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Quantum spin models have been studied extensively in one and higher dimensions. Furthermore,
these systems have been doped with holes to study t–J models of SU(2) spin-1/2. Their anyonic
counterparts can be built from non-Abelian anyons, such as Fibonacci anyons described by SU(2)3

theories, which are quantum deformations of the SU(2) algebra. Inspired by the physics of SU(2)
spins, several works have explored ladders of Fibonacci anyons and also one-dimensional (1D) t–
J models. Here we aim to explore the combined effects of extended dimensionality and doping
by studying ladders composed of coupled chains of interacting itinerant Fibonacci anyons. We
show analytically that in the limit of strong rung couplings these models can be mapped onto
effective 1D models. These effective models can either be gapped models of hole pairs, or gapless
models described by t–J (or modified t–J–V ) chains of Fibonacci anyons, whose spectrum exhibits
a fractionalization into charge and anyon degrees of freedom. The charge degrees of freedom are
described by the hardcore boson spectra while the anyon sector is given by a chain of localized
interacting anyons. By using exact diagonalizations for two-leg and three-leg ladders, we show that
indeed the doped ladders show exactly the same behavior as that of t–J chains. In the strong
ferromagnetic rung limit, we can obtain a new model that hosts two different kinds of Fibonacci
particles - which we denote as the heavy τ ’s and light τ ’s. These two particle types carry the same
(non-Abelian) topological charge but different (Abelian) electric charges. Once again, we map the
two-dimensional ladder onto an effective chain carrying these heavy and light τ ’s. We perform
a finite size scaling analysis to show the appearance of gapless modes for certain anyon densities
whereas a topological gapped phase is suggested for another density regime.

PACS numbers: 75.10.Kt, 75.10.Jm, 75.40.Mg

I. INTRODUCTION

Quantum statistics is an important aspect of quan-
tum mechanics and it lays down the rules for identify-
ing different classes of particles. In three dimensions,
the exchange of two particles in a quantum system can
result in a phase change of either 0 or π for the wave
function, leading to bosons and fermions. The scenario
is very different in two-dimensions (2D) and it is well
known that such quantum systems give rise to anyonic
quasiparticle excitations.1–3 These anyons are observed
as excitations, localized disturbances of the ground state
in systems with topological order. Rich behavior emerges
especially for non-Abelian anyons, for which the exchange
of two anyons is described by a unitary matrix.4,5

Models of interacting non-Abelian anyons draw mo-
tivation from quantum spin models, and in particular
the Heisenberg model, which has been studied for a wide
range of lattices including one-dimension (1D) chains and
ladders of SU(2) spins. Non-Abelian anyons can be de-
scribed as so-called quantum deformations of the usual
SU(2) spins. Formally, they are described by SU(2)k
Chern-Simons theories. These SU(2)k theories are ob-
tained by ‘deforming’ the SU(2) algebra so as to retain
only the first k + 1 representations. The most widely
studied models are the k = 2 and k = 3 theories that
describe ‘Ising’ and ‘Fibonacci’ anyons respectively.

Non-Abelian anyons are expected to be present in
topologically ordered systems including certain fractional
quantum Hall states,6–9 p-wave superconductors,10 spin

models,11–14 solid state heterostructures15–20 and rotat-
ing Bose-Einstein condensates.21 In particular, Fibonacci
anyons occur as quasi holes in the Z3 Read-Rezayi state
which might be able to describe the ν = 12/5 fractional
quantum Hall state.22 While several experiments have
shown evidence for emergent Majorana modes,23–27 ex-
perimental evidence of Fibonacci anyons is yet to come.

In the absence of interactions, non-Abelian anyons
have an exponentially degenerate ground state manifold.
On this ground state manifold exchange (braiding) of
non-Abelian anyons acts in a non-commutative way, by
bringing about a non-trivial transformation in the degen-
erate manifold of the many-quasiparticle Hilbert space.
This has generated interest since it can be used for topo-
logical fault-tolerant quantum computation.28–33

Interactions between non-Abelian anyons can be mod-
eled by generalizations of the spin-1/2 Heisenberg model.
These models have been studied for chains of Fibonacci
anyons34 including nearest neighbour couplings35 and
also longer range couplings36 have been studied. Chains
of higher spin quasiparticles have also been explored,37–41

critical phases have been identified and the correspond-
ing conformal field theory (CFT) has been obtained from
numerical simulations.42 The effect of disorder for chains
of Fibonacci anyons has been investigated.43,44

As a step towards understanding the collective behav-
ior of itinerant non-Abelian anyons, these chains can be
doped with mobile holes, inspired by the electronic t–
J model.45–48 Electrons confined in 1D can exhibit the
phenomenon of “spin-charge separation”, where the spec-
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trum can be interpreted in terms of two independent
pieces, one arising from electric charge without spin, and
the other from a spinon without any charge.49 Analo-
gously low-energy effective t–J models have been ana-
lyzed for the case of doped chains of Fibonacci (and
Ising) anyons. These models exhibit a fractionaliza-
tion of the spectrum into charge and anyonic degrees of
freedom,50,51 an extension of a phenomenon that exists
in Luttinger liquids.52–54

As a step towards two dimensions, anyon models have
been investigated on chains coupled to form so-called
quantum ladders of non-Abelian anyons, which provide
anyonic generalizations of the 2D quantum magnets.55,56

In this article, we would like to understand the physics
of mobile non-Abelian anyons beyond one-dimension,
which is a general fundamental and timely issue. Our
aim is to construct the simplest possible model of 2D
itinerant interacting anyons in close analogy to fermionic
systems and inspired by the previous anyonic studies. As
discussed later, this model takes the form of an anyonic
2D t − J model very similar to its electronic 2D analog
and to its 1D anyonic version mentioned above. Also a
natural geometry to consider, interpolating between 1D
and 2D, is the ladder geometry – e.g. a system of a fi-
nite number of coupled chains – used both for electronic
spins and localized anyons. More precisely, we combine
the anyonic models mentioned above, by studying doped
quantum ladders of Fibonacci anyons consisting of two
or three chains. In particular, we ask the question if
spin-charge separation survives in the ladder model for
non-Abelian anyons. Furthermore, in the study of this
model, we have found a novel physical effective model
that possibly hosts a topological gapped state.

The structure of the rest of the paper is as follows:
Section II begins with a brief introduction of non-Abelian
anyons and introduces our model. In section III A, we
discuss the strong rung coupling limit drawing analogy
with the spin ladder models, listing out all the possible
quantum states and the phase diagram for the model un-
der study. In section III B, we list all the phases that
arise for weakly coupled rungs. The subsequent sections
are dedicated to the discussion of all these phases. Sec-
tion IV discusses the hard-core boson models and section
V describes the golden chain phases. In section VI, we
analyse the effective t − J models for two and three-leg
ladders, presenting the numerical results for the same.
We extend the phenomenon of spin-charge separation
to (doped) ladders of Fibonacci anyons. In section VII,
we introduce a new model of heavy and light Fibonacci
anyons that is obtained for certain density regimes when
the rung couplings are FM. We conclude by summarising
our results in section VIII.

II. THE MODEL

A. Introduction to non-Abelian anyons

In this paper we focus on Fibonacci anyons that are
described by the SU(2)3 theories. SU(2)k Chern-Simons
theories34,57 are so-called quantum deformations of the
SU(2) algebra. Their degrees of freedom are encoded
by ‘topological charges’ j, which are generalized angular
momenta. In contrast to SU(2), in SU(2)k theories the
total ‘spin’ j is limited to be j = 0, 1

2 , · · · ,
k
2 .

Akin to the tensor product of spins, non-Abelian
anyons can be ‘fused’ according to fusion rules given by

j1 × j2 =

min{j1+j2,k−j1−j2}∑
j3=|j1−j2|

j3. (1)

For example, for the fusion of two anyons with j1,2 =
1
2 , these rules would mean 1

2 ⊗
1
2 = 0 ⊕ 1 (for k ≥ 2).

Similarly, for the case of Fibonacci anyons (k = 3), when
j1,2 = 1 the fusion rule reads as 1 ⊗ 1 = 0 ⊕ 1. Note
that this is different from what one would obtain under
a tensor product of SU(2) spin-1 particles. In the limit
k → ∞, however, we recover the SU(2) algebra and the
rule simply describes the tensor product of two ordinary
SU(2) spins.

In the rest of this manuscript, we focus only to the
Fibonacci theory with k = 3, unless otherwise stated.
There the allowed values for the topological charges are
j = 0, 1

2 , 1,
3
2 . But if we look closely at the fusion rules,

we can make the identification 0↔ 3
2 and 1↔ 1

2 . Thus,
the Fibonacci theory has two distinct types of particles
which we denote as 1 for the trivial particle with j = 0
and τ for the Fibonacci anyon with j = 1 respectively.
Using these, the fusion rules read

1⊗ 1 = 1

τ ⊗ 1 = 1⊗ τ = τ

τ ⊗ τ = 1⊕ τ.
(2)

We represent a system of N anyons by means of a fu-
sion tree as shown in Fig. 1(a), where the anyonic charges
of the individual anyons are labelled by Yi. The fusion
outcome of successive fusion of the anyons are encoded
by the ‘bond’ labels (links) in the fusion tree, labelled by
xi in Fig. 1(a). The constraints on the bond labels due to
fusion rules which must be satisfied at each vertex signif-
icantly reduce the size of the internal Hilbert space. For
N Fibonacci anyons (τ) the Hilbert space grows asymp-

totically as φN where φ = (
√

5 + 1)/2 is the golden ratio.
From now on we draw a flat version of the fusion tree, as
shown in Fig. 1(b).

To perform an operation on nearest neighbor anyons,
it is advantageous to change to a different basis in which
the two-particle fusion outcome is explicit. This is done
via the F -move shown schematically in Fig. 1(c). The
F -move depends on the two site labels Yi and Yi+1 and
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FIG. 1: (a) Illustration of the standard fusion tree with site
labels Yi (that can be either τ or 1) and bond labels xi. (b)
The flat version of the fusion tree. (c) A basis change to a
different fusion tree using an F -move.

FIG. 2: Convention for the right handed braid to exchange
two particles.

the bond labels xi−1 and xi+1. If at least one of these

four labels is 1, then there is only one choice of bond
labels that satisfies the fusion algebra and the F -move
is trivial. A non-trivial matrix is obtained only when
all the four labels are τ anyons. Specialising to the case
where Yi = Yi+1 = τ , the labels for the three bonds
|xi−1, xi, xi+1〉 allowed by the fusion rules are

{|1, τ,1〉, |1, τ, τ〉, |τ, τ,1〉, |τ,1, τ〉, |τ, τ, τ〉} (3)

which transforms to a new basis |xi−1, x
′
i, xi+1〉 after the

F -move:

{|1,1,1〉, |1, τ, τ〉, |τ, τ,1〉, |τ,1, τ〉, |τ, τ, τ〉}.
Using these bases the F -matrix is represented as,

F =


1

1
1

φ−1 φ−1/2

φ−1/2 −φ−1

 , (4)

where as mentioned above we have a non-trivial 2 × 2
submatrix only when also xi−1 = xi+1 = τ .

