between the donor and the
dot electrons coupled by the exchange interaction. In contrast
to previous proposals of two-qubit gates built on dynamical
exchange phases, we devise adiabatic manipulations that
are insensitive to a two order-of-magnitude variation in
the interaction strength. Combining this with high-fidelity
microwave driven ENDOR transitions on the highly coherent
bismuth donors, we construct CNOT gates for surface code
error correction that retain high fidelity without the need for
individual tuning of the orbital electron states. Moreover, all
microwave fields are applied globally, and qubits are locally
selected for an operation by switching the back-gate voltage
to control the donor/dot SWAP. As the nearest-neighbor
coupling required to implement the surface code could be
achieved by shuttling the array of electrons in unison with
CCD-like gates, the feasibility of the local control needed is
greatly improved as compared to previous blueprints. With
micron pitch structures the surface code would have 108

physical qubits per square centimeter, allowing for many
error-corrected logical qubits. The insensitivity to donor-dot
alignment variations (see Appendix B) may enable fabrication
of large donor-dot arrays by ion implantation22.
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Appendix A: Choice of donor

Si:Bi systems have now been experimentally established as
excellent candidate qubits31. Bi 9/2 nuclear spins combined
with the 1/2 donor electron spins provide a rich Hilbert space
of states from which to choose the qubit logical |0〉 and
|1〉. Their hyperfine interaction is the strongest available
among the group V substitutional donors in Si, which makes
it easier to transfer the information from the electron to the
nuclear spin; moreover, it allows the existence of so-called
clock transitions4, i.e. transitions between hyperfine mixed
nuclear-electron spin states that are very insensitive to the
actual magnetic field of the environment. We will now
identify the specific donor states that host the measurement
qubits that we propose to couple to the dot data qubits within
the surface code.
The mixed Hilbert space set up by the electron and nuclear
spin levels of a group V donor is governed, in the presence of
a fixed magnetic field B0, by the Hamiltonian

H = γeB0 · S− γnB0 · I +AS · I, (13)

where A is the hyperfine interaction between the nuclear spin
I and the electron spin S, γe =

geµB
~

= 27.997 GHz/T is the
magnetic moment of the electron, γn = 0.007 GHz/T is the
nuclear magnetic moment.
The behaviour of the corresponding spectrum in the region
of intermediate B0 (roughly speaking, when A ≈ γeB0) can
get very interesting, if I is large enough. In fact, apart from
Si:P, the manifold of the mixed levels for all group V donors
(As, 111Sb, 113Sb, and Bi with respective I=3/2, 5/2, 7/2, 9/2)
allows for specific values of B0, where the energy difference
f between selected mixed eigenstates has a minimum, i.e.
∂f

∂B0
= 032. The immediate and useful consequence of such

rich behaviour, conceptually due to the large number of mixed
levels available, is that the T2 of a qubit stored in the two
donor levels separated by a ‘clock transition’ will not suffer
from local fluctuations in the magnetic field, which include
hyperfine and dipolar interaction with the 29Si nuclei and
paramagnetic coupling to other electrons and impurities.
The eigenenergies corresponding to the states of the isolated

donor in Eq. 13 are

E2±
m =− A

4
−B0γnm ±√

A2[I(I + 1) +
1

4
−m2] + (Am+B0γe +B0γn)2,

(14)

for −I − 1/2 < m < I + 1/2, and

E1±
m = ±1

2
(Am+B0γe+B0γn)− 1

4
(A+4B0γnm), (15)

for m = ±(I + 1/2).
In a regime of intermediate B0 values, large mixing between
|mS〉 and |mI〉 states ensues that allowed GHz transitions
occur between states of the form |±,m〉 ↔ |±,m −
1〉 and |±,m〉 ↔ |∓,m − 1〉. It has been observed
experimentally27 and then clarified theoretically32 that the
sweet spots aforementioned occur for the second kind of
transitions, namely when:

B0 = B∗
0 ≈ −

A

γe

(m− 1)g(m) +mg(m− 1)

g(m) + g(m− 1)
, (16)

with the restriction -I+3/2 ≤ m ≤ 0, where g(m) ≡√
I(I + 1) + 1

4 −m2. The nature of the expression 16
should clarify why Si:P does not show any clock transition,
while their number increases for larger I , as there will be more
integers m ≤ 0 able to satisfy such condition.
Since we suggest the ‘hybridization’ of a highly coherent
donor system with the two Zeeman split states of a quantum
dot electron spin, we would like the Zeeman dot frequency
fdot ≈ B0γe (the dot electron g-factor is 1.997) to cross
some donor clock transition fdonor at the sweet spot where
∂fdonor

∂B0
= 0, as shown in Fig. 2. Let us show that meeting

those requirements automatically selects Si:Bi as the only
option among group V donors in silicon: after rearranging
Eq. 16, we get

fdot = γeB
∗
0 ≈ −A

[
m−

(
1 +

2m− 1

g(m)2

)−1/2
]
< −A(m−1).