Another operation that we need to perform on nearest
neighbor anyons is that of exchanging (or braiding) them.
In Fig. 2, we show our convention for a right-handed
braid. The left-hand braiding is the inverse of the process
shown here. Under a right-handed braid anyons a and
b pick up a phase Rb,ac depending on the anyon types, a
and b, that are undergoing an exchange and their fusion
outcome c. Note that whenever a or b are 1, the phase
is trivial. Non-trivial phases are only obtained are for
a = b = τ :

Rττ1 = e+4πi/5, Rτττ = e−3πi/5. (5)

In order to implement a braid on the standard fusion
tree, we first have to change basis using an F -move to
make the fusion outcome of the two anyons explicit, and
then braid. This process is shown schematically in Fig. 3.
This is represented by a Braid matrix B acting on the
bond labels |xi−1, xi, xi+1〉. The only non-trivial Braid
matrix is obtained when both the sites are occupied by
τ anyons. In the basis of Eq. (3) we obtain:

B = FRF =


e4iπ/5 0 0 0 0

0 e−3iπ/5 0 0 0
0 0 e−3iπ/5 0 0
0 0 0 1

φ2 e
4iπ/5 + 1

φe
−3iπ/5 1

φ3/2 (e4iπ/5 − e−3iπ/5)

0 0 0 1
φ3/2 (e4iπ/5 − e−3iπ/5) 1

φ2 e
−3iπ/5 + 1

φe
4iπ/5

 . (6)

Note that when the two site labels are a 1 and a τ , the F -moves and the exchange phases are all trivial. The
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FIG. 3: Schematic representation of a braid on the fusion tree.

Braid matrix is effectively the hopping of the anyon to
the adjacent site. When both the site labels are 1, the
Braid matrix is simply given by the identity matrix.

B. Golden chain model

In this section we review the so-called ‘golden chains’,
consisting of 1D arrays of localized Fibonacci anyons with
pairwise interactions between nearest neighbors.35 In this
model the Hamiltonian for the magnetic interactions be-
tween anyons is defined in analogy to the Heisenberg ex-
change interaction. We assign an energy −J if the fusion
outcome of two interacting anyons is trivial. For AFM
couplings (J > 0), this favours the fusion outcome of two
neighbouring anyons to be trivial, while for FM couplings
(J < 0), the fusion of two anyons is preferred to be τ .
This interaction between nearest neighbor anyons is de-
picted schematically in Fig. 4(a) and is implemented by
projecting on the identity fusion channel

Hmag = Jhmag = −J(FP 1F−1). (7)

where F is the operator corresponding to the F -move
(see Eq. (4)) and P 1 is an operator that projects onto
the 1 state. In the basis of Eq. (3), the matrix represen-
tation for the (dimensionless) magnetic interaction can
be written explicitly as:

hmag = −


1

0
0

φ−2 φ−3/2

φ−3/2 φ−1

 . (8)

Golden chains with AFM couplings are described by
the k = 3 restricted solid on solid (RSOS) model which
is a CFT with central charge c = 7/10. For ferromagnetic
couplings the corresponding CFT is that of the critical
3-state Potts model with c = 4/5.35,58

C. Itinerant Fibonacci anyons in 1D

To model itinerant anyons we introduce holes, i.e. sites
with a trivial anyon 1 on some of the sites. The holes and
τ anyons are labelled by different U(1) (electric) charges

and anyonic (non-Abelian) charges. The τ anyons (re-
ferred to simply as ‘anyons’ or ‘τ particles’ hereafter) can
move on the chain which results in an additional kinetic
energy contribution. This kinetic process is schemati-
cally shown in Fig. 4(b). It involves the hopping of a
particle, along with its electric and anyonic charge to a
neighbouring site.

Our specific model of itinerant anyons is a general-
ization of the electronic t–J model.45 Assuming a large
on-site charging energy, we eliminate the possibility of
doubly occupied sites and allow anyons to only hop to
empty sites. As in the case of electrons, the low-energy
effective t–J model allows hopping of the anyons to near-
est neighbor vacant sites and an exchange interaction be-
tween nearest neighbor anyons analogous to the Heisen-
berg interactions explained above in Sec. II B. The ki-
netic term can then be written as Hkin = −thkin, where
hkin is the (dimensionless) operator corresponding to the
nearest neighbor hopping process shown in Fig. 4(b). A
t–J chain of itinerant anyons was studied for Ising and
Fibonacci anyons,50,51 revealing a separation of excita-
tions into charge and anyonic excitations, similar to spin-
charge separation in its electronic counterpart.

FIG. 4: (a) Nearest neighbor magnetic interaction of ampli-
tude J . (b) The kinetic hopping (of amplitude t) of an anyon
to its nearest neighbor vacant site. The blue circles represent
τ anyons while the white circles denote vacant sites or holes.
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D. Ladders of Fibonacci anyons

1. Undoped ladders

Ladders of Fibonacci anyons are formed by coupling
chains of localized anyons.55 Anyons interact with their
nearest neighbors along the leg and rung directions via
Jleg and Jrung. These interactions are shown schemati-
cally in Fig. 5(a). As fusion path we choose the zig-zag
path shown in Fig. 5(b), since it minimizes the effective
range of interactions on the fusion path. We choose pe-
riodic boundary conditions along the leg direction and
open boundary conditions along the rungs.

With this choice of fusion path, nearest neighbor inter-
actions on the rungs are also nearest neighbor along the
fusion path, while those between anyons on the same leg
are longer range along the fusion path. Nearest neighbor
rung interactions can be implemented in exactly the same
way as for nearest neighbor on a chain (see Sec. II B). In
order to evaluate the interactions between τ particles on
the same leg, we have to implement a change of basis, this
time by braiding them in a clockwise manner until they
are neighbours along the fusion path. This braiding is
performed by the unitary braid matrix B (see Eq. (6)).
Once the τ particles are nearest neighbours along the
path they can interact with the same term as discussed
above in Sec. II B. After carrying out the interaction, the
anyons have to be braided back to their original positions.

More specifically, for a two-leg ladder, adjacent anyons
along the leg direction are next nearest neighbours along
the fusion path (see Fig. 5(b)). Thus, one needs to im-
plement one braid operation. The Hamiltonian for the
magnetic interactions between nearest neighbor rungs r
and r + 1 on the upper leg is given by

(H1
mag)r = JlegB

†
2r−1(hmag)2rB2r−1, (9)

FIG. 5: Two-leg ladder: (a) Interactions along the leg and
rung directions. (b) The zig-zag fusion path. The couplings
have been indicated.

and on the lower leg as

(H2
mag)r = JlegB

†
2r+1(hmag)2rB2r+1, (10)

where hmag has been defined in Eq. (8) and r labels the
rungs (so that i = 2r labels the diagonal bonds along the
path). In Fig. 6(a), we summarize the magnetic inter-
actions between nearest neighbor along the leg direction
for a two-leg ladder.

For a three-leg ladder, the leg interactions are longer
ranged interactions, since adjacent anyons on a leg are
third neighbours along the fusion path. Thus, nearest
neighbor leg interactions on a three-leg ladder ladder re-
quire two braids before particles are nearest neighbors on
the fusion path.55 One gets for interaction between rungs
r and r + 1 on the upper leg,

(H1
mag)r = JlegB

†
3r−2B

†
3r−1(hmag)3rB3r−1B3r−2, (11)

on the middle leg,

(H2
mag)r = JlegB

†
3r+1B

†
3r−1(hmag)3rB3r−1B3r+1, (12)

and on the lower leg,

(H3
mag)r = JlegB

†
3r+2B

†
3r+1(hmag)3rB3r+1B3r+2, (13)

where i = 3r labels the diagonal bonds along the path.
The full magnetic Hamiltonian on the legs is obtained

by adding all contributions, H leg
mag =

∑W
1 H l

mag, whereW
is the number of legs. As an implementation detail we
want to mention that the action of the operator H l

mag can

generate up to 22W−1 states for each bond interaction.
The operator mixes spin labels, thus generates multiple
images for each two-body interaction. This exponential
increase in the number of resulting states leads to denser
Hamiltonian matrices as one increases the width W of
the ladder and restricts us from exploring larger system
sizes.

For ladders of Fibonacci anyons it was shown that sim-
ilar odd-even effects as seen for SU(2) spins continue
to exist in the limit of strong AFM rungs.55 AFM cou-
pled ladders of Fibonacci anyons with even number of
legs are gapped while those with odd number of legs
are critical and are described by the same CFT as the
golden chain. On the other hand, Fibonacci ladders with
FM rung couplings are quite different from their SU(2)
counterparts.55 Fibonacci ladders with a width that is a
multiple of three are gapped since the rungs form singlets
(j = 0). Other widths are gapless since the isolated rungs
effectively form τ ’s, thereby yielding a gapless chain as
the effective low-energy model. This is different from
SU(2) spins, for which an even number form a singlet
ground state, and where thus all even width ladders are
gapped.

2. Doped ladders

In this paper we focus on itinerant ladders of Fibonacci
anyons. As schematically represented in Fig. 5(a) we de-
note the interaction strengths along the leg direction by
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FIG. 6: Evaluation of Hamiltonian terms on a two-leg ladder along the leg direction that involve the braid operation. The
blue circles represent τ particles white the white circles are for vacant sites. The green ellipses denote the particles that are
interacting along the leg direction. (a) the magnetic term (b) the kinetic term.

Jleg and tleg for the magnetic and kinetic terms respec-
tively. Along the perpendicular direction, the couplings
Jrung and trung denote respectively the magnetic and ki-
netic terms.

The magnetic interactions for the ladder have already
been described in the section II D 1 and we thus only
need to discuss the kinetic terms. Once again, the two
sites on a rung are adjacent on the fusion path and the
hopping is thus implemented as for the 1D t–J chain (see
section II C). For a τ particle and hole lying on adjacent
sites on the same leg of the ladder, we need to, once
again, braid the sites to bring them to adjacent positions
on the fusion tree. For a two-leg ladder, the kinetic term
between rungs r and r + 1 on the upper leg is given by

(H1
kin)r = tlegB

†
2r−1(hkin)2rB2r−1, (14)

and on the lower leg as

(H2
kin)r = tlegB

†
2r+1(hkin)2rB2r+1, (15)

where hkin has been defined above and r labels the rungs.
In Fig. 6(b), we summarize the kinetic process between
nearest neighbor sites along the leg direction for a two-leg
ladder.

For a three-leg ladder, a τ particle and hole lying on
adjacent sites on a leg are third neighbours along the
fusion path. Thus, nearest neighbor leg interaction on a
three-leg ladder requires two braids before the τ particle
and the hole are nearest neighbors on the fusion path.
One gets for kinetic terms between rungs r and r + 1 on
the upper leg,

(H1
kin)r = tlegB

†
3r−2B

†
3r−1(hkin)3rB3r−1B3r−2, (16)

on the middle leg,

(H2
kin)r = tlegB

†
3r+1B

†
3r−1(hkin)3rB3r−1B3r+1, (17)

and on the lower leg,

(H3
kin)r = tlegB

†
3r+2B

†
3r+1(hkin)3rB3r+1B3r+2, (18)

FIG. 7: Schematic energy spectra in the presence of a
parabolic Coulombic charging energy. One can tune the chem-
ical potential and the repulsion between the particles in order
to gap out the higher energy sectors. This allows restricting
the calculations to a low energy subspace.

where i = 3r labels the diagonal bonds along the path.
Note that, in the above equations, some of the braids

may be trivial, in contrast to the case of the magnetic
interactions. The full kinetic Hamiltonian on the legs is

obtained by adding all contributions, H leg
kin =

∑W
1 H l

kin.

Here, the action of the operator H l
kin can generate up to

22W−2 states for each bond interaction.
We also consider models with an additional rung charg-

ing term

VCoul(q) ∼ Vrep(q −Qc)2, (19)

where q is the number of anyons on a rung and Qc is de-
termined by the implicit chemical potential. Fig. 7 shows
the energy profile for a given rung composition on the
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FIG. 8: All possible fusion outcomes for a rung of a two-leg
ladder. The blue circles represent τ ’s while white circles rep-
resent vacant sites. The U(1) and topological charges for the
different configurations are denoted in the parenthesis. The
superscript U(L) refers to the τ lying on the upper (lower)
leg.

ladder. For the three-leg ladder under consideration, this
term acts pairwise between all the three possible pairs of
particles that can exist on the three-site rung. Assuming
a charging energy which is much larger compared to the
exchange energy, we can consider the limit Vrep → ∞.
In this limit we can restrict our calculations to just two
values of the occupation on the rung, n and n + 1, with
n ranging from 0 to W − 1. This reduces the Hilbert
space and thus allows us to perform simulations of larger
ladders.