(17)
On the other hand, close to a clock transition, the
eigenenergies of the hybrid states involved can be
approximated as

E2±
m ≈ −A

4
± A

2

√
I(I + 1) +

1

4
−m2. (18)

Hence, requiring that a |±,m〉 ↔ |∓,m − 1〉 transition is
degenerate with fdot implies

fdonor − fdot =
A

2
[g(m) + g(m− 1)]− γeB∗

0 = 0. (19)
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By virtue of 17,

fdonor − fdot >
A

2
[g(m) + g(m− 1) + 2(m− 1)] , (20)

and this latter expression is seen to be always positive unless
m ≤ −3. Thus the required degeneracy can be achieved only
within Si:Bi, specifically addressing the |+,m = −3〉 →
|−,m = −4〉 transition, which we call allowed transition,
and the |+,m = −4〉 → |−,m = −3〉 transition, the
forbidden one. The following hybrid electron-nuclear spin
states are respectively involved (the colored arrows label the
qubit transitions as indicated in Fig. 3):

cos
θ−3

2
|1/2,−7/2〉+ sin

θ−3

2
|−1/2,−5/2〉

fdonor = 5.2142 GHz ↓ B∗
0 = 0.188 179 T

− sin
θ−4

2
|1/2,−9/2〉+ cos

θ−4

2
| − 1/2,−7/2〉,

− sin
θ−3

2
|1/2,−7/2〉+ cos

θ−3

2
|−1/2,−5/2〉

fdonor = 5.216 83 GHz ↑ B∗
0 = 0.188 086 T

cos
θ−4

2
|1/2,−9/2〉+ sin

θ−4

2
| − 1/2,−7/2〉.

(21)

The occurrence of an energy crossing between the Zeeman
transition linking the two dot electron spin states and the
allowed donor clock transition is displayed in Fig. 2(a). In the
high field limit (Zeeman much larger than hyperfine) the right
transition in Eq. 21 is forbidden, since it involves a nuclear
spin flip: this is the motivation for labeling the left transitions
as ‘allowed’ and the right as ‘forbidden’, even though both are
actually enabled in the intermediate B0 regime investigated
here. Each of these two transitions couples to opposite
helicity microwave photons, as noted by Ref. 26, thus the
selective excitation of a single transition in the pair does not
pose fundamental physical limitations, even though the energy
difference between the two, about 2 MHz, would hardly be
distinguished with fast microwave pulses.

Appendix B: Exchange coupling between a MOS quantum dot
and a Si:Bi donor

The aim of this section is to evaluate the exchange
coupling that would arise between an electron spin which
is confined in a quantum dot close to a Si/SiO2 interface
and the excess electron spin provided by a donor Bi atom
implanted deep in the bulk of a Si layer, at a distance d
from the interface. This interaction paves the way for the
fundamental data-measurement qubit coupling that is needed
for the surface code proposed in the Results.
The confinement for the interface electron is provided by an
external electric field F (in the ẑ direction, which we assume
to be perpendicular to the plane which contains the interface)
and by a quantum dot potential (approximately parabolic) in
the transverse x − y plane. This simple modeling accounts
for the voltage landscape that the confining interface gates
would be able to produce. The impurity potential due to the

substitutional implanted Bi atom completes the description of
this two-electron problem: the potential energy of an electron
in this system, as shown in Fig. 4, is described as:

V (r) = +eFz + Udot(r) + Udonor(r) + Uimage(r), (22)

where ρ is the radial coordinate in the plane of the
interface, Udot(r) = ω0

2 ρ
2 is the confining potential of

the dot gates, Udonor(r) = − e2

εSi

√
ρ2+z2

(1 − e−b
√
ρ2+z2 +

B
√
ρ2 + z2e−b

√
ρ2+z2) represents the the Si:Bi impurity

potential outside the donor central cell36 (with εSi =
11.4 is the dielectric constant of Silicon, b and B two
pseudopotential parameters), Uimage(r) = e2Q