E. Simulation algorithm

Our numerical simulations have been performed by ex-
act diagonalization using the Lanczos algorithm. We ex-
ploit periodic boundary conditions along the leg direction
to implement translation symmetry. This allows us to
block-diagonalize the Hamiltonian into L blocks labeled
by the total momentum K = 2πmL (m being an integer),
which reduces the size of the Hilbert space, which is the
major limiting factor in the simulations, by a factor L.

III. PHASE DIAGRAMS

A. Isolated rung limit

Analogous to standard electronic t–J ladders the
physics of anyonic t–J ladders can be understood starting
from the strong rung coupling limit.59,60 We thus begin
by identifying the low-lying states of isolated rungs.

In Fig. 8, we show the five rung configurations on iso-
lated rungs for a two-leg ladder, and the total U(1) and
anyonic charges that are possible for these rung config-
urations. When there are two holes on a rung, both of
these charges are trivially zero. When the rung is occu-
pied by two τ particles, the net U(1) charge is 2, however
the topological charge may be either 1 or τ , giving rise
to two different quantum states |2, τ〉 (named “heavy τ”)
and |2,1〉 (named “heavy hole” – an empty rung being

FIG. 9: The various fusion outcomes possible for a doped
three-leg ladder. The blue circles represent τ ’s while white
circles represent vacant sites. The first labels in the paren-
thesis signify the U(1) charge, corresponding to the number
of τ ’s present on each rung and the second refers to their fu-
sion outcome. The superscripts U,M,L refer to the positions
of the τ on the different legs (upper, middle, lower) of the
ladder.

a “light hole”). In the case when there is a single τ on
the rung, it can be either on the upper or on the lower
leg with charges denoted as (1U , τ) and (1L, τ) respec-
tively. The corresponding quantum states are respec-
tively |1U , τ〉 and |1L, τ〉. The bonding and anti-bonding
states |1±, τ〉 (named “light τ”) are formed by linear su-
perpositions of the configurations with charges (1U , τ)
and (1L, τ) given by

|1±, τ〉 =
1√
2

(
|1U , τ〉 ± |1L, τ〉

)
. (20)

For a three-leg ladder, many more states are possible,
as shown in Fig. 9. When there is a single τ on the rung
(Nrung = 1), the “light τ” quantum states formed by
linear superpositions of the three different positions of
the τ particle are given by

|1±, τ〉 =
1

2

(
|1U , τ〉+ |1L, τ〉 ±

√
2|1M , τ〉

)
, (21)

|10, τ〉 =
1√
2

(
|1U , τ〉 − |1L, τ〉

)
. (22)

Depending on the sign of the hopping, one of the states
|1±, τ〉 acquires the lowest energy. Likewise, when there
are two τ anyons on a rung (Nrung = 2) we can form
quantum states as linear superpositions of the states with
the same U(1) and topological charges. For Jrung > 0,
one of the “heavy hole” states

|2±,1〉 =
1√

2 + α2

(
|2U,M ,1〉 + |2M,L,1〉

± α|2U,L,1〉
)

(23)
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FIG. 10: Ground state phase diagram for (a) two-leg ladder and (b) three-leg ladder in the isolated rung limit (with or without
charging energy). The lowest energy sectors for isolated rungs with different anyon numbers (labelled by Nrung) on a ladders
of itinerant Fibonacci anyons are indicated. The notations are the same as in Figs. 8 and 9.

is the ground state, with

α =

√
J2

rung + 8t2rung − Jrung

2trung
. (24)

If for simplicity, we consider Jrung = trung, then α = 1.
For Jrung < 0 either of the “heavy τ” states

|2±, τ〉 =
1

2

(
|2U,M , τ〉+ |2M,L, τ〉 ±

√
2|2U,L, τ〉

)
(25)

has lowest energy depending on the sign of the hopping
trung. When the rung is occupied by three τ particles,
the total U(1) charge on the rung is 3, and the possible
quantum states are |3, τ〉 (named “super-heavy” τ) and
|3,1〉 (named “super-heavy hole”) depending on the net
fusion outcome.

In the limit of independent rungs and by parametris-
ing the rung couplings as trung = cos θ and Jrung = sin θ,
we have mapped out the parameter space on a unit cir-
cle. In Fig. 10 we show the ground state phase diagram
for an isolated rung on a two-leg or a three-leg ladder
for different number Nrung of τ anyons on the rung.
Note that these phase diagrams do not depend on the
charging energy which only gives a constant energy shift
Vrep(Nrunge

∗ −Qc)2 (depending on the Nrung sector).

B. Phase diagrams of weakly coupled rungs

Our goal is now to understand the phase diagram of
anyonic ladders by starting from the isolated rung cou-
pling limits. We do this by turning on small couplings
tleg and Jleg between the strongly coupled rungs such
that |tleg|, |Jleg| << |trung|, |Jrung|, in order to ensure
that there is no transition to excited state of the isolated
rungs. Figures 11 and 12 summarize the phase diagrams
for two and three-leg ladders.

Depending on the low-energy states on each rung we
find six different types of phases:

• Totally gapped phases (T ) appear when there are
exactly two (for Jrung > 0) or three (for Jrung < 0)
anyons per rung that fuse into the trivial channel.
These phases will not be discussed further.

• Effective golden chains (G±) when there are exactly
n τ anyons on every rung that fuse into a total τ .
An optional ± superscript indicates whether the
particles are in a bonding (+) or antibonding(−)
state on a rung. These phases will be discussed in
Sec. V.

• Paired phases (P ) where two anyons on a rung fuse
in the trivial channel, forming hard-core bosons.
These phases will be discussed in Sec. IV

• Effective t–J chains (C±nm) consisting of an effective
hole that arises from n anyons on a rung fusing in



9

a) b)

FIG. 11: Phase diagrams of the two-leg ladder in the strong rung coupling limit. a) is without a rung charging term and b)
with a large rung charging term Vrep. Here the radius denotes the density of anyons. Depending on filling and coupling several
phases can be distinguished: a totally gaped phase (T), effective golden chain models (G), effective t–J chains (C), paired
phases (P), and a phase with two different types of τ anyons (D). The legend indicates which rung states are relevant in the
various phases. See the text for details.

a) b)

FIG. 12: Phase diagrams of the three-leg ladder in the strong rung coupling limit. a) is without a rung charging term and b)
with a large rung charging term Vrep. Here the radius denotes the density of anyons. Depending on filling and coupling several
phases can be distinguished: a totally gaped phase (T), effective golden chain models (G), effective t–J chains (C), paired
phases (P), phase separated phases (PS) and a phase with two different types of τ anyons (D). The legend indicates which rung
states are relevant in the various phases. See the text for details.

the trivial channel and an effective τ anyon aris-
ing from m anyons fusing in the τ channel. The
± superscript indicates whether the particles on a
rung are in a bonding or antibonding state. These
phases will be discussed in Sec. VI

• Effective models consisting of two flavors of τ
anyons (D±mn) that are formed by fusing m and
n anyons on a rung respectively. Again the ± su-
perscript indicates whether the particles on a rung
are in a bonding or antibonding state.

• A phase separated region PS03 originated from an
effective t–J chain with dominant attraction be-
tween the effective super-heavy τ anyons.

The effect of a large rung charging energy Vrep is to

suppress pairing and phase separation in two-leg and
three-leg ladders. The other phases are unchanged when
adding this term. We will thus use Vrep = ∞ to reduce
the Hilbert space dimension when numerically investigat-
ing the latter phases.

IV. PAIRING AND EFFECTIVE HARD-CORE
BOSON MODELS

We start our detailed discussion with paired phases
that arise when two τ anyons on a rung fuse into an
effective trivial particle and are then described by mobile
hard core bosons. In the case of the two-leg ladder this
phase appears when Jrung > 2|trung|. Identifying |0,1〉
with an empty site and |2,1〉 with a hard-core boson we
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end up with an effective hard-core boson (HCB) model,

HHCB = t
∑
i

(b†i bi+1 + h.c.) + V
∑
i

ni(1− ni+1), (26)

where b†i creates a boson at site i and ni = b†i bi is the
boson density. The effective hopping matrix element of
this hard-core boson model is obtained from second-order
perturbation theory in tleg to be

t = −
2t2leg

Jrung − 2|trung|
. (27)

An effective nearest neighbor attraction between different
types of holes comes also in second-order and is given by

V = −
2t2leg

Jrung − 2|trung|
. (28)

This is similar to fermionic t–J ladders mapping to a
Luther-Emery liquid of Cooper pairs.

In the three leg ladder, similar paired phases described
by the same hard-core boson model are found when ρ <
2/3 and the rung couplings satisfy

3φ|trung| > Jrung >
3√
2
|trung| . (29)

The effective hopping matrix element of this hard-core
boson model is

t = −
2t2leg

ED
, (30)

where ED = −2
√

2|trung| + Jrung

2 +

√
J2
rung+8t2rung

2 and a
proof is provided in Eq. (A74). An additional effective
attraction between different types of holes is given by

V = −
2t2leg

ED
, (31)

as shown in Eq. (A73).

V. EFFECTIVE GOLDEN CHAINS

If all rungs are at the same integer filling n, the effective
model is either in a trivial gapped phase if the n anyons
fuse into the trivial channel, or an effective golden chain
model if they form a total τ . We label the latter phases as
Gn or G±n , where the optional ± index indicates whether
the anyons are in a bonding state (+) or antibonding
state (−) on the rung.

The phase G±1 appears in the two-leg ladder at unit
filling (outside of the paired phase). With two τ particles
per rung and Jrung < 0 we obtain the phase G2.

Analogously, the three leg ladder has effective golden
chain phases for specific densities ρ = 1/3, 2/3, 1 on the
ladder. In the case when all the rungs have exactly one τ

TABLE I: Effective couplings for the various golden chain
phases as a function of the ladder width W and density ρ.

W ρ Phase J/Jleg Derivation Eq.

2 1
2

G±1
1
2

(A4)

2 1 G2
2
φ2 (A12)

3 1
3

G±1
3
8

(A21)

3 2
3

G±2
11

8φ2 (A25)

3 1 G3 1 (A30)

particle, the phase G±1 is obtained. When there are two
τ anyons per rung and Jrung < 0, the phase G±2 appears.
Finally, for three τ particles per rung and Jrung > 0, we
obtain the G3 phase.

All coupling constants J of the effective Golden chains
are listed in Table I.

VI. EFFECTIVE t–J MODELS

A. Two-leg ladder

1. Effective t–J models

Doping the ρ = 1/2 G±1 golden chain with (light) holes
one obtains an effective anyonic t–J chain (C±01). The
magnetic coupling J is the same as for the G±1 golden
chain.

Increasing the U(1) charge density (ρ > 1/2), by effec-
tively doping the G±1 golden chain with heavy holes, one
obtains a similar C±21 t−J chain for AFM rung couplings
Jrung > 0 with a sign change of the hopping term.

Coupling constants are summarized in Table II.

2. Effective model for charge degrees of freedom

From the mapping of a doped ladder to an effective
1D t–J chain we expect its spectrum to fractionalize into
charge and anyon (called also “spin”) degrees of freedom.
To investigate spin-charge separation in the ladder, we
first examine the pure U(1) charge spectrum when Jleg =
0.

In the J = 0 limit of an anyoninc t–J chain the itiner-
ant anyons behave like HCBs which can be mapped onto

TABLE II: Effective couplings for the various t–J phases of
the two-leg ladder as a function of the density ρ.

Filling Phase J/Jleg t/tleg Derivation Eq.

ρ < 1
2

C±01
1
2

1
2

(A37)

ρ > 1
2

C±21
1
2

− 1
2

(A42)
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a system of spinless fermions. Adding an external flux in
the ring, the HCB spectrum is therefore given by charge
excitation parabolas,

EHCB(p, φext) = −2t
∑
j(p)

cos

[
2π

L

(
j +

1

2

)
+
φext

L

]
, (32)

where {j(p)} is a set of integers (labelled by the branch
index p) which determine the continuous momenta, given
by K = 2π

L

∑
j(p)(j + 1

2 ) + ρ̃φext, ρ̃ being the density of

particles in the system. In the J = 0 limit we must be
careful since the fusion tree labels make the anyons distin-
guishable. Thus, in the absence of magnetic interactions
the energy levels show a high degree of degeneracy that
arises due to the built in non-Abelian nature of the Fi-
bonacci anyons. Moving an anyon across the boundary
cyclically translates the fusion tree labels. All N par-
ticles must be translated over the boundary to be able
to have the original labeling. This brings about a phase
shift of φn = 2πn/N , n being an integer. The charge
spectrum of the anyonic chain can then be described as
a union of all HCB spectra for all discrete values of φn,
with no external flux:

Ep,ncharge = EHCB(p, φn). (33)

The states are labelled by their total momentum Kp,n =
Kp + 2π n

N .
Our numerical results show that, as expected, the

charge spectrum of the ladder corresponds exactly to that
of the effective chain. As an example, Fig. 13 shows the
Jleg = 0 spectrum of a 2× 8 ladder with ρ = 3/4, which

FIG. 13: Charge spectrum at Jrung = trung = 1000, tleg =
1, Jleg = 0, Vrep = ∞. The solid lines denote the HCB spec-
trum (with an external flux) given by Eq. (32), different colors
corresponding to the different charge branches (labelled by p
in Eq. (32). The black circles denote the spectrum of a 2× 8
ladder with ρ = 3/4. The blue crosses correspond to the
effective chain spectrum for L = 8, ρ̃ = 1/2 (see Eq. (33)).

FIG. 14: Energy splittings of each of the eight E ≤ 0 en-
ergy levels at K = 0 of the 2 × 8 ladder with ρ = 3/4 (sym-
bol/line colors here match the colors of the parabolic branches
of Fig. 13) as a function of tleg/trung. The values of the leg
couplings are tleg = 1, Jleg = 0, Vrep = ∞ and trung(= Jrung)
takes different values from 100 to 10000. The fits correspond
to the expected t−1

rung behavior.

is in perfect agreement with the spectrum of an effec-
tive J = 0 chain with L = 8 and ρ̃ = 1/2 and with the
HCB spectrum given by the cosine branches according to
Eqs. (32) and (33). Note that there is a global shift in
energy between the ladder and the chain spectra given
by

Eshift = −trungNs − JrungNd, (34)

where Ns (Nd) are the number of rungs carrying a single
(two) τ (s).

Lastly, we would like to mention that the mapping is
exact only in the limit when the rung couplings tend to
infinity. For large, yet finite, rung couplings the energy
levels of the ladder model in each parabola are split into
an exponential number of energy levels over a finite en-
ergy range Σ. This is due to second order processes to
higher energy states that give rise to a broadening of or-
der Σ ∼ t2leg/trung and t2leg/Jrung of the energy levels, as
shown in Fig. 14.

3. Numerical comparison between microscopic model and
1D t-J model

We next turn on a small Jleg and adiabatically follow
the splitting of the charge parabolas. Fig. 15(a) zooms
into the low energy spectrum to show how the highly
degenerate energy levels are split by a small Jleg = 0.1.
Fig. 15(b) shows results for a larger coupling Jleg = 1. We
see that magnetic interactions lift the degeneracy of the
states with an energy spread proportional to LJleg. This
is consistent with the behavior of the effective t–J chain
exhibiting “spin-charge separation”: in Refs. 50,51 we



12

FIG. 15: Splitting of the degenerate levels on switching on different values of Jleg on a 2 × 8 ladder with ρ = 3/4 and
Jrung = trung = 1000, tleg = 1, Vrep =∞. The parabolas show the continuous HCB spectrum relevant for Jleg = 0 (see Fig. 13)
and the red crosses represent the ladder spectrum at (a) Jleg = 0.1 (b) Jleg = 1.

showed that the full excitation spectrum of an itinerant
anyon chain is made up of two independent contributions
originating from the charge degrees of freedom (described
in section VI A 2) and the anyon degrees of freedom which
are given by a squeezed (undoped) anyon chain of length
La = ρ̃L where ρ̃ is the anyon density on a L site t–J
chain of anyons.

We now perform a quantitative comparison of the spec-
tra of the anyonic ladder and its corresponding effective
anyonic chain. As the charge spectra match, we focus on
the energy difference spectrum (EDS) obtained by sub-
tracting the (supposed) charge excitation component to
each state. By construction, the EDS then carries the
information about the anyon degrees of freedom. Note
that this procedure is only possible at low energy and
for small enough Jleg, i.e. when a well defined parabolic
charge branch can be assigned unambiguously to the lev-
els we consider. However, even when a large splitting
of the energy levels is seen as in Fig. 15(b), we have
been able to identify exactly the charge excitations cor-
responding to the various levels in the low energy spec-
trum up to an excitation energy of order 5tleg and hence
obtain the corresponding EDS. The numerical results for
the EDS on a 2 × 8 ladder with anyon density ρ = 3/4
for small Jleg = 0.1tleg and intermediate Jleg = tleg are
shown in Figs. 16(a) and (b) respectively. We find the
EDS of the ladder and of the effective chain to be in
perfect agreement. The perfect mapping of the two-leg
ladder physics to the physics of the chain hence implies

straightforwardly that the concept of spin-charge frac-
tionalization is not strictly 1D but also applies to the
two-leg anyonic ladder, in contrast to the electronic lad-
der analog.

Note that the EDS subtracted spectrum must not be
confused with the actual energy spectrum of the corre-
sponding squeezed golden chain. In our prescription, sub-
tracting the charge excitations from the full spectrum,
we get the spectrum corresponding to the anyon degrees
of freedom as a function of the total momentum of the
ladder/t–J chain, rather than that of the squeezed golden
chain. Thus the spectra shown in Figs. 16(a),(b) are qual-
itatively different from the golden chain spectra.

B. Three-leg ladder

All results about the t–J phases are summarized in
Table III and we provide a short description below.

1. Density ρ < 1/3

For ρ < 1/3, the effective model upon doping the effec-
tive golden chain G±1 is again a t–J chain (C±01) indepen-
dent of the sign of the couplings. Our numerical spectra
agree well with the effective model, as shown in Fig. 17
for a 3×6 ladder with ρ = 5/18.

Note that, analogously to the case of the two-leg lad-
der, the mapping to the effective model is exact only in
the limit of infinite rung couplings. In Fig. 18, we show
the log-log plot for the broadenings Σ for each E ≤ 0

energy levels in the K = 0 sector as a function of the in-
verse rung couplings for a three-leg ladder. The slope of
−1 shows again that, for large but finite rung couplings,
there are second order effective processes involving higher
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Filling Jrung Phase J/Jleg t/tleg Derivation Eq. V/Jleg Derivation Eq.

ρ < 1
3

any C±01
3
8

1 (A49) — —

1
3
< ρ < 2

3
> 0 C±21

3
8

1
(2+α2)2φ

[
(3 + α2 + 2

√
2α)

(
cos 4π

5

)
+ 1
]

(A55) — —

ρ > 2
3

> 0 C±23 1 1
2+α2

[
1
φ2 + α2

2φ
+ α2

φ3 + 1

]
(A60) − 2

φ2 (A29)

ρ > 2
3

< 0 C±32
11

8φ2
1

2φ
− 1

4
(A65) 11

8φ3 (A26)

any > 3φ|trung| PS03 1
t2leg
E2

D
(3φ−2 + 2φ−3 + φ−2e8πi/5) (A84) − 2

φ2 (A29)

TABLE III: Effective couplings for the t–J phases of the three-leg ladder. Here ED = (−φ+ 1
2
)Jrung +

√
2trung +

√
J2
rung+8t2rung

2
.

energy states of the rungs.

2. Density 1/3 < ρ < 2/3 and Jrung > 0

In the density regime 1/3 < ρ < 2/3, we find an effec-
tive t–J model (C±21) upon doping the ρ = 1/3 G±1 golden
chain with heavy holes (increasing the U(1) charge den-
sity) or, equivalently, doping the totally gapped ρ = 2/3
T±2 phase with effective light τ particles (reducing the
U(1) charge density). Numerical simulations of three-leg
ladders in this density regime gives an effective hopping
that agrees very well with the analytical estimate.

3. Density ρ > 2/3 and Jrung > 0

In the strong antiferromagnetic Jrung > 0 rung cou-
pling limit, increasing the U(1) charge density starting
from the T±2 gapped chain of heavy holes, introduces
super-heavy τ anyons (i.e. |3, τ〉 states). The system
is described by a C±23 (modified) t–J chain. Unlike in the
previous simple t–J chains, the super-heavy τ ’s experi-
ence an effective nearest neighbor attractive potential.

4. Density ρ > 2/3 and Jrung < 0

For ferromagnetic Jrung < 0 at a density ρ > 2/3, we
map to an effective (modified) t–J chain C±32 phase of
heavy τ ’s and super-heavy holes. The heavy τ ’s experi-
ence a nearest neighbor repulsive potential. Our numeri-
cal simulations match very well the analytical estimates.

5. Phase separation at large Jrung > 0

In the absence of a rung charging energy Vrep an ad-
ditional phase PS03, that exhibits phase separation, ap-
pears for large Jrung > 3φ|trung|. The physics of the
interacting light holes and super-heavy τ particles is de-
scribed by an extended 1D t–J–V model that contains
the usual couplings of the regular t–J model and, in addi-
tion, the nearest neighbor attractive potential V between

the super-heavy τ particles. The dominant attraction V
leads to phase separation between an empty and a com-
pletely filled ladder.

VII. EFFECTIVE MODEL OF HEAVY AND
LIGHT FIBONACCI ANYONS

A. The model

We now discuss a new model which appears for strong
FM rung couplings on a two-leg ladder with ρ > 1/2 and
a large Vrep. A similar effective model also describes the
three-leg ladder with FM rung couplings and 1/3 < ρ <
2/3. When the rung couplings are FM, the fusion of two
τ ’s results in a τ charge. One thus obtains an effective
model with two different Fibonacci particles, the heavy
and light τ ’s distinguished by their U(1) charge. For
two-leg and three leg ladders, the magnetic interactions
(similar to the Golden chain) and the potentials between
the different flavors of τ particles are listed in Table IV.

In addition to the magnetic and potential terms one
also gets a kinetic process exchanging heavy and light
τ ’s on nearest neighbor rungs. This process is shown
schematically in Fig. 19(a),(b) for the microscopic ladder
model and the effective chain respectively. Note that, in
the t–J chain, with holes and τ ’s, the hopping process
shown in Fig. 1(c) moves the entire particle along with

Width τ1 τ2 J/Jleg Eq. V/Jleg Eq.