εSi

√
ρ2+(z+2d)2

−
e2Q

4εSi(z+d)
parametrizes the electrostatic image effects due to

the dielectric barrier, with Q =
εSiO2

− εSi
εSiO2

+ εSi
and d the

distance of the nucleus from the interface. The infinite wall at

FIG. 4: A three dimensional plot of the two-well potential in Eq. 22,
that binds the quantum dot electron at the interface with the oxide
and the donor electron in the region close to the implanted dopant
Bi atom, in the x− z (y = 0) plane. The origin of our coordinate
system resides at the position of the Bi nucleus, while z = −d
corresponds to the interface plane. An electric field F = 20 kV/cm
and a donor depth d = 38 nm are assumed.

the interface models the ≈ 3 eV step between the energies of
the conduction band edges of the silicon and the oxide layer,
and implements our assumption that the dot electron state
does not penetrate significantly into the oxide. The electric
field is assumed to be uniform and unidirectional throughout
the system, which is a reasonable approximation for realistic
devices of this kind, as is the parabolic transverse confinement
that binds the quantum dot. We take into account the effect of
the accumulation of charges on the dielectric SiO2 boundary,
induced by the electrostatic configuration in the Si layer, via
the image-charge method38.
Effective mass theory is used in our evaluations of exchange
splittings, since the latter will gain the most relevant
contributions from the electronic densities in the intermediate
spatial region between the two wells, i.e. far from the Bi
nuclear cell where EMT fails. Our theory for the donor
state has been tested in Ref. 36 to yield good agreement with
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experimental Stark shifts of the spin Si:Bi spectrum. The
donor wavefunction is there given by

ψD =

√
2

3

∑
i=x,y,z

FDi (r) cos(k0i · r)ui(r), (23)

where the functions ui(r) are the lattice periodic parts of the
Bloch eigenstates of the undoped silicon layer relative to each
conduction band minimum k0i, and the anisotropic envelopes
FD are defined e.g. as:

FDz = ND

[
e
−
√

x2+y2

a2
s

+ z2

b2s + β e
−
√

x2+y2

a2
l

+ z2

b2
l

]
, (24)

with different pairs of Bohr radii distinguishing the short
(as, bs) from the long (al, bl) range hydrogen-like decay, with
a relative weight β (ND is a normalization factor). In the
regime of donor depths and electric fields of interest here,
the donor state can be assumed, to very high precision, to
coincide completely with the bulk ground eigenstate, which
is constructed from an equal superposition of the Bloch
functions of all the six degenerate valleys.
The issues due to the valley degeneracy of the silicon
conduction band are completely taken into account for the
donor state, while we assume that the interface state resides
in only one of the two ẑ-valleys combinations (namely,
the symmetric one) that are almost degenerate close to the
interface. Such degeneracy is known to be removed by
the z-confinement provided by the Si/SiO2 boundary and
the electric field39, with splittings as large as ≈ 1 meV
that increase linearly with the applied field F 40, but a
complete theory of the interplay of those effects will depend
crucially on the details of the device. However, since the
inter-valley coupling at the interface is not as strong as
for a bulk donor, a more refined description would only
provide the correct superposition of the two valleys that
constitutes the orbital interface ground state, something that
will not change qualitatively the analysis below. In fact, our
calculations provide a worst case scenario, that is well suited
to the feasibility study we are aiming at: the oscillations
in J(d) are maximal if the orbital state is an equal weight
superposition of z valleys, so that the spatial dependence of
the dot wavefunction is exactly in (anti-)phase with the donor
one. Due to the roughness of the interface, for example,
it is likely that other combinations of the two valleys, with
different weights, correspond to the actual dot ground state:
out-of-phase valley interference would then be able to reduce
the large oscillations calculated here.
The envelope of the dot electron wavefunction is calculated
via a variational optimization of its on-site ground binding
energy, as determined by the potential in Eq. 22. Based
on the strong similarity of the interface well with the exact
solvable problem of an infinite triangular well, it has been
proposed that a good ansatz for the interface envelope should
resemble an Airy function38 along the z axis, while a Gaussian

confinement is well suited to the x− y confinement:

ψI =
√

2 cos[k0(z + d)] uk0z
(r)F Iz (r),

F Iz (r) = NI(z + d)2e−α(z+d)/2e−β
2ρ2/2, (25)

where 5/α gives the typical spread of the wavefunction in the
ẑ direction, while 2/β represents its extent in x − y plane
(NI is a normalization factor). We solve variationally for the
ground eigenstate and eigenvalue by optimizing α and β as
a function of F and the donor depth d. In fact, even if the
donor is implanted as deep as ∼ 40 nm from the interface,
the screened Coulomb attraction from the Bi nucleus affects
the dot state in a non-negligible way. It provides a strong
enough binding in the (001) plane that the transverse extent
of the dot electron amounts to a radius of ≈ 25 nm, which
already matches the length scales of experimental quantum
dot engineering. As a consequence, ω0 is neglected in our
calculations.
The range of magnitudes of the exchange splittings that we
need sets rather stringent requirements: if the dot is not tightly
confined (EI ≈ −12 meV, F≈ 4 kV/cm), then the donor
should be as deep as ∼ 40 nm. If larger voltage gates are
established, then the donors should be positioned closer to the
interface, which is harder to realize, and the more efficient
hybridization between donor and dot states combined with
higher fields will make donor ionization more likely.
We use the Heitler-London method35 to calculate the
difference between the two lowest eigenvalues of the double
electron problem. Within this scheme, the states are
the orthonormalized symmetric and antisymmetric orbital
superpositions of the product of two single electron functions
ψI and ψD:

Ψ(r1, r2)± =
1√

2(1± S2)
(ψD(r1)ψI(r2)±ψD(r2)ψI(r1)).

(26)
Here, r1, r2 are the spatial coordinates of electron 1 and
2, respectively, and S = 〈ψD|ψI〉 is the overlap of the
single-electron ground states. Exchange splittings are plotted
in Fig. 4 in the main text as a function of the donor depth, and
in Fig. 5 as a function of the applied field F .

We use high precision numerical calculations to estimate
the highly oscillatory integrals involved in the calculation of
the exchange coupling. The largest ratio between each J(d)
maximum and the next closest minimum is ≈ 0.01 for all
the implantation depths considered here. The state-of-the-art
implantation processes for donors in silicon allow a precision
of ≈ 1 nm in the depth of the impurities (for example, a very
shallow implant followed by low-temperature overgrowth41),
which would correspond to several oscillations, and an
estimated relative spread of maximum to minimum J
values of 1:200. We remark that a different crystallographic
direction could be chosen for engineering the quantum dots,
which could reduce the strength of the oscillations in J(d):
for example, if the donor and the dot were separated along
one [011] axis, then the interface ground state would be a
combination of y and z valleys, but only the Fz components
of the exchange would oscillate with d. However, the two-fold
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d=37.97 nm
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FIG. 5: Donor/dot exchange splittings as a function of the applied
field: as F increases the dot is more localized at the interface, thus
the interaction decreases. The control is very efficient: tuning the
field by less than 3 kV/cm allows one to switch J ‘off’ by two
orders of magnitude. A donor depth of d = 37.97 nm is assumed,
but the same trend would be followed for any position of the Bi
nucleus. At smaller fields the influence from the Coulomb attraction
from the Bi impurity is still significant, and it affects the
confinement of the dot state; then, from F & 4.5 kV/cm, J becomes
relatively less sensitive to the applied field, as the interface well is
now more strongly established.

valley degeneracy discussed before would then include more
states. While the degeneracies would be very likely broken
by the confinement and the interface roughness, the dot state
would nonetheless be more liable to couple to excited orbital
states, which would cause information leakage.
Let us highlight that the J values presented here would be
completely robust against small displacements of the nominal
donor position in the plane transverse to the donor/dot
separation: no extra oscillation would take place if the donor
and the dot are not completely aligned vertically, since the
interface state is only made up of z valleys. This feature
contrasts the behaviour of the exchange coupling between
two neighbouring donors examined in Ref. 35, where all the
valleys contribute to the interference, and thus J is sensitive
to displacements along any spatial direction.

Appendix C: Robustness of the CNOT to local shifts of the qubit
frequencies

So far we have assumed that all the physical qubits
experience the same local magnetic field. However, in
a realistic device the resonant frequencies of donor spins
will be modified by local shifts of their hyperfine coupling,
due to uncontrolled local strain and inhomogeneities of the
electrostatic environment36, while the resonant frequencies of
electron spins in quantum dots will be affected by the local
spin-orbit interaction.
Typical linewidths of Sb donor spins implanted near a
surface are less than 600 kHz42. The absolute shifts in the
hyperfine coupling of bulk Si:Bi spins due to inhomogeneous
electrostatic environments are comparable to those of Si:Sb
donors: while the relative sensitivity of the hyperfine coupling
for Si:Bi donors is one order of magnitude smaller than for