2 heavy heavy 2
φ2 (A12) 2

φ3 (A11)

2 heavy light − 1
φ

(A16) 1
φ

(A17)

2 light light 1
2

(A4) — —

3 heavy heavy 11
8φ2 (A25) 11

8φ3 (A26)

3 heavy light − 5
8φ

(A33) 5
8φ

(A34)

3 light light 3
8

(A21) — —

TABLE IV: Interactions between heavy and light τ ’s in two-
leg and three-leg ladders. The labels τ1 and τ2 indicate the
type (heavy or light) of the two interacting particles.
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FIG. 16: Comparison of the energy difference spectra, af-
ter subtracting the charge contribution to the energy of each
state, of a 2 × 8 ladder, ρ = 3/4 with that of the effective
t–J chain L = 8, ρ̃ = 1/2. The couplings on the ladder are
Jrung = trung = 1000, tleg = 1, Vrep = ∞ and (a) Jleg = 0.1
and (b) Jleg = 1.

its charges and spin labels. Whereas now, the scenario is
very different, the spin labels mix with each other as the
heavy τ ’s hop over to exchange positions with the light
τ ’s. The effective 1D model (in the basis of Eq. (3)) for
the hopping of heavy τ ’s is described by the Hamiltonian
HHL given below

HHL = t


1

0

0

φ−2 φ−3/2

φ−3/2 φ−1

 , (35)

where t is the rescaled hopping amplitude. We have
found that, for a two-leg ladder, the effective hopping
amplitude is

t = cos(3π/5)tleg. (36)

FIG. 17: Three-leg ladder: The black circles denote the spec-
trum of a 3×6 ladder with ρ = 5/18 while the red crosses are
for the effective chain with L = 6 and ρ̃ = 5/6. The couplings
on the ladder are Jrung = trung = 1000, tleg = 1, Vrep = ∞.
(a) Charge spectrum at Jleg = 0. The solid lines denote the
HCB spectrum. (b) energy difference spectrum for Jleg = 0.1.

A proof of this is provided in Eq. (A47).
For a three-leg ladder, the same model applies in the

density regime 1/3 < ρ < 2/3 (see Fig. 12(b) showing the
two new low energy states on the rungs) and the hopping
amplitude is

t =
1

8

[
1 + 9 cos(3π/5)

]
tleg, (37)

as shown in Eq. (A71). Note that there exists a sym-
metry between the two kinds of τ ’s i.e. the number of
heavy and light τ ’s in the system can be swapped, leaving
the physics unchanged. We provide a detailed analytical
derivation of this Hamiltonian in Appendix A.

These analytical considerations are found to be in very
good agreement with our numerical results for Jleg = 0.
Fig. 20 shows the comparison between the low energy
spectra of the effective single chain with heavy and light
taus and the ladder model. Note that for Jleg = 0
there is an exact E→ -E symmetry in the spectrum (not
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FIG. 18: Energy splittings of all E ≤ 0 energy levels at K = 0
of the 3 × 6 ladder with ρ = 5/6 as a function of tleg/trung.
The values of the couplings are tleg = 1, Jleg = 0, Vrep = ∞
and trung(= Jrung) takes different values from 100 to 10000.

FIG. 19: Hopping of heavy (or equivalently light) τ ’s. (a)
Microscopic ladder model: the blue circles denote τ particles
and the white circles are vacant sites on the ladder. (b) The
effective chain.

shown here) that emanates from a symmetry of exchang-
ing heavy and light τ ′s. When there is an odd number of
both particle types, the momenta are shifted by π under
this exchange.

The 1D model allows us to numerically solve larger
systems with smaller finite size corrections. We, however,
restrict ourselves to the case Jleg = 0 when there are no
magnetic interactions between τ particles along the leg
direction but only a small hopping tleg operates between
the rungs since already this simple model raises several
open questions.

B. Single particle dispersion

We start with the simplest problem of a single light
(heavy) τ moving in a background of L− 1 τ ’s of heavy
(light) τ . We choose t = −1 in order to avoid even-
odd chain length effects (although for L even the sign
of t is irrelevant). In the spectra shown in Fig. 21 for

FIG. 20: Low energy spectrum of the two-leg ladder with
strong FM rung couplings compared to the 1D heavy and
light τ model. The black circles are for a 2×8 ladder and
anyon density ρ = 3/4, while the red crosses are for the ef-
fective chain that it maps to (L = 8, ρ̃ = 1/2). The val-
ues of the couplings are tleg = 1, Jleg = 0, Vrep = ∞ and
Jrung = −2trung = −2000.

FIG. 21: Energy dispersions of a single heavy (or light) τ
amidst L − 1 light (or heavy) τ ’s for even (circles) and odd
(crosses) length chains, with couplings t = −1 and J = 0.

several chain lengths we observe that the dispersion min-
imum is always at K = 0 and a local minimum appears
around an incommensurate momentum. The bandwidth
is about 0.015|t|, independent of whether we consider a
single heavy or light τ .

C. Critical phase at generic fillings

We next consider a finite density ρ̃ of heavy τ ′s and a
corresponding filling of 1− ρ̃ light τ ′s. Note that due to
the symmetry between the heavy and light τ ’s, densities
ρ̃ and 1− ρ̃ are equivalent. We expect the same behavior
for all densities except for the half-filled case ρ̃ = 1/2,
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FIG. 22: (a) Spectra for the effective chains for heavy and
light τ ′s at ρ̃ = 1/4 with t = 1, J = 0. Note the momenta
have been shifted by π for L odd to make all spectra similar
and the ground state energy has been subtracted out. The
lowest energy levels at momenta 0, 2π/L, π − 2π/L and π
have been tagged as A, B, C and D, respectively. The second
excitations at momenta π and π − 2π/L are labeled by E
and F, respectively. (b) Finite-size scaling analysis of the A,
B, C, D, E and F energy excitations. Linear (dashed lines)
and exponential (full lines) fits are shown around K = π and
K = 0, respectively (see text). The scalings of the B, C and
F gaps are also reported in (a).

which we shall consider separately in the next section.
For simplicity we thus choose ρ̃ = 1/4 since it allows
us to perform a finite size analysis using three different
chain lengths L = 12, 16, 20. The corresponding spectra
are shown in Fig. 22(a).

One-dimensional gapless systems are often described
by a CFT and their lowest energy levels are then given
by

E(L) = eTL+
2πv

L
(− c

12
+ hL + hR). (38)

where c is the central charge and hL, hR are the scal-
ing dimensions of the ‘primary fields’ of the CFT. The

(thermodynamic) ground state energy per site eT and
the velocity v are non-universal constants. The finite size
ground state energy E0(L) corresponds to hL = hR = 0.

To test the CFT prediction, we performed a finite-size
scaling analysis of the first few energy gaps vs 1/L. As
shown in Fig. 22(b), we observe that the gaps around
K = π show a linear scaling with 1/L, suggesting gapless
modes. This behavior is, in principle, consistent with
the CFT scaling of Eq. (38). However, at this point,
we could not identify the CFT that describes our model,
being limited in Lanczos exact diagonalizations to system
sizes of less then twenty sites. Using the density matrix
renormalization group (DMRG) might help to obtain the
central charge, but is left for future studies.

The energy spectrum around K = 0 shows a different
behavior: as shown in Fig. 22(b), the finite size gaps of
the first excited states at momentum K = 0 and K =
2π/L could be fitted as ∆(L) = ∆(∞)+C/L exp(−L/ξ),
where ∆(∞) ' 0.04 is a finite energy gap and ξ > 10
is a correlation length. This suggests that, at density
ρ̃ = 1/4, the energy spectrum shows both a gapless mode
with linear disperson, described by a CFT, and additional
gapped modes.

D. Possible topological gapped phase at ρ̃ = 1/2

Next we consider the density ρ̃ = 1/2 where there is an
equal number of heavy and light τ ′s. We simulated chains
with lengths L = 14, 16, 18, and 20 and show these spec-
tra in Fig. 23(a), revealing low energy excitations at mo-
menta K = 0 and K = π. Performing a finite size scaling
analysis on the low lying states using system sizes L rang-
ing from 14 to 20 sites, as shown in Fig. 23(b) we find that
an exponential form like ∆(L) = ∆(∞)+C/L exp(−L/ξ)
provides reasonably good fits of the data. These fits
suggest that three of the gaps extrapolate to zero and
the next higher energy excitations extrapolate to a finite
value ∆(∞) ∼ 0.05. Note however, that the correlation
lengths extracted from the fits are of the order of the
system size so that our extrapolations have to be taken
with caution. However, if correct, our findings would in-
dicate a topological gapped phase with a four-fold degen-
erate ground state, although dimerization is not excluded
(since ground state momenta are both 0 and π). In any
case, we believe half-filling is a special case and very dif-
ferent from the other density regimes we considered. This
behavior is also notably different from the golden chains
which are known to be gapless for both FM and AFM
leg couplings.

VIII. CONCLUSIONS AND OUTLOOK

The possible realization of Fibonacci anyons in ex-
periments and their potential application to topological
quantum computing continues to fascinate many physi-
cists to work with such systems. In this article, we have
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FIG. 23: (a) Spectra of the chains of heavy and light τ ’s of
different sizes at ρ̃ = 1/2 and t = 1, J = 0. The ground state
energy has been subtracted out and the momenta are shifted
by π for odd number of particles of each type so as to get the
same zero ground state momentum in all cases. The lowest
energy levels at momenta 0, 2π/L, π−2π/L and π have been
tagged as B, E, G, A, respectively. The second excitations at
momenta 0 and π are labeled by F and C, respectively. The
third excitation at momentum π is labeled by D. (b) Finite-
size scaling analysis of the energy gaps of (a) vs 1/L (see text).
The scalings of the E and G gaps are also reported in (a).

addressed some questions on the physics of itinerant in-
teracting Fibonacci anyons in two dimensions. We have
studied two and three-leg ladders of doped Fibonacci
anyons and mapped out their phase diagrams. Moti-
vated by the construction of this model that forms an
anyonic generalization of the fermionic t − J model, we
employed a similar scheme of analysis by working in the
strong rung coupling limit. We start off with the limit of
isolated rungs and then couple them weakly by switching
on small interactions along the leg direction. In this limit
we find several different phases: totally gapped phases,
paired phases described by hard core bosons, golden
chain phases, t−J phases that carry τ anyons and trivial
particles and lastly the heavy and light τ phase that car-
ries two flavors of Fibonacci anyons. The bosonic phases
as well as the anyonic phases of the golden chain/ladder
and the t−J phases have been studied before. However,

in addition to the existing known phases, our study of
doped Fibonacci ladders has revealed a new heavy-light
τ model that can possibly realize a topological gapped
stated for some special filling, whereas a critical phase
otherwise. For each of the above-mentioned phases we
have analytically constructed effective low energy mod-
els and shown that they indeed corroborate our numerical
simulations.

An important point established in this article is that
we can map 2D doped Fibonacci ladders to effective 1D
models of Fibonacci anyons, some of which have been well
studied in the past. By introducing the idea of an energy
difference spectrum and building on our mapping to ef-
fective 1D models, we have shown that the phenomenon
of spin-charge separation continues to hold even in two-
dimensions on ladders of non-Abelian anyons.

The mapping to effective 1D models would allow these
ladder models of interacting anyons to be easily sim-
ulated numerically by efficient 1D algorithms such as
DMRG which pave the way for other potential studies
that could be carried out on these systems. There are
still some questions for the heavy-light τ model that re-
main unanswered, which would certainly give us more
insight into the physics of the model. In particular, we
have identified gapless modes for (certain fillings of) the
heavy-light τ model, but are restricted by means of com-
putational power to ascertain the CFT that governs this
model. Our exact diagonalization simulations do not al-
low us to probe very large system sizes, hence extrapolate
the behaviour of the system to the thermodynamic limit.
This open question could perhaps be tackled by means
of efficient 1D computational methods.
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Appendix A: Effective models

In this Appendix we explain the derivation of the effec-
tive models. We perturbatively derive the nearest neigh-
bor couplings of the effective 1D models assuming large
rung couplings and small leg couplings: |Jrung|, |trung| �
|Jleg|, |tleg|.

1. Magnetic and Potential Interactions

Magnetic interactions will only be present in effective
models if two neighboring sites each have a total anyonic
τ charge. A rung state with a total anyonic τ charge can
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TABLE V: The various rung states classified according to
their U(1) charge (columns) and topological charge (lines).
j = 0 (j = 1) corresponds to holes (τ particles). The possible
magnetic interactions (in the present models) are indicated
by pink arrows and the green arrows represent the possible
kinetic terms arising in first-order perturbation in tleg. The
leading kinetic and potential interactions can also arise only
in second or third-order in tleg, marked by blue and orange
arrows respectively.

have one (light τ), two (heavy τ) or three (super heavy
τ) τ particles on the rung, as shown in Table V. The
possible magnetic interactions are marked by pink ar-
rows. Below we investigate all possible combinations for
two neighboring rungs in two-leg and three-leg ladders,
respectively and compute the effective interactions from
first-order perturbation in Jleg.

a. Two-leg ladder

For the two-leg ladder the rungs have to be in the light
τ state

|1±, τ〉 =
1√
2

(
|1U , τ〉 ± |1L, τ〉

)
≡ |U〉 ± |L〉√

2
, (A1)

or in the heavy τ state |2, τ〉, where we introduced short
hand notations |U〉 and |L〉 for an anyon on the upper
or lower site of a rung, respectively. We review three
possible cases below.

Light τ – light τ : We first evaluate the matrix ele-
ment 〈ψ|H leg

magn|ψ〉 of the state

|ψ〉 = |1±, τ〉 ⊗ |1±, τ〉

=
1

2
(|UU〉 ± |LU〉 ± |UL〉+ |LL〉), (A2)

where H leg
magn is the (part of the) Hamiltonian that de-

scribes the magnetic interaction between two anyons once
they are nearest neighbors along a leg of the ladder (see
main text).

The only non-vanishing matrix elements for the mag-
netic interaction in the effective model arise when the
two anyons are on the same leg of the ladder. Thus, we
have

〈ψ|H leg
magn|ψ〉 =

1

4
(〈UU |H leg

magn|UU〉+ 〈LL|H leg
magn|LL〉)

=
1

2
〈UU |H leg

magn|UU〉. (A3)

The second step follows since the contributions from mag-
netic interactions on the upper and lower legs of the lad-
der are equal in magnitude. It follows immediately that
the effective magnetic interaction is half the bare inter-
action:

J =
1

2
Jleg. (A4)

Heavy τ – heavy τ : Let us now consider the case
where both rungs are in the heavy τ state. The state |ψ〉
is now defined by

|ψ〉 = |2, τ〉 ⊗ |2, τ〉 . (A5)

We calculate the matrix element 〈ψ|H leg
magn|ψ〉 for this

state to obtain

〈ψ|H leg
magn|ψ〉 = (〈UU |H leg

magn|UU〉+ 〈LL|H leg
magn|LL〉)

= 2〈UU |H leg
magn|UU〉 , (A6)

where the second steps follows since both the terms have
the same contribution.

To evaluate the contribution of such a term, we need
to calculate explicitly the matrix elements for all bond
labels. The bond labels belong to the set S defined in
Eq. (3), which we rewrite here for convenience

S = {|1τ1〉, |1ττ〉, |ττ1〉, |τ1τ〉, |τττ〉}. (A7)

We denote the initial quantum state (including site and
bond labels) as:

|Ψα〉 =
∣∣ψ; ξα〉, (A8)

where |ξα〉 ∈ S. The final states after the magnetic pro-
cess are given by :

|Ψβ〉 =
∣∣ψ; ξβ〉, (A9)

where |ξβ〉 ∈ S.
Then, the matrix elements for this process in the basis

S are given by:

H leg
magn = −Jleg


φ−1

φ−3

φ−3

φ−2 φ−7/2

φ−7/2 φ−2 + φ−5

 .
(A10)

This effective Hamiltonian is proportional to the
golden chain Hamiltonian (upto an overall shift) and
the contribution to the effective coupling on each leg is
φ−2Jleg. Thus, the effective potential between the two
heavy τ ’s is given by

V = 2φ−3Jleg, (A11)

and the effective magnetic interaction for the entire pro-
cess obtained by combining contributions from both the
legs (see Eq. (A6)), is thus given by

J = 2φ−2Jleg . (A12)
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Light τ – heavy τ : Finally, we consider the case
where we have a heavy τ and light τ on neighboring
rungs. The state |ψ〉 is now defined as

|ψ〉 = |1±, τ〉 ⊗ |2, τ〉 . (A13)

We calculate the matrix element 〈ψ|H leg
magn|ψ〉 for this

state to obtain

〈ψ|H leg
magn|ψ〉 =

1

2
(〈UU |H leg

magn|UU〉+ 〈LL|H leg
magn|LL〉)

= 〈UU |H leg
magn|UU〉 , (A14)

where the second steps follows since both the terms have
the same contribution. As before we denote the initial
and final states as defined in Eq. (A8) and Eq. (A9) re-
spectively. Then, the matrix elements for this process in
the basis S are given by:

H leg
magn = −Jleg


0

φ−1

φ−1

φ−2 −φ−5/2

−φ−5/2 φ−3

 .
(A15)

This Hamiltonian matrix is equivalent to the golden
chain Hamiltonian with the effective coupling

J = −φ−1Jleg (A16)

and an effective potential

V = φ−1Jleg (A17)

b. Three-leg ladder

For three legs, a rung has a total anyonic τ charge if
it is in one of the |1±, τ〉 (light), |2±, τ〉 (heavy) or |3, τ〉
(super heavy) state. Below we consider all possible cases
for neighboring rungs both with a total anyonic τ charge.

Light τ – light τ : We first assume that the two
rungs are both in the state

|1±, τ〉 =
1

2

(
|1U , τ〉+ |1L, τ〉 ±

√
2|1M , τ〉

)
=

1

2
|L〉 ± 1√

2
|M〉+

1

2
|U〉, (A18)

where the states |L〉, |M〉, |U〉 denote the position of the
anyon on the lower, middle or upper leg respectively, and
± depends on the sign of trung. As above we calculate
the matrix element for the state

|ψ〉 = |1±, τ〉 ⊗ |1±, τ〉 (A19)

and obtain

〈ψ|H leg
magn|ψ〉 =

1

16

(
〈UU |H leg

magn|UU〉

+ 〈LL|H leg
magn|LL〉

+
1

4
〈MM |H leg

magn|MM〉
)

=
3

8
〈UU |H leg

magn|UU〉, (A20)

resulting in an effective coupling

J =
3

8
Jleg. (A21)

Heavy τ – heavy τ : Let us now assume the effective
τ ’s on the rungs are in the heavy τ state

|2±, τ〉 =
1

2

(
|1U,M , τ〉+ |1M,L, τ〉 ±

√
2|1U,L, τ〉

)
≡ 1

2

(
|UM〉+ |ML〉 ±

√
2|UL〉

)
, (A22)

where we have used the short hand notation |AB〉 denot-
ing that the τ lies on the leg A and B and the net fusion
channel outcome being a τ is implicit.

As above we calculate the matrix element for the state

|ψ〉 = |2±, τ〉 ⊗ |2±, τ〉 (A23)

=
1

4

(
|UM,UM

〉
+ |UM,ML

〉
+
√

2|UM,UL
〉

+ |ML,UM
〉

+ |ML,ML
〉

+
√

2|ML,UL
〉

+
√

2|UL,UM
〉

+
√

2|UL,ML
〉

+ 2|UL,UL
〉)

and obtain

〈ψ|H leg
magn|ψ〉 =

1

16

(
〈UM,UM |H leg

magn|UM,UM〉

+ 〈ML,ML|H leg
magn|ML,ML〉

+ 2〈UL,UL|H leg
magn|UL,UL〉

+ 〈UM,ML|H leg
magn|UM,ML〉

+
√

2〈UM,UL|H leg
magn|UM,UL〉

+ 〈ML,UM |H leg
magn|ML,UM〉

+
√

2〈ML,UL|H leg
magn|ML,UL〉

+
√

2〈UL,UM |H leg
magn|UL,UM〉

+
√

2〈UL,ML|H leg
magn|UL,ML〉

)
.

(A24)

The first three terms have two magnetic interactions
each along the leg direction while all the others have only
one. Moreover all these magnetic interactions are equal
in magnitude, the contribution of a single term giving the
effective coupling J = φ−2Jleg (see Eq. (A12)). Taking
into account the contributions from all the terms, it fol-
lows immediately that the effectively magnetic coupling
is

J =
11

8
φ−2Jleg (A25)
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and the effective potential is given by

V =
11

8
φ−3Jleg . (A26)

Super-heavy τ – super-heavy τ : Let us now as-
sume the states on the rungs with total anyonic charge
τ are both given by |3, τ〉 (super-heavy τ ’s). Then, we
calculate the matrix element for the state

|ψ〉 = |3, τ〉 ⊗ |3, τ〉 (A27)

and obtain

〈ψ|H leg
magn|ψ〉 =

(
〈UU |H leg

magn|UU〉
+ 〈LL|H leg

magn|LL〉
+ 〈MM |H leg

magn|MM〉
)
. (A28)

Magnetic interactions on the upper and middle leg con-
tribute to a potential in the effective Hamiltonian given
by

V = −2φ−2Jleg , (A29)

while the magnetic process on the lower leg results in an
effective magnetic coupling given by

J = Jleg . (A30)

Light τ – heavy τ : Finally, we consider the case
when the two τ ’s on the neighboring rungs are in the
|1±, τ〉 and the |2±, τ〉 states. The state |ψ〉 is now given
by

|ψ〉 = |2±, τ〉 ⊗ |1±, τ〉 (A31)

=
1

2

(
|UM

〉
+ |ML

〉
+
√

2|UL
〉)

⊗ 1

2

(
|U
〉

+ |L
〉

+
√

2|M
〉)

= |UM,U
〉

+ |UM,L
〉

+
√

2|UM,M
〉

+ |ML,U
〉

+ |ML,M
〉

+
√

2|ML,M
〉

+
√

2|UL,U
〉

+
√

2|UL,L
〉

+ 2|UL,M
〉
.

As before we calculate the matrix element

〈ψ|H leg
magn|ψ〉 =

1

16

(
〈UM,U |H leg

magn|UM,U〉

+ 2〈UM,M |H leg
magn|UM,M〉

+ 〈ML,L|H leg
magn|ML,L〉

+ 2〈ML,M |H leg
magn|ML,M〉

+ 2〈UL,U |H leg
magn|UL,U〉

+ 2〈UL,L|H leg
magn|UL,L〉

)
.

(A32)

The contributions of each of these terms to the effective
coupling is (−φ−1)Jleg (see Eq. (A16)), thus the net ef-
fective coupling for this magnetic process is given by

J = − 5

8φ
Jleg (A33)

and the effective potential is

V =
5

8φ
Jleg (A34)

2. Kinetic terms

Whenever the total U(1) charges of the two neighbor-
ing rung states differ by ±1, a hopping process occurs in
first order in tleg. It is the case for a charge-1 (light) τ
and a charge-0 (light) or charge-2 (heavy) hole, a charge-
1 (light) τ and a charge-2 (heavy) τ , a charge-2 (heavy)
hole and a charge-3 (super heavy) τ , a charge-2 (heavy) τ
and a charge-3 (super heavy) hole. All these are marked
schematically by green arrows in Table. V. Below we in-
vestigate all these possibilities in two leg and three leg
ladders, respectively.

a. Two-leg ladder

Let us first evaluate the effective hopping in a two-
leg ladder arising when there is a τ particle in the state
|1±, τ〉 and an effective hole in either the empty |e〉 =
|0,1〉 (case 1) or the fully occupied |f〉 = |2,1〉 (case 2)
rung state on adjacent rungs.
Light hole – light τ : First, we need to evaluate the

matrix element
〈
Ψ1|H leg

kin|Ψ2〉 between the two states

|Ψ1〉 = |1±, τ〉 ⊗ |e〉 ≡ |Ue〉 ± |Le〉√
2

(A35)

and

|Ψ2〉 = |e〉 ⊗ |1±, τ〉 ≡ |eU〉 ± |eL〉√
2

, (A36)

where H leg
kin is the kinetic part of the ladder Hamiltonian

living on the legs (see main text). Similar to the case of
magnetic interactions one gets a factor 1/2 and obtains
for the effective hopping

t =
1

2
tleg. (A37)

Heavy hole – light τ : Next, one evaluates the ma-
trix element between the states

|Ψ1〉 = |1±, τ〉 ⊗ |f〉 ≡ |Uf〉 ± |Lf〉√
2

(A38)

and

|Ψ2〉 = |f〉 ⊗ |1±, τ〉 ≡ |fU〉 ± |fL〉√
2

. (A39)

The matrix elements are written explicity as

〈Ψ2|H leg
kin|Ψ1〉 =

1

2
〈fU |H leg

kin|Uf〉+
1

2
〈fL|H leg

kin|Lf〉 .
(A40)
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The derivation is identical but involves two non-trivial
braids. The contributions from the hopping on the two
legs are thus given by

〈fU |H leg
kin|Uf〉 = e4πi/5φ−1tleg

〈
1τ |hkin|τ1〉,

〈fL|H leg
kin|Lf〉 = e−4πi/5φ−1tleg

〈
1τ |hkin|τ1〉.