Si:Sb, the unshifted Si:Bi hyperfine coupling A0 itself is one
order of magnitude larger than Si:Sb36. Thus 600 kHz is a
good measure of the typical local frequency shift that the Si:Bi
donors could experience in the scaled architecture proposed
here. When the static magnetic field B0 is perpendicular
to the surface, as described here, natural quantum dots
close to a MOS interface also have a linewidth of less than
600 kHz? . The swap gate described here will not be impeded
significantly by such differences across a scaled device: In
the first part of the adiabatic time evolution the detuning ∆
is of the order of 100 MHz for all the donor/dot pairs, thus
local differences of the order of 600 kHz would only produce
an overall relative shift of the corresponding detuning that is
no larger than 1%. When, closer to the degeneracy point,
the exchange coupling J becomes the relevant energy scale,
for the pairs that yield >99.9% transfer fidelity (as described
in Fig. 3(a)) J lies in the 30 MHz-3 GHz range, which is
again at least 50 times larger than the frequency shift. The
Landau-Zener physics that governs the time evolution leading
to the swap operations described above is affected only
slightly by such local distortions. More quantitavely, we have
verified that simulated transfer fidelities higher than 99.9% are
still expected within the same range of donor/dot distances
considered in Fig. 3(a), if the local detuning pertaining to
each donor depth is shifted by as much as 10 MHz from
the reference detuning. Only a negligible fraction of the
fault-tolerant donor/dot pairs within the non-shifted array
discussed before undergoes adiabatic transfers with fidelities
below the 99.9% threshold.

Appendix D: Layout and operational considerations

For clarity, in the main text we have considered one
particular mode of operation and arrangement of donors and
dots, but there are a number of other similar architectures
which have advantages and disadvantages. Here we discuss
some of these other possibilities, as well as our current
understanding of their strengths and weaknesses.

One possibility would be to avoid the exchange interaction
entirely. Ionizing the donors and moving their electrons to
neighboring donors has been suggested as an alternative to
exchange-based entanglement of nuclear spins41,43. However,
with hyperfine interaction frequencies of order 100 MHz or
higher, controlling the timing of the electron removal and
reintroduction to the donors becomes problematic.

In Fig. 1 of the main text we have shown a diagram
of a donor/dot array in which the exchange interaction is
controlled by a back gate below the donors. However, a
fully planar arrangement in which the donors are closer to
the Si/SiO2 interface and couple laterally to the dots, as
suggested by Carroll and coworkers44 may be preferable from
a fabrication viewpoint. This approach would be closest to
current practice for classical silicon circuits, and it would
eliminate the need for complex device layers contacted from
both sides. However, for operations such as a logical
Hadamard, it would be advantageous for the donor electrons
to be able to be moved across more than one site. Measuring
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the donors if they are in the same layer as the dots could
also lead to a complex routing arrangement for moving
electrons to the neighboring donors. It should be noted
that multi-layer heterogeneous integration with micron-scale
device registration, as would be necessary for the backgate
approach, has been demonstrated45. Details of layout and
fabrication complexity will determine this choice, and are
beyond the scope of the present discussion.

Single-qubit operations on the surface code involve
applying gates to subsets of the data qubits. In this
architecture the appropriate subset is chosen by selectively
swapping to the donors and performing the qubit rotations
on them. It would be possible for the measurement donors
to do double-duty for the single spin gates, but it may
be advantageous to associate a donor with every quantum
dot, rather than just the measurement sites, to aid in
these operations. Also, we have discussed measuring and
reinitializing a subset of the donors at each step, though
measuring all of the donors each time and simply ignoring the
unnecessary results would probably be preferable to minimize
decoherence.

A further consideration is whether to use the dot electrons
as data qubits and the donors for measurement, or the other
way around. There is no particular advantage in terms of
the quantum gates, since global single qubit operations can

transform the operations appropriately. The major distinction
is whether the spin of an electron in a dot or bound to a donor
is measured.

Fast accurate single spin measurement and initialization
are required for surface codes, as for other methods of
quantum error correction. Spin to charge conversion for
spin measurement has been ubiquitous in quantum dot qubit
experiments for over a decade46, while direct spin-dependent
tunneling for single donor spin readout is a more recent
development5. Spin-selective optical excitation of donors may
relax requirements on electron temperature25 and placement
precision, and optical readout of single donors has been
shown47. However, the spin readout method is also connected
to the arrangement of the donor/dot array. If the donors are
the measurement qubits, all of the donor gates and readout
devices (single-electron transistors, SETs48 or quantum point
contacts49 to sense single charges) can be integrated onto the
back side of the array. The transfer gates on the top of the
array have a simple structure with this approach. However,
if spin readout is through the dots, then the quantum point
contacts (or SETs) for sensing the charge would typically be
placed on the surface next to the dots, and the transport of the
dot electrons to the nearest neighbor donors becomes more
difficult.
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