(A41)

Adding both the terms we get an overall −1 factor,
compared to the previous case:

t = −1

2
tleg. (A42)

Light τ – heavy τ : Finally, let us consider two
nearest neighbor rungs, one carrying a heavy τ and the

other with a light τ . Here, the bond labels belong to
the set S defined in Eq. (A7). We denote the ‘initial’
quantum state (including site and bond labels) with a
light (heavy) τ on the first (second) rung as:

|Ψi,α〉 =
∣∣1l2h; ξα〉, (A43)

where i stands for initial and |ξα〉 ∈ S. The ‘final’ states
after the hopping process are given by :

|Ψf,β〉 =
∣∣1h2l; ξβ〉, (A44)

where f is for final and |ξβ〉 ∈ S. One needs to compute

all matrix elements
〈
Ψβ |H leg

kin|Ψα〉. The matrix elements
for the hopping of a heavy and a light τ on the lower leg
of the ladder are found to be:

〈
1h2l;1τ1|H leg

kin|1l2h;1τ1〉 = tlege
−3πi/5〈1τ |hkin|τ1〉,〈

1h2l;1ττ |H leg
kin|1l2h;1ττ〉 = −tlege

−3πi/5φ−1〈1τ |hkin|τ1〉,〈
1h2l; ττ1|H leg

kin|1l2h; ττ1〉 = −tlege
−3πi/5φ−1〈1τ |hkin|τ1〉,〈

1h2l; τ1τ |H leg
kin|1l2h; τττ〉 =

〈
1h2l; τττ |H leg

kin|1l2h; τ1τ〉 = tlege
−3πi/5φ−1/2〈1τ |hkin|τ1〉,〈

1h2l; τττ |H leg
kin|1l2h; τττ〉 = tlege

−3πi/5φ−2〈1τ |hkin|τ1〉. (A45)

The matrix elements for hopping on the other leg remain
the same except for the direction of the braid being re-
versed, i.e. all phase factors e−3πi/5 → e3πi/5. As we
sum up contributions from both the legs, the phase fac-
tors add up and the entire matrix (in the basis (A7)) is
written as :

Heff = t


1

−φ−1

−φ−1

0 φ−1/2

φ−1/2 φ−2

 , (A46)

where the effective hopping amplitude is

t =
(

cos(3π/5)
)
tleg. (A47)

A characteristic feature of this effective hopping Hamil-
tonian is that it mixes the spin labels. This is remark-
ably different from the simple hopping process between
a hole and a τ . In the text, we have quoted the effective
Hamiltonian matrix for this process as HHL described in
Eq. (35), which is related to Heff by rescaling it such that
the 2× 2 block has eigenvalues 0 and 1. More precisely,
HHL = aHeff + bI with a = φ−1 and b = φ−2 (where I is
the identity matrix).

b. Three-leg ladder

For a three-leg ladder, we can derive the relevant ma-
trix elements in a similar way.
Light hole – light τ : Let us start with the sim-

plest case and compute the matrix element
〈
Ψ1|H leg

kin|Ψ2〉
where |Ψ1〉 = |s〉⊗|e〉, |Ψ2〉 = |e〉⊗|s〉, |s〉 ≡ |1±, τ〉 is de-
fined in (A18) and |e〉 is the empty rung. Using obvious
notations, 〈

Ψ1|H leg
kin|Ψ2〉 =

1

4

(〈
eU |H leg

kin|Ue〉

+ 2
〈
eM |H leg

kin|Me〉

+
〈
eL|H leg

kin|Le〉
)

=
〈
eU |H leg

kin|Ue〉, (A48)

Since all the F -moves are trivial because of the holes on
the rungs and there would be no phase factors due to the
braidings either, we get the effective hopping:

t = tleg. (A49)

Heavy hole – light τ : The calculation is slightly
more involved when the effective effective hole state |d〉
involves two τ anyons on the rung,

|d〉 =
1√

2 + α2
(|L〉+ |U〉+ α|M〉), (A50)
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where X means a vacant site on the rung at position

X. The matrix element
〈
Ψ1|H leg

kin|Ψ2〉 now involves the

initial and final states,

|Ψ1〉 = |s〉 ⊗ |d〉

=
1

2
√

2 + α2

(
|UU〉+

√
2|MU〉+ |LU〉+ α|UM〉+

√
2α|MM〉+ α|LM〉+ |UL〉+

√
2|ML〉+ |LL〉

)
(A51)

|Ψ2〉 = |d〉 ⊗ |s〉

=
1

2
√

2 + α2

(
|UU〉+

√
2|UM〉+ |UL〉+ α|MU〉+

√
2α|MM〉+ α|ML〉+ |LU〉+

√
2|LM〉+ |LL〉

)
.(A52)

After expanding both sides one gets,

〈Ψ1|H leg
kin|Ψ2〉 =

1

4(2 + α2)

(
〈LL|H leg

kin|UU〉+
√

2α〈MM |H leg
kin|UU〉+ 2〈UM |H leg

kin|MU〉

+ 〈UL|H leg
kin|LU〉+ α2〈MU |H leg

kin|UM〉+
√

2α〈LL|H leg
kin|MM〉

+
√

2α〈UU |H leg
kin|MM〉+ α2〈ML|H leg

kin|LM〉+ 〈LU |H leg
kin|UL〉

+ 2〈LM |H leg
kin|ML〉+

√
2α〈MM |H leg

kin|LL〉+ 〈UU |H leg
kin|LL〉

)
. (A53)

The contributions of the individual terms are as follows:

〈LL|H leg
kin|UU〉 = 〈UU |H leg

kin|LL〉 = φ−1tleg

〈
1τ |hkin|τ1〉,

〈MM |H leg
kin|UU〉 = 〈UM |H leg

kin|MU〉 = 〈LU |H leg
kin|UL〉 = e4πi/5φ−1tleg

〈
1τ |hkin|τ1〉,

〈LL|H leg
kin|MM〉 = 〈UL|H leg

kin|LU〉 = 〈MM |H leg
kin|LL〉 = e−4πi/5φ−1tleg

〈
1τ |hkin|τ1〉,

〈MU |H leg
kin|UM〉 = 〈UU |H leg

kin|MM〉 = e4πi/5φ−1tleg

〈
1τ |hkin|τ1〉,

〈ML|H leg
kin|LM〉 = 〈LM |H leg

kin|ML〉 = e−4πi/5φ−1tleg

〈
1τ |hkin|τ1〉. (A54)

Replacing (A54) into (A53) one gets the effective hop-
ping,

t =
〈Ψ1|H leg

kin|Ψ2〉〈
1τ |hkin|τ1〉

=
1

(2 + α2)2φ

[
(3 + α2 + 2

√
2α)

(
cos

4π

5

)
+ 1
]
tleg

(A55)

Heavy hole – super-heavy τ : The third case cor-
responds to the effective hole state |d〉 defined in (A50)
and the effective τ particle state defined by the fully oc-
cupied rung |f〉 = |3, τ〉. The initial and final states |Ψ1〉
and |Ψ2〉 are now given by :

|Ψ1〉 = |d〉 ⊗ |f〉

=
1√

2 + α2

(
|Uf〉+ α|Mf〉+ |Lf〉

)
, (A56)

|Ψ2〉 = |f〉 ⊗ |d〉

=
1√

2 + α2

(
|fU〉+ α|fM〉+ |fL〉

)
. (A57)

The matrix element for the kinetic Hamiltonian on the
legs is now expressed as :

〈Ψ2|H leg
kin|Ψ1〉 =

1

2 + α2

(
〈fU |H leg

kin|Uf〉

+ α2〈fM |H leg
kin|Mf〉

+ 〈fL|H leg
kin|Lf〉

)
. (A58)

The individual contributions of these terms are:

〈fU |H leg
kin|Uf〉 = φ−2tleg

〈
1τ |hkin|τ1〉,

〈fM |H leg
kin|Mf〉 =

(
1

2φ
+ φ−3

)
tleg

〈
1τ |hkin|τ1〉,

〈fL|H leg
kin|Lf〉 = tleg

〈
1τ |hkin|τ1〉. (A59)

Adding the contributions of the three terms we get:

t =
〈Ψ2|H leg

kin|Ψ1〉〈
1τ |hkin|τ1〉

=
1

2 + α2

[
1

φ2
+
α2

2φ
+
α2

φ3
+ 1

]
tleg. (A60)
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Super-heavy hole – heavy τ : The fourth case cor-
responds to a τ in the state |2±, τ〉 defined in Eq. (A22).
The effective hole on the ladder is defined by the fully
occupied state |f〉 ≡ |3,1〉. We calculate the matrix ele-
ment of the states

|Ψ1〉 = |2±, τ〉 ⊗ |f〉

≡ 1

2

(
|UM, f〉+ |ML, f〉 ±

√
2|UL, f〉

)
(A61)

and

|Ψ2〉 = |f〉 ⊗ |2±, τ〉

≡ 1

2

(
|f, UM〉+ |f,ML〉 ±

√
2|f, UL〉

)
.(A62)

The matrix elements are given by

〈Ψ2|H leg
kin|Ψ1〉 =

1

4

(
〈f, UM |H leg

kin|UM, f〉

+ 〈f,ML|H leg
kin|ML, f〉

+ 2〈f, UL|H leg
kin|UL, f〉

)
. (A63)

The contributions of the individual hopping terms are

〈f, UM |H leg
kin|UM, f〉 = φ−1e6πi/5

〈
1τ |hkin|τ1〉,

〈f, UL|H leg
kin|UL, f〉 = φ−1e−6πi/5

〈
1τ |hkin|τ1〉,

〈f,ML|H leg
kin|ML, f〉 = φ−1

〈
1τ |hkin|τ1〉 . (A64)

Using Eqs. A64 in Eq. (A63), we get

t =
〈Ψ2|H leg

kin|Ψ1〉〈
1τ |hkin|τ1〉

=

(
1

2φ
− 1

4

)
tleg. (A65)

Light τ – Heavy τ : Finally, we consider two rungs
with a light τ defined by the state |s〉 in (A18) and a
heavy τ defined by the state |h〉 given as :

|h〉 =
1

2
(|L〉+

√
2|M〉+ |U〉). (A66)

The initial and final states, formed by the tensor prod-
uct of |s〉 and |h〉 are defined as:

|Ψ1〉 = |s〉 ⊗ |h〉

=
1

4

(
|UU〉+

√
2|MU〉+ |LU〉

+
√

2|UM〉+ 2|MM〉+
√

2|LM〉

+ |UL〉+
√

2|ML〉+ |LL〉
)

(A67)

and,

|Ψ2〉 = |h〉 ⊗ |s〉

=
1

4

(
|UU〉+

√
2|UM〉+ |UL〉

+
√

2|MU〉+
√

2|MM〉+
√

2|ML〉

+ |LU〉+
√

2|LM〉+ |LL〉
)
. (A68)

The matrix elements corresponding to the hopping along
the leg on the ladder can be expanded using the expres-
sion of the states to give :

〈Ψ1|H leg
kin|Ψ2〉 =

1

16

(
〈LL|H leg

kin|UU〉+ 2〈MM |H leg
kin|UU〉+ 2〈UM |H leg

kin|MU〉+ 〈UL|H leg
kin|LU〉

+ 2〈MU |H leg
kin|UM〉+ 2〈LL|H leg

kin|MM〉+ 2〈UU |H leg
kin|MM〉+ 2〈ML|H leg

kin|LM〉

+ 〈LU |H leg
kin|UL〉+ 2〈LM |H leg

kin|ML〉+ 2〈MM |H leg
kin|LL〉+ 〈UU |H leg

kin|LL〉
)
. (A69)

The contributions of the individual terms are as follows:

〈LL|H leg
kin|UU〉 = 〈UU |H leg

kin|LL〉 = tleg

〈
1τ |hkin|τ1〉,

〈MM |H leg
kin|UU〉 = 〈UM |H leg

kin|MU〉 = 〈LU |H leg
kin|UL〉 = tlege

−3πi/5
〈
1τ |hkin|τ1〉,

〈UL|H leg
kin|LU〉 = 〈LL|H leg

kin|MM〉 = 〈ML|H leg
kin|LM〉 = tlege

3πi/5
〈
1τ |hkin|τ1〉,

〈MU |H leg
kin|UM〉 = 〈UU |H leg

kin|MM〉 = tlege
−3πi/5

〈
1τ |hkin|τ1〉,

〈MM |H leg
kin|LL〉 = 〈LM |H leg

kin|ML〉 = tlege
3πi/5

〈
1τ |hkin|τ1〉. (A70)



24

Replacing (A70) into (A69) one gets the effective hopping,

t =
〈Ψ1|H leg

kin|Ψ2〉〈
1τ |hkin|τ1〉

=
1

8

[
1 + 9 cos(3π/5)

]
tleg. (A71)

3. Higher order terms

In addition to the above cases, we can also have a ki-
netic and potential terms when the difference in the U(1)
charges on neighboring rungs is larger than 1. Such pro-
cess occurs e.g. (i) between a charge-0 (light) hole and
a charge-2 (heavy) hole (marked by blue arrows in Ta-
ble. V) in the P2 paired phase or (ii) between a charge-0
(light) hole and a charge-3 (super heavy) τ (marked by
orange arrows in Table. V) in the PS03 phase.

In case (i), one needs to hop twice to be able to come
back to a configuration |ΨJ〉 that has the same U(1)
charges as the initial configuration |ΨI〉, so the effec-
tive Hamiltonian (leaving in the relevant subspace) is
obtained in second-order perturbation, in tleg

61,62

〈ΨI |Heff |ΨJ〉 = −
∑
r

〈ΨI |H leg
kin|Ψr〉〈Ψr|H leg

kin|ΨJ〉
Er − EJ

,

(A72)
where the sum is on the intermediate states correspond-
ing to two (light) τ ’s on neighboring sites. The energy
denominator is given by ED = (−2trung +Jrung) and ma-
trix elements for all the intermediate states are (−tleg)
so that one gets for I = J a potential energy

V = −
2t2leg

ED
(A73)

and for I 6= J a hopping term

t = −
2t2leg

ED
. (A74)

In case (ii), one needs to hop three times to be able
to come back to a configuration that has the same
U(1) charges as the initial configuration, so the effective
Hamiltonian is now obtained in third-order perturbation
in tleg:61,62

〈ΨI |Heff |ΨJ〉 =
∑
r,s

〈ΨI |H leg
kin|Ψr〉〈Ψr|H leg

kin|Ψs〉〈Ψs|H leg
kin|ΨJ〉

(Es − EJ)(Er − EJ)
,

(A75)

where the intermediate states |Ψr〉 and |Ψs〉 carry a
heavy hole and a light τ on neighboring rungs. The
energy denominators given by the difference in energy
between the initial (degenerate with the final) state and
the intermediate states thus take the value

ED = (φ− 1

2
)Jrung−

√
2trung−

√
J2

rung + 8t2rung

2
. (A76)

Starting from an initial state |3, τ〉⊗|e〉 a simple hopping
yields the intermediate state |2,1〉⊗|1, τ〉 with the matrix
elements given by for hopping on the upper leg

t1U = φ−1tleg, (A77)

on the middle leg,

t1M = φ−1e−4iπ/5tleg, (A78)

and on the lower leg,

t1L = tleg . (A79)

Subsequently, a second hopping yields the intermediate
state |1, τ〉 ⊗ |2,1〉 with hopping matrix elements on the
upper leg

t2U = φ−1e−4iπ/5tleg, (A80)

on the middle leg,

t2M = φ−1tleg, (A81)

and on the lower leg,

t2L = φ−1e4iπ/5tleg . (A82)

Finally to come back to a state carrying the same U(1)
charges on the rungs, the hopping amplitudes for the
three legs are just the complex conjugate of those de-
scribed in Eqs. (A77)-(A79), thus giving for I = J a
potential energy

V =
(2φ−2 + 1)t2leg

ED
(A83)

and for I 6= J a hopping term

t =
t3leg

E2
D

(3φ−2 + 2φ−3 + φ−2e8πi/5). (A84)

Appendix B: Implementation details

In this section we describe briefly as to how we generate
the Hilbert space for anyonic systems and the Hamilto-
nian numerically.
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1. Hilbert space

The model of doped Fibonacci ladders is described in
terms of two quantum numbers : the U(1) charge and
the anyonic spin. The most homogenous way to rep-
resent this system would be to keep information about
both these quantum numbers on the bond labels of the
fusion tree. However, since the U(1) charge is Abelian
and counts the number of anyons in the system, it is
advantageous to label it separately. Thus, the system is
described by a fusion tree with two labels, one for each of
the quantum numbers. The U(1) charge is labeled by the
position of the anyons on the sites and the non-Abelian
anyonic spin is labeled by the bond labels of the fusion
tree.

We first need to store the basis states of the Hilbert
space. We can compactly store the configuration by
means of two separate integers, one each for the U(1)
charge (site labels) and non-Abelian charge (bond la-
bels). Each bit of these integers represents a single site
(or bond) label which is set to 1 if an anyon is present
on that particular site (or bond), otherwise is set to 0.
The bond labels of the fusion tree are constrained by
the fusion rules that must be satisfied on each trivalent
vertex.

Since the model conserves the number of particles in
the system, the total number of 0’s and 1’s in the integers
for the U(1) charge must be fixed in the system for a given
particle density. Say, for example, we have a system of
L sites with N particles. The integers for the site labels,
hence, carry L bits. The set of site labels contains all
those integers that have exactly N out of L bits set to
1. Let us call S the set that contains all the possible
states for the site labels consistent with the number of
anyons in the system. Further for each element in S, we
enumerate all allowed configurations for the bond labels
by imposing the fusion rules at every trivalent vertex of
the fusion tree. The states for the bond labels belong to
the set B

(
|ψsite

〉)
that is defined by the site labels.

We illustrate this method of writing the states in the
Hilbert space for a section of the fusion path with two va-
cant sites and two anyons (L = 4, N = 2). In figure B 1,
we show two possible configurations for this case. The
site labels are represented by blue (anyons) and white
(holes) circles. The bond labels, xi, are shown by red
circles. The holes may be present on any two of the four
sites, however we must record the information about their
position since different site labels correspond to a differ-
ent set of bond labels.

For example in figure B 1(a) the state for the site
charges would read |ψasite

〉
= |0011

〉
but for figure B 1(b)

the corresponding state would be |ψbsite
〉

= |0101
〉
. Ow-

ing to the non-Abelian nature of the theory, for each of
these site configurations we obtain several configurations
for the bond labels that are consistent with the fusion
rules.

For example, for the case B 1(a) the bond labels

FIG. 24: Illustration of the Hilbert space for two possible
site configurations for a section of the fusion path with two
particles and two vacant sites. The state for the site labels is
(a) |ψasite

〉
= |0011

〉
and (b) |ψbsite

〉
= |0101

〉
. The state for

the bond labels is |ψbond

〉
= |x1x2x3x4x5

〉
∈ B(|ψsite

〉
).

|ψabond

〉
belong to the set

|ψabond

〉
∈ B(|ψasite

〉
) =

{
|00010

〉
, |00011

〉
, |00110

〉
, |00101

〉
,

|00111
〉
, |11101

〉
, |11110

〉
, 11111

〉}
(B1)

whereas for the case B 1(b) the bond labels |ψbbond

〉
be-

long to the set

|ψbbond

〉
∈ B(|ψbsite

〉
) =

{
|00110

〉
, |00111

〉
,

|11001
〉
, |11110

〉
, |11111

〉}
.

(B2)

The full quantum state is described by taking into ac-
count both |ψsite

〉
and |ψbond

〉
. Thus, the Hilbert

space H is defined by the set {|ψsite

〉
⊗ |ψbond

〉
} :

|ψsite

〉
∈ S, |ψbond

〉
∈ B(|ψsite

〉
). Note that for a golden

chain/ladder (ρ = 1) the state describing the site labels
becomes redundant since all the site labels are identically
equal to 1.

Further, our system has a translation symmetry, i.e. it
remains invariant if the site and bond labels are shifted
by a certain amount. This enables us to write the wave-
functions as Bloch waves labeled by the momentum. The
Hamiltonian becomes a block-diagonal operator and each
of these blocks can be diagonalized individually. The
Hilbert space is reduced by a factor of L, making the
numerics much more tractable.

In Table VI, we list the sizes of the Hilbert space (in
the K = 0 sector) for doped ladders. The Hilbert space
sizes for their corresponding effective models are listed in
Table VII. Additionally in Table VIII, we mention the
Hilbert space sizes of the largest chains we simulated for
the heavy-light model.
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TABLE VI: Hilbert space sizes for doped ladders of Fibonacci
anyons without charging energy.

W L Filling Size of Hilbert space

2 8 ρ = 3/4 73322

3 6 ρ = 5/18 15708

TABLE VII: Hilbert space sizes for effective models of doped
Fibonacci ladders.

L Filling Model Size of Hilbert space

8 ρ̃ = 1/2 t− J 64

6 ρ̃ = 5/6 t− J 11

TABLE VIII: Hilbert space sizes for effective 1D chains of the
heavy-light model.

L Filling Model Size of Hilbert space

8 ρ̃ = 1/2 heavy-light 418

20 ρ̃ = 1/2 heavy-light 139741760

20 ρ̃ = 1/4 heavy-light 11726456

2. Generating the Hamiltionian

Local interactions are treated simply by multiplying
the wavefunction with the Hamiltonian for the interac-

tion. For our choice of fusion path, leg interactions de-
fined in Eqs. (14) - (18) (see main text) are longer range
interactions, thus involving Braid matrices in addition to
the interaction term. Note that since the Braid matrix
can generate up to two states per bond, we can obtain
up to 22W−1 states for magnetic interactions and 22W−2

states for kinetic terms. The non-zero entries for each
row of the Hamiltonian matrix are thus growing expo-
nentially with the width of the ladder giving rise to a
dense matrix for the Hamiltonian. The action of this
dense Hamiltonian on the wavefunction would turn out
to be numerically expensive. So, instead of multiplying a
single matrix with an exponentially large number of non-
zero elements with the wavefunction, we implement the
same process by iteratively multiplying the wavefunction
by 2W − 1 sparse matrices as follows. We multiply the
wavefunction successively with the Braid matrices, the
number of braids depending on W . Thereafter, we treat
the local interaction term. Subsequently we act one by
one with all the inverse braid matrices to obtain the final
wavefunction. The Hamiltonian is thus generated by suc-
cessive multiplication of W − 1 Braid matrices followed
by multiplication with the interaction term and finally
by W − 1 inverse Braid matrices. Since the matrix is
becoming denser with the width of the ladder, the exact
diagonalization becomes more and more computationally
expensive and we can treat only medium sized systems
numerically.
